File size: 7,988 Bytes
f700114
cc165f9
f700114
1a77416
a72cc82
 
69c9de9
 
 
 
 
 
 
 
005d8cf
a72cc82
f700114
a72cc82
 
 
 
 
 
f700114
383659b
 
 
1a77416
383659b
8d54860
 
952e5d1
383659b
 
 
1a77416
 
 
 
 
 
 
dc9c960
8375e6c
dc9c960
 
8375e6c
dc9c960
 
8375e6c
dc9c960
 
 
 
1a77416
 
 
e59f527
1a77416
 
dc9c960
383659b
8d54860
1d4ce47
dc9c960
 
8d54860
1a77416
dc9c960
 
9f81278
dc9c960
 
1d4ce47
9f81278
dc9c960
9f81278
dc9c960
9f81278
8d54860
1a77416
f700114
 
a72cc82
 
 
 
 
 
69c9de9
a72cc82
 
 
 
 
 
 
 
 
de4364a
8375e6c
 
a72cc82
 
 
 
 
 
 
 
 
 
de4364a
a72cc82
 
8375e6c
a72cc82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8375e6c
a72cc82
8375e6c
a72cc82
 
 
8375e6c
 
a72cc82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8375e6c
a72cc82
 
 
 
 
 
 
8375e6c
 
383659b
f700114
268bd19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import numpy as np

# Configuration de la page
if 'page_config' not in st.session_state:
    st.set_page_config(
        page_title="Fraktur Detektion",
        layout="wide",
        initial_sidebar_state="collapsed",
        menu_items=None
    )
    st.session_state.page_config = True

@st.cache_resource
def load_models():
    return {
        "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
        "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
        "RöntgenMeister": pipeline("image-classification", 
            model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
    }

def translate_label(label):
    translations = {
        "fracture": "Knochenbruch",
        "no fracture": "Kein Knochenbruch",
        "normal": "Normal",
        "abnormal": "Auffällig",
        "F1": "Knochenbruch",
        "NF": "Kein Knochenbruch"
    }
    return translations.get(label.lower(), label)

def create_heatmap_overlay(image, box, score):
    overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
    draw = ImageDraw.Draw(overlay)
    
    x1, y1 = box['xmin'], box['ymin']
    x2, y2 = box['xmax'], box['ymax']
    
    if score > 0.8:
        fill_color = (255, 0, 0, 100)
        border_color = (255, 0, 0, 255)
    elif score > 0.6:
        fill_color = (255, 165, 0, 100)
        border_color = (255, 165, 0, 255)
    else:
        fill_color = (255, 255, 0, 100)
        border_color = (255, 255, 0, 255)
    
    draw.rectangle([x1, y1, x2, y2], fill=fill_color)
    draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
    
    return overlay

def draw_boxes(image, predictions):
    result_image = image.copy().convert('RGBA')
    
    for pred in predictions:
        box = pred['box']
        score = pred['score']
        
        overlay = create_heatmap_overlay(image, box, score)
        result_image = Image.alpha_composite(result_image, overlay)
        
        draw = ImageDraw.Draw(result_image)
        temp = 36.5 + (score * 2.5)
        label = f"{translate_label(pred['label'])} ({score:.1%}{temp:.1f}°C)"
        
        text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
        draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
        
        draw.text(
            (box['xmin'], box['ymin']-20),
            label,
            fill=(255, 255, 255, 255)
        )
    
    return result_image

def main():
    st.markdown("""
        <style>
            .stApp {background: #f0f2f5}
            div[data-testid="stToolbar"] {display: none}
            #MainMenu {visibility: hidden}
            footer {visibility: hidden}
            header {visibility: hidden}
            .result-box {
                background: #f8f9fa;
                padding: 0.75rem;
                border-radius: 8px;
                margin: 0.5rem 0;
                border: 1px solid #e9ecef;
            }
        </style>
    """, unsafe_allow_html=True)
    
    try:
        models = load_models()
        
        st.write("### 📤 Röntgenbild hochladen")
        uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
        
        col1, col2 = st.columns([2, 1])
        with col1:
            conf_threshold = st.slider(
                "Konfidenzschwelle",
                min_value=0.0, max_value=1.0,
                value=0.60, step=0.05
            )
        with col2:
            analyze_button = st.button("Analysieren")

        if uploaded_file and analyze_button:
            with st.spinner("Bild wird analysiert..."):
                image = Image.open(uploaded_file)
                results_container = st.container()
                
                predictions_watcher = models["KnochenWächter"](image)
                predictions_master = models["RöntgenMeister"](image)
                predictions_locator = models["KnochenAuge"](image)
                
                has_fracture = False
                max_fracture_score = 0
                filtered_locations = [p for p in predictions_locator 
                                    if p['score'] >= conf_threshold]
                
                for pred in predictions_watcher:
                    if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
                        has_fracture = True
                        max_fracture_score = max(max_fracture_score, pred['score'])
                
                with results_container:
                    st.write("### 🔍 Analyse Ergebnisse")
                    col1, col2 = st.columns(2)
                    
                    with col1:
                        st.write("#### 🤖 KI-Diagnose")
                        
                        st.markdown("#### 🛡️ KnochenWächter")
                        for pred in predictions_watcher:
                            confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
                            label_lower = pred['label'].lower()
                            if pred['score'] >= conf_threshold and 'fracture' in label_lower:
                                has_fracture = True
                                max_fracture_score = max(max_fracture_score, pred['score'])
                            st.markdown(f"""
                                <div class="result-box">
                                    <span style="color: {confidence_color}; font-weight: 500;">
                                        {pred['score']:.1%}
                                    </span> - {translate_label(pred['label'])}
                                </div>
                            """, unsafe_allow_html=True)
                        
                        st.markdown("#### 🎓 RöntgenMeister")
                        for pred in predictions_master:
                            confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
                            st.markdown(f"""
                                <div class="result-box">
                                    <span style="color: {confidence_color}; font-weight: 500;">
                                        {pred['score']:.1%}
                                    </span> - {translate_label(pred['label'])}
                                </div>
                            """, unsafe_allow_html=True)
                        
                        if max_fracture_score > 0:
                            st.write("#### 📊 Wahrscheinlichkeit")
                            no_fracture_prob = 1 - max_fracture_score
                            st.markdown(f"""
                                <div class="result-box">
                                    Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
                                    Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
                                </div>
                            """, unsafe_allow_html=True)
                    
                    with col2:
                        predictions = models["KnochenAuge"](image)
                        filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
                        
                        if filtered_preds:
                            st.write("#### 🎯 Fraktur Lokalisation")
                            result_image = draw_boxes(image, filtered_preds)
                            st.image(result_image, use_container_width=True)
                        else:
                            st.write("#### 🖼️ Röntgenbild")
                            st.image(image, use_container_width=True)
    except Exception as e:
        st.error(f"Ein Fehler ist aufgetreten: {str(e)}")

if __name__ == "__main__":
    main()