Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,6 @@ import streamlit as st
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from PIL import Image, ImageDraw
|
| 4 |
import torch
|
| 5 |
-
from typing import List, Dict
|
| 6 |
-
import time
|
| 7 |
|
| 8 |
st.set_page_config(
|
| 9 |
page_title="Fraktur Detektion",
|
|
@@ -11,90 +9,104 @@ st.set_page_config(
|
|
| 11 |
initial_sidebar_state="collapsed"
|
| 12 |
)
|
| 13 |
|
| 14 |
-
# CSS avec animations
|
| 15 |
st.markdown("""
|
| 16 |
<style>
|
|
|
|
| 17 |
.stApp {
|
| 18 |
-
background
|
| 19 |
-
padding: 0 !important;
|
| 20 |
}
|
| 21 |
|
| 22 |
.block-container {
|
| 23 |
-
padding:
|
| 24 |
-
max-width:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
.upload-section {
|
| 28 |
-
display: flex;
|
| 29 |
-
flex-direction: column;
|
| 30 |
-
align-items: center;
|
| 31 |
-
justify-content: center;
|
| 32 |
-
min-height: 50vh;
|
| 33 |
-
animation: fadeIn 0.5s ease-in;
|
| 34 |
}
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
}
|
| 39 |
|
| 40 |
-
.
|
| 41 |
background: white;
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
box-shadow: 0
|
| 45 |
margin-bottom: 1rem;
|
| 46 |
-
|
| 47 |
-
animation: scaleIn 0.3s ease-out;
|
| 48 |
}
|
| 49 |
|
| 50 |
-
.result-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
}
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
margin-top: 1rem;
|
| 63 |
}
|
| 64 |
|
| 65 |
-
|
|
|
|
| 66 |
background: white;
|
| 67 |
-
border-radius: 8px;
|
| 68 |
padding: 0.5rem;
|
|
|
|
| 69 |
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
| 70 |
-
animation: scaleIn 0.3s ease-out;
|
| 71 |
}
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
}
|
| 87 |
|
| 88 |
-
/*
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
margin: 0 auto;
|
| 93 |
-
object-fit: contain;
|
| 94 |
}
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
}
|
| 99 |
</style>
|
| 100 |
""", unsafe_allow_html=True)
|
|
@@ -117,12 +129,12 @@ def translate_label(label):
|
|
| 117 |
}
|
| 118 |
return translations.get(label.lower(), label)
|
| 119 |
|
| 120 |
-
def draw_boxes(image
|
| 121 |
draw = ImageDraw.Draw(image)
|
| 122 |
for pred in predictions:
|
| 123 |
box = pred['box']
|
| 124 |
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
|
| 125 |
-
color = "#
|
| 126 |
|
| 127 |
draw.rectangle(
|
| 128 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
|
@@ -138,83 +150,84 @@ def draw_boxes(image: Image, predictions: List[Dict]) -> Image:
|
|
| 138 |
def main():
|
| 139 |
models = load_models()
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
# Section upload centrée
|
| 145 |
-
st.markdown('<div class="upload-section">', unsafe_allow_html=True)
|
| 146 |
st.markdown("### 📤 Röntgenbild Upload")
|
| 147 |
uploaded_files = st.file_uploader("", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
|
|
|
| 148 |
conf_threshold = st.slider(
|
| 149 |
"Konfidenzschwelle",
|
| 150 |
min_value=0.0, max_value=1.0,
|
| 151 |
-
value=0.60, step=0.05
|
|
|
|
| 152 |
)
|
| 153 |
-
analyze_button = st.button("Analysieren")
|
| 154 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
if analyze_button and uploaded_files:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
for uploaded_file in uploaded_files:
|
| 160 |
-
image = Image.open(uploaded_file)
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
time.sleep(0.5) # Animation effect
|
| 165 |
|
| 166 |
-
|
|
|
|
| 167 |
|
|
|
|
| 168 |
with col1:
|
| 169 |
-
st.markdown("###
|
| 170 |
st.image(image, use_column_width=True)
|
| 171 |
|
|
|
|
| 172 |
with col2:
|
| 173 |
-
st.markdown("###
|
| 174 |
|
| 175 |
-
# KnochenWächter
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
<
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
""", unsafe_allow_html=True)
|
| 188 |
|
| 189 |
-
# RöntgenMeister
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
<
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
""", unsafe_allow_html=True)
|
| 202 |
|
| 203 |
-
#
|
| 204 |
with col3:
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
| 208 |
|
| 209 |
-
if
|
| 210 |
st.markdown("### 🔍 Fraktur Lokalisation")
|
| 211 |
-
filtered_preds = [p for p in
|
| 212 |
if filtered_preds:
|
| 213 |
result_image = image.copy()
|
| 214 |
result_image = draw_boxes(result_image, filtered_preds)
|
| 215 |
st.image(result_image, use_column_width=True)
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
main()
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from PIL import Image, ImageDraw
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
|
| 6 |
st.set_page_config(
|
| 7 |
page_title="Fraktur Detektion",
|
|
|
|
| 9 |
initial_sidebar_state="collapsed"
|
| 10 |
)
|
| 11 |
|
|
|
|
| 12 |
st.markdown("""
|
| 13 |
<style>
|
| 14 |
+
/* Base styles */
|
| 15 |
.stApp {
|
| 16 |
+
background: #f0f2f5 !important;
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
.block-container {
|
| 20 |
+
padding: 1rem !important;
|
| 21 |
+
max-width: 1400px !important;
|
| 22 |
+
margin: 0 auto !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
}
|
| 24 |
|
| 25 |
+
/* Custom containers */
|
| 26 |
+
.center-upload {
|
| 27 |
+
background: white;
|
| 28 |
+
padding: 2rem;
|
| 29 |
+
border-radius: 10px;
|
| 30 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 31 |
+
margin-bottom: 2rem;
|
| 32 |
+
text-align: center;
|
| 33 |
}
|
| 34 |
|
| 35 |
+
.analysis-container {
|
| 36 |
background: white;
|
| 37 |
+
padding: 1.5rem;
|
| 38 |
+
border-radius: 10px;
|
| 39 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 40 |
margin-bottom: 1rem;
|
| 41 |
+
animation: slideIn 0.5s ease-out;
|
|
|
|
| 42 |
}
|
| 43 |
|
| 44 |
+
.result-box {
|
| 45 |
+
background: #f8f9fa;
|
| 46 |
+
padding: 0.75rem;
|
| 47 |
+
border-radius: 8px;
|
| 48 |
+
margin: 0.5rem 0;
|
| 49 |
+
border: 1px solid #e9ecef;
|
| 50 |
}
|
| 51 |
|
| 52 |
+
/* Text styles */
|
| 53 |
+
h1, h2, h3, h4, p {
|
| 54 |
+
color: #1a1a1a !important;
|
| 55 |
+
margin: 0.5rem 0 !important;
|
|
|
|
| 56 |
}
|
| 57 |
|
| 58 |
+
/* Image styles */
|
| 59 |
+
.stImage {
|
| 60 |
background: white;
|
|
|
|
| 61 |
padding: 0.5rem;
|
| 62 |
+
border-radius: 8px;
|
| 63 |
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
|
|
|
| 64 |
}
|
| 65 |
|
| 66 |
+
.stImage > img {
|
| 67 |
+
max-height: 250px !important;
|
| 68 |
+
width: auto !important;
|
| 69 |
+
margin: 0 auto !important;
|
| 70 |
+
display: block !important;
|
| 71 |
}
|
| 72 |
|
| 73 |
+
/* Animations */
|
| 74 |
+
@keyframes slideIn {
|
| 75 |
+
from {
|
| 76 |
+
opacity: 0;
|
| 77 |
+
transform: translateY(-10px);
|
| 78 |
+
}
|
| 79 |
+
to {
|
| 80 |
+
opacity: 1;
|
| 81 |
+
transform: translateY(0);
|
| 82 |
+
}
|
| 83 |
}
|
| 84 |
|
| 85 |
+
/* Hide unnecessary elements */
|
| 86 |
+
#MainMenu, footer {
|
| 87 |
+
display: none !important;
|
| 88 |
}
|
| 89 |
|
| 90 |
+
/* Custom columns spacing */
|
| 91 |
+
[data-testid="column"] {
|
| 92 |
+
padding: 0.5rem !important;
|
| 93 |
+
background: transparent !important;
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
|
| 96 |
+
/* Button styling */
|
| 97 |
+
.stButton > button {
|
| 98 |
+
width: 200px;
|
| 99 |
+
background-color: #0066cc !important;
|
| 100 |
+
color: white !important;
|
| 101 |
+
border: none !important;
|
| 102 |
+
padding: 0.5rem 1rem !important;
|
| 103 |
+
border-radius: 5px !important;
|
| 104 |
+
transition: all 0.3s ease !important;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
.stButton > button:hover {
|
| 108 |
+
background-color: #0052a3 !important;
|
| 109 |
+
transform: translateY(-1px);
|
| 110 |
}
|
| 111 |
</style>
|
| 112 |
""", unsafe_allow_html=True)
|
|
|
|
| 129 |
}
|
| 130 |
return translations.get(label.lower(), label)
|
| 131 |
|
| 132 |
+
def draw_boxes(image, predictions):
|
| 133 |
draw = ImageDraw.Draw(image)
|
| 134 |
for pred in predictions:
|
| 135 |
box = pred['box']
|
| 136 |
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
|
| 137 |
+
color = "#0066cc" if pred['score'] > 0.7 else "#ffa500"
|
| 138 |
|
| 139 |
draw.rectangle(
|
| 140 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
|
|
|
| 150 |
def main():
|
| 151 |
models = load_models()
|
| 152 |
|
| 153 |
+
# Initial upload section
|
| 154 |
+
st.markdown('<div class="center-upload">', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
| 155 |
st.markdown("### 📤 Röntgenbild Upload")
|
| 156 |
uploaded_files = st.file_uploader("", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
| 157 |
+
|
| 158 |
conf_threshold = st.slider(
|
| 159 |
"Konfidenzschwelle",
|
| 160 |
min_value=0.0, max_value=1.0,
|
| 161 |
+
value=0.60, step=0.05,
|
| 162 |
+
key='confidence'
|
| 163 |
)
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
analyze_button = st.button("Analysieren", key='analyze')
|
| 166 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 167 |
+
|
| 168 |
+
# Analysis section
|
| 169 |
if analyze_button and uploaded_files:
|
| 170 |
+
for idx, uploaded_file in enumerate(uploaded_files):
|
| 171 |
+
st.markdown(f'<div class="analysis-container">', unsafe_allow_html=True)
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
with st.spinner("Analysiere Bild..."):
|
| 174 |
+
image = Image.open(uploaded_file)
|
|
|
|
| 175 |
|
| 176 |
+
# Create three columns
|
| 177 |
+
col1, col2, col3 = st.columns(3)
|
| 178 |
|
| 179 |
+
# Column 1: Original Image
|
| 180 |
with col1:
|
| 181 |
+
st.markdown("### 🖼️ Original")
|
| 182 |
st.image(image, use_column_width=True)
|
| 183 |
|
| 184 |
+
# Column 2: AI Analysis
|
| 185 |
with col2:
|
| 186 |
+
st.markdown("### 🤖 KI-Analyse")
|
| 187 |
|
| 188 |
+
# KnochenWächter results
|
| 189 |
+
predictions = models["KnochenWächter"](image)
|
| 190 |
+
st.markdown("#### 🛡️ KnochenWächter")
|
| 191 |
+
for pred in predictions:
|
| 192 |
+
if pred['score'] >= conf_threshold:
|
| 193 |
+
st.markdown(f"""
|
| 194 |
+
<div class="result-box">
|
| 195 |
+
<span style='color: {"#0066cc" if pred["score"] > 0.7 else "#ffa500"}; font-weight: 500;'>
|
| 196 |
+
{pred['score']:.1%}
|
| 197 |
+
</span> - {translate_label(pred['label'])}
|
| 198 |
+
</div>
|
| 199 |
+
""", unsafe_allow_html=True)
|
|
|
|
| 200 |
|
| 201 |
+
# RöntgenMeister results
|
| 202 |
+
predictions = models["RöntgenMeister"](image)
|
| 203 |
+
st.markdown("#### 🎓 RöntgenMeister")
|
| 204 |
+
for pred in predictions:
|
| 205 |
+
if pred['score'] >= conf_threshold:
|
| 206 |
+
st.markdown(f"""
|
| 207 |
+
<div class="result-box">
|
| 208 |
+
<span style='color: {"#0066cc" if pred["score"] > 0.7 else "#ffa500"}; font-weight: 500;'>
|
| 209 |
+
{pred['score']:.1%}
|
| 210 |
+
</span> - {translate_label(pred['label'])}
|
| 211 |
+
</div>
|
| 212 |
+
""", unsafe_allow_html=True)
|
|
|
|
| 213 |
|
| 214 |
+
# Column 3: Localization (only if fracture detected)
|
| 215 |
with col3:
|
| 216 |
+
predictions = models["KnochenAuge"](image)
|
| 217 |
+
has_fracture = any(
|
| 218 |
+
p['score'] >= conf_threshold and 'fracture' in p['label'].lower()
|
| 219 |
+
for p in predictions
|
| 220 |
+
)
|
| 221 |
|
| 222 |
+
if has_fracture:
|
| 223 |
st.markdown("### 🔍 Fraktur Lokalisation")
|
| 224 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
| 225 |
if filtered_preds:
|
| 226 |
result_image = image.copy()
|
| 227 |
result_image = draw_boxes(result_image, filtered_preds)
|
| 228 |
st.image(result_image, use_column_width=True)
|
| 229 |
+
|
| 230 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 231 |
|
| 232 |
if __name__ == "__main__":
|
| 233 |
main()
|