yassonee commited on
Commit
8375e6c
·
verified ·
1 Parent(s): c94930b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -101
app.py CHANGED
@@ -2,7 +2,14 @@ import streamlit as st
2
  from transformers import pipeline
3
  from PIL import Image, ImageDraw
4
  import numpy as np
5
- import colorsys
 
 
 
 
 
 
 
6
 
7
  st.set_page_config(
8
  page_title="Fraktur Detektion",
@@ -126,21 +133,17 @@ def create_heatmap_overlay(image, box, score):
126
  x1, y1 = box['xmin'], box['ymin']
127
  x2, y2 = box['xmax'], box['ymax']
128
 
129
- # Couleur basée sur le score
130
  if score > 0.8:
131
- fill_color = (255, 0, 0, 100) # Rouge
132
  border_color = (255, 0, 0, 255)
133
  elif score > 0.6:
134
- fill_color = (255, 165, 0, 100) # Orange
135
  border_color = (255, 165, 0, 255)
136
  else:
137
- fill_color = (255, 255, 0, 100) # Jaune
138
  border_color = (255, 255, 0, 255)
139
 
140
- # Rectangle semi-transparent
141
  draw.rectangle([x1, y1, x2, y2], fill=fill_color)
142
-
143
- # Bordure
144
  draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
145
 
146
  return overlay
@@ -152,20 +155,16 @@ def draw_boxes(image, predictions):
152
  box = pred['box']
153
  score = pred['score']
154
 
155
- # Création de l'overlay
156
  overlay = create_heatmap_overlay(image, box, score)
157
  result_image = Image.alpha_composite(result_image, overlay)
158
 
159
- # Ajout du texte
160
  draw = ImageDraw.Draw(result_image)
161
  temp = 36.5 + (score * 2.5)
162
  label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
163
 
164
- # Fond noir pour le texte
165
  text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
166
  draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
167
 
168
- # Texte en blanc
169
  draw.text(
170
  (box['xmin'], box['ymin']-20),
171
  label,
@@ -175,100 +174,99 @@ def draw_boxes(image, predictions):
175
  return result_image
176
 
177
  def main():
178
- models = load_models()
179
-
180
- with st.container():
181
- st.write("### 📤 Röntgenbild hochladen")
182
- uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
183
 
184
- col1, col2 = st.columns([2, 1])
185
- with col1:
186
- conf_threshold = st.slider(
187
- "Konfidenzschwelle",
188
- min_value=0.0, max_value=1.0,
189
- value=0.60, step=0.05,
190
- label_visibility="visible"
191
- )
192
- with col2:
193
- analyze_button = st.button("Analysieren")
194
-
195
- if uploaded_file and analyze_button:
196
- with st.spinner("Bild wird analysiert..."):
197
- image = Image.open(uploaded_file)
198
- results_container = st.container()
199
-
200
- predictions_watcher = models["KnochenWächter"](image)
201
- predictions_master = models["RöntgenMeister"](image)
202
- predictions_locator = models["KnochenAuge"](image)
203
-
204
- has_fracture = False
205
- max_fracture_score = 0
206
- filtered_locations = [p for p in predictions_locator
207
- if p['score'] >= conf_threshold]
208
-
209
- for pred in predictions_watcher:
210
- if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
211
- has_fracture = True
212
- max_fracture_score = max(max_fracture_score, pred['score'])
213
 
214
- with results_container:
215
- st.write("### 🔍 Analyse Ergebnisse")
216
- col1, col2 = st.columns(2)
 
 
 
 
 
 
 
 
 
 
 
 
217
 
218
- with col1:
219
- st.write("#### 🤖 KI-Diagnose")
220
-
221
- st.markdown("#### 🛡️ KnochenWächter")
222
- # Afficher tous les résultats de KnochenWächter
223
- for pred in predictions_watcher:
224
- confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
225
- label_lower = pred['label'].lower()
226
- # Mettre à jour max_fracture_score seulement pour les fractures
227
- if pred['score'] >= conf_threshold and 'fracture' in label_lower:
228
- has_fracture = True
229
- max_fracture_score = max(max_fracture_score, pred['score'])
230
- # Afficher tous les résultats
231
- st.markdown(f"""
232
- <div class="result-box" style="color: #1a1a1a;">
233
- <span style="color: {confidence_color}; font-weight: 500;">
234
- {pred['score']:.1%}
235
- </span> - {translate_label(pred['label'])}
236
- </div>
237
- """, unsafe_allow_html=True)
238
-
239
- st.markdown("#### 🎓 RöntgenMeister")
240
- # Afficher tous les résultats de RöntgenMeister
241
- for pred in predictions_master:
242
- confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
243
- st.markdown(f"""
244
- <div class="result-box" style="color: #1a1a1a;">
245
- <span style="color: {confidence_color}; font-weight: 500;">
246
- {pred['score']:.1%}
247
- </span> - {translate_label(pred['label'])}
248
- </div>
249
- """, unsafe_allow_html=True)
250
-
251
- if max_fracture_score > 0:
252
- st.write("#### 📊 Wahrscheinlichkeit")
253
- no_fracture_prob = 1 - max_fracture_score
254
- st.markdown(f"""
255
- <div class="result-box" style="color: #1a1a1a;">
256
- Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
257
- Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
258
- </div>
259
- """, unsafe_allow_html=True)
260
 
261
- with col2:
262
- predictions = models["KnochenAuge"](image)
263
- filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
 
265
- if filtered_preds:
266
- st.write("#### 🎯 Fraktur Lokalisation")
267
- result_image = draw_boxes(image, filtered_preds)
268
- st.image(result_image, use_container_width=True)
269
- else:
270
- st.write("#### 🖼️ Röntgenbild")
271
- st.image(image, use_container_width=True)
 
 
 
 
 
 
272
 
273
  if __name__ == "__main__":
274
  main()
 
2
  from transformers import pipeline
3
  from PIL import Image, ImageDraw
4
  import numpy as np
5
+ import os
6
+
7
+ # Configuration de l'environnement
8
+ os.environ['STREAMLIT_SERVER_PORT'] = '7860'
9
+ os.environ['STREAMLIT_SERVER_ADDRESS'] = '0.0.0.0'
10
+ os.environ['STREAMLIT_SERVER_HEADLESS'] = 'true'
11
+ os.environ['STREAMLIT_SERVER_ENABLE_CORS'] = 'true'
12
+ os.environ['STREAMLIT_SERVER_ENABLE_XSRF_PROTECTION'] = 'false'
13
 
14
  st.set_page_config(
15
  page_title="Fraktur Detektion",
 
133
  x1, y1 = box['xmin'], box['ymin']
134
  x2, y2 = box['xmax'], box['ymax']
135
 
 
136
  if score > 0.8:
137
+ fill_color = (255, 0, 0, 100)
138
  border_color = (255, 0, 0, 255)
139
  elif score > 0.6:
140
+ fill_color = (255, 165, 0, 100)
141
  border_color = (255, 165, 0, 255)
142
  else:
143
+ fill_color = (255, 255, 0, 100)
144
  border_color = (255, 255, 0, 255)
145
 
 
146
  draw.rectangle([x1, y1, x2, y2], fill=fill_color)
 
 
147
  draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
148
 
149
  return overlay
 
155
  box = pred['box']
156
  score = pred['score']
157
 
 
158
  overlay = create_heatmap_overlay(image, box, score)
159
  result_image = Image.alpha_composite(result_image, overlay)
160
 
 
161
  draw = ImageDraw.Draw(result_image)
162
  temp = 36.5 + (score * 2.5)
163
  label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
164
 
 
165
  text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
166
  draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
167
 
 
168
  draw.text(
169
  (box['xmin'], box['ymin']-20),
170
  label,
 
174
  return result_image
175
 
176
  def main():
177
+ try:
178
+ models = load_models()
 
 
 
179
 
180
+ with st.container():
181
+ st.write("### 📤 Röntgenbild hochladen")
182
+ uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
+ col1, col2 = st.columns([2, 1])
185
+ with col1:
186
+ conf_threshold = st.slider(
187
+ "Konfidenzschwelle",
188
+ min_value=0.0, max_value=1.0,
189
+ value=0.60, step=0.05,
190
+ label_visibility="visible"
191
+ )
192
+ with col2:
193
+ analyze_button = st.button("Analysieren")
194
+
195
+ if uploaded_file and analyze_button:
196
+ with st.spinner("Bild wird analysiert..."):
197
+ image = Image.open(uploaded_file)
198
+ results_container = st.container()
199
 
200
+ predictions_watcher = models["KnochenWächter"](image)
201
+ predictions_master = models["RöntgenMeister"](image)
202
+ predictions_locator = models["KnochenAuge"](image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
 
204
+ has_fracture = False
205
+ max_fracture_score = 0
206
+ filtered_locations = [p for p in predictions_locator
207
+ if p['score'] >= conf_threshold]
208
+
209
+ for pred in predictions_watcher:
210
+ if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
211
+ has_fracture = True
212
+ max_fracture_score = max(max_fracture_score, pred['score'])
213
+
214
+ with results_container:
215
+ st.write("### 🔍 Analyse Ergebnisse")
216
+ col1, col2 = st.columns(2)
217
+
218
+ with col1:
219
+ st.write("#### 🤖 KI-Diagnose")
220
+
221
+ st.markdown("#### 🛡️ KnochenWächter")
222
+ for pred in predictions_watcher:
223
+ confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
224
+ label_lower = pred['label'].lower()
225
+ if pred['score'] >= conf_threshold and 'fracture' in label_lower:
226
+ has_fracture = True
227
+ max_fracture_score = max(max_fracture_score, pred['score'])
228
+ st.markdown(f"""
229
+ <div class="result-box" style="color: #1a1a1a;">
230
+ <span style="color: {confidence_color}; font-weight: 500;">
231
+ {pred['score']:.1%}
232
+ </span> - {translate_label(pred['label'])}
233
+ </div>
234
+ """, unsafe_allow_html=True)
235
+
236
+ st.markdown("#### 🎓 RöntgenMeister")
237
+ for pred in predictions_master:
238
+ confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
239
+ st.markdown(f"""
240
+ <div class="result-box" style="color: #1a1a1a;">
241
+ <span style="color: {confidence_color}; font-weight: 500;">
242
+ {pred['score']:.1%}
243
+ </span> - {translate_label(pred['label'])}
244
+ </div>
245
+ """, unsafe_allow_html=True)
246
+
247
+ if max_fracture_score > 0:
248
+ st.write("#### 📊 Wahrscheinlichkeit")
249
+ no_fracture_prob = 1 - max_fracture_score
250
+ st.markdown(f"""
251
+ <div class="result-box" style="color: #1a1a1a;">
252
+ Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
253
+ Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
254
+ </div>
255
+ """, unsafe_allow_html=True)
256
 
257
+ with col2:
258
+ predictions = models["KnochenAuge"](image)
259
+ filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
260
+
261
+ if filtered_preds:
262
+ st.write("#### 🎯 Fraktur Lokalisation")
263
+ result_image = draw_boxes(image, filtered_preds)
264
+ st.image(result_image, use_container_width=True)
265
+ else:
266
+ st.write("#### 🖼️ Röntgenbild")
267
+ st.image(image, use_container_width=True)
268
+ except Exception as e:
269
+ st.error(f"Ein Fehler ist aufgetreten: {str(e)}")
270
 
271
  if __name__ == "__main__":
272
  main()