NeuroGenAI / app.py
yashbyname's picture
Update app.py
c00355e verified
raw
history blame
12.3 kB
import requests
import gradio as gr
import logging
import json
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import io
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API key and user ID for on-demand
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'
# Load the keras model
def load_model():
try:
# Define custom objects dictionary
custom_objects = {
'KerasLayer': hub.KerasLayer,
# Add any other custom layers your model might use
}
# Load model with custom object scope
with tf.keras.utils.custom_object_scope(custom_objects):
model = tf.keras.models.load_model('model_epoch_01.h5.keras')
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
# Preprocess image for model
def preprocess_image(image):
try:
# Convert to numpy array if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure image has 3 channels (RGB)
if len(image.shape) == 2: # Grayscale image
image = np.stack((image,) * 3, axis=-1)
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
image = image[:, :, :3]
# Resize image to match model's expected input shape
target_size = (224, 224) # Change this to match your model's input size
image = tf.image.resize(image, target_size)
# Normalize pixel values
image = image / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0)
return image
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
raise
def create_chat_session():
try:
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
create_session_headers = {
'apikey': api_key,
'Content-Type': 'application/json'
}
create_session_body = {
"pluginIds": [],
"externalUserId": external_user_id
}
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
response.raise_for_status()
return response.json()['data']['id']
except requests.exceptions.RequestException as e:
logger.error(f"Error creating chat session: {str(e)}")
raise
def submit_query(session_id, query, image_analysis=None):
try:
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
submit_query_headers = {
'apikey': api_key,
'Content-Type': 'application/json'
}
# Include image analysis in the query if available
query_with_image = query
if image_analysis:
query_with_image += f"\n\nImage Analysis Results: {image_analysis}"
structured_query = f"""
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
{query_with_image}
Return only valid JSON with these fields:
- diagnosis_details
- probable_diagnoses (array)
- treatment_plans (array)
- lifestyle_modifications (array)
- medications (array of objects with name and dosage)
- additional_tests (array)
- precautions (array)
- follow_up (string)
- image_findings (object with prediction and confidence)
"""
submit_query_body = {
"endpointId": "predefined-openai-gpt4o",
"query": structured_query,
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
"responseMode": "sync"
}
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"Error submitting query: {str(e)}")
raise
def extract_json_from_answer(answer):
"""Extract and clean JSON from the LLM response"""
try:
return json.loads(answer)
except json.JSONDecodeError:
try:
# Find the first occurrence of '{' and last occurrence of '}'
start_idx = answer.find('{')
end_idx = answer.rfind('}') + 1
if start_idx != -1 and end_idx != 0:
json_str = answer[start_idx:end_idx]
return json.loads(json_str)
except (json.JSONDecodeError, ValueError):
logger.error("Failed to parse JSON from response")
raise
def format_prediction(prediction):
"""Format model prediction into a standardized structure"""
try:
# Adjust this based on your model's output format
confidence = float(prediction[0][0])
return {
"prediction": "abnormal" if confidence > 0.5 else "normal",
"confidence": round(confidence * 100, 2)
}
except Exception as e:
logger.error(f"Error formatting prediction: {str(e)}")
raise
# Initialize the model
try:
model = load_model()
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
model = None
def gradio_interface(patient_info, image):
try:
if model is None:
raise ValueError("Model not properly initialized")
# Process image if provided
image_analysis = None
if image is not None:
# Preprocess image
processed_image = preprocess_image(image)
# Get model prediction
prediction = model.predict(processed_image)
# Format prediction results
image_analysis = format_prediction(prediction)
# Create chat session and submit query
session_id = create_chat_session()
llm_response = submit_query(session_id, patient_info,
json.dumps(image_analysis) if image_analysis else None)
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
raise ValueError("Invalid response structure from LLM")
# Extract and clean JSON from the response
json_data = extract_json_from_answer(llm_response['data']['answer'])
# Format output for better readability
return json.dumps(json_data, indent=2)
except Exception as e:
logger.error(f"Error in gradio_interface: {str(e)}")
return json.dumps({"error": str(e)}, indent=2)
# Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(
label="Patient Information",
placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
lines=5,
max_lines=10
),
gr.Image(
label="Medical Image",
type="numpy",
optional=True
)
],
outputs=gr.Textbox(
label="Medical Analysis",
placeholder="JSON analysis will appear here...",
lines=15
),
title="Medical Diagnosis Assistant",
description="Enter patient information and optionally upload a medical image for analysis."
)
if __name__ == "__main__":
iface.launch()
# import requests
# import gradio as gr
# import logging
# import json
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'
# def create_chat_session():
# try:
# create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
# create_session_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# create_session_body = {
# "pluginIds": [],
# "externalUserId": external_user_id
# }
# response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
# response.raise_for_status()
# return response.json()['data']['id']
# except requests.exceptions.RequestException as e:
# logger.error(f"Error creating chat session: {str(e)}")
# raise
# def submit_query(session_id, query):
# try:
# submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
# submit_query_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# structured_query = f"""
# Based on the following patient information, provide a detailed medical analysis in JSON format:
# {query}
# Return only valid JSON with these fields:
# - diagnosis_details
# - probable_diagnoses (array)
# - treatment_plans (array)
# - lifestyle_modifications (array)
# - medications (array of objects with name and dosage)
# - additional_tests (array)
# - precautions (array)
# - follow_up (string)
# """
# submit_query_body = {
# "endpointId": "predefined-openai-gpt4o",
# "query": structured_query,
# "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
# "responseMode": "sync"
# }
# response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
# response.raise_for_status()
# return response.json()
# except requests.exceptions.RequestException as e:
# logger.error(f"Error submitting query: {str(e)}")
# raise
# def extract_json_from_answer(answer):
# """Extract and clean JSON from the LLM response"""
# try:
# # First try to parse the answer directly
# return json.loads(answer)
# except json.JSONDecodeError:
# try:
# # If that fails, try to find JSON content and parse it
# start_idx = answer.find('{')
# end_idx = answer.rfind('}') + 1
# if start_idx != -1 and end_idx != 0:
# json_str = answer[start_idx:end_idx]
# return json.loads(json_str)
# except (json.JSONDecodeError, ValueError):
# logger.error("Failed to parse JSON from response")
# raise
# def gradio_interface(patient_info):
# try:
# session_id = create_chat_session()
# llm_response = submit_query(session_id, patient_info)
# if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
# raise ValueError("Invalid response structure")
# # Extract and clean JSON from the response
# json_data = extract_json_from_answer(llm_response['data']['answer'])
# # Return clean JSON string without extra formatting
# return json.dumps(json_data)
# except Exception as e:
# logger.error(f"Error in gradio_interface: {str(e)}")
# return json.dumps({"error": str(e)})
# # Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Textbox(
# label="Patient Information",
# placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
# lines=5,
# max_lines=10
# )
# ],
# outputs=gr.Textbox(
# label="Medical Analysis",
# placeholder="JSON analysis will appear here...",
# lines=15
# ),
# title="Medical Diagnosis Assistant",
# description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )
# if __name__ == "__main__":
# iface.launch()