Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gradio as gr
|
|
| 3 |
import logging
|
| 4 |
import json
|
| 5 |
import tensorflow as tf
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
import io
|
|
@@ -18,7 +19,16 @@ external_user_id = 'plugin-1717464304'
|
|
| 18 |
# Load the keras model
|
| 19 |
def load_model():
|
| 20 |
try:
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
logger.info("Model loaded successfully")
|
| 23 |
return model
|
| 24 |
except Exception as e:
|
|
@@ -32,8 +42,13 @@ def preprocess_image(image):
|
|
| 32 |
if isinstance(image, Image.Image):
|
| 33 |
image = np.array(image)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Resize image to match model's expected input shape
|
| 36 |
-
# Note: Adjust these dimensions to match your model's requirements
|
| 37 |
target_size = (224, 224) # Change this to match your model's input size
|
| 38 |
image = tf.image.resize(image, target_size)
|
| 39 |
|
|
@@ -83,9 +98,7 @@ def submit_query(session_id, query, image_analysis=None):
|
|
| 83 |
|
| 84 |
structured_query = f"""
|
| 85 |
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
|
| 86 |
-
|
| 87 |
{query_with_image}
|
| 88 |
-
|
| 89 |
Return only valid JSON with these fields:
|
| 90 |
- diagnosis_details
|
| 91 |
- probable_diagnoses (array)
|
|
@@ -119,6 +132,7 @@ def extract_json_from_answer(answer):
|
|
| 119 |
return json.loads(answer)
|
| 120 |
except json.JSONDecodeError:
|
| 121 |
try:
|
|
|
|
| 122 |
start_idx = answer.find('{')
|
| 123 |
end_idx = answer.rfind('}') + 1
|
| 124 |
if start_idx != -1 and end_idx != 0:
|
|
@@ -128,11 +142,31 @@ def extract_json_from_answer(answer):
|
|
| 128 |
logger.error("Failed to parse JSON from response")
|
| 129 |
raise
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
# Initialize the model
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
def gradio_interface(patient_info, image):
|
| 135 |
try:
|
|
|
|
|
|
|
|
|
|
| 136 |
# Process image if provided
|
| 137 |
image_analysis = None
|
| 138 |
if image is not None:
|
|
@@ -143,11 +177,7 @@ def gradio_interface(patient_info, image):
|
|
| 143 |
prediction = model.predict(processed_image)
|
| 144 |
|
| 145 |
# Format prediction results
|
| 146 |
-
|
| 147 |
-
image_analysis = {
|
| 148 |
-
"prediction": float(prediction[0][0]), # Adjust indexing based on your model's output
|
| 149 |
-
"confidence": float(prediction[0][0]) * 100 # Convert to percentage
|
| 150 |
-
}
|
| 151 |
|
| 152 |
# Create chat session and submit query
|
| 153 |
session_id = create_chat_session()
|
|
@@ -155,17 +185,17 @@ def gradio_interface(patient_info, image):
|
|
| 155 |
json.dumps(image_analysis) if image_analysis else None)
|
| 156 |
|
| 157 |
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
|
| 158 |
-
raise ValueError("Invalid response structure")
|
| 159 |
|
| 160 |
# Extract and clean JSON from the response
|
| 161 |
json_data = extract_json_from_answer(llm_response['data']['answer'])
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
return json.dumps(json_data)
|
| 165 |
|
| 166 |
except Exception as e:
|
| 167 |
logger.error(f"Error in gradio_interface: {str(e)}")
|
| 168 |
-
return json.dumps({"error": str(e)})
|
| 169 |
|
| 170 |
# Gradio interface
|
| 171 |
iface = gr.Interface(
|
|
|
|
| 3 |
import logging
|
| 4 |
import json
|
| 5 |
import tensorflow as tf
|
| 6 |
+
import tensorflow_hub as hub
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
import io
|
|
|
|
| 19 |
# Load the keras model
|
| 20 |
def load_model():
|
| 21 |
try:
|
| 22 |
+
# Define custom objects dictionary
|
| 23 |
+
custom_objects = {
|
| 24 |
+
'KerasLayer': hub.KerasLayer,
|
| 25 |
+
# Add any other custom layers your model might use
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Load model with custom object scope
|
| 29 |
+
with tf.keras.utils.custom_object_scope(custom_objects):
|
| 30 |
+
model = tf.keras.models.load_model('model_epoch_01.h5.keras')
|
| 31 |
+
|
| 32 |
logger.info("Model loaded successfully")
|
| 33 |
return model
|
| 34 |
except Exception as e:
|
|
|
|
| 42 |
if isinstance(image, Image.Image):
|
| 43 |
image = np.array(image)
|
| 44 |
|
| 45 |
+
# Ensure image has 3 channels (RGB)
|
| 46 |
+
if len(image.shape) == 2: # Grayscale image
|
| 47 |
+
image = np.stack((image,) * 3, axis=-1)
|
| 48 |
+
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
|
| 49 |
+
image = image[:, :, :3]
|
| 50 |
+
|
| 51 |
# Resize image to match model's expected input shape
|
|
|
|
| 52 |
target_size = (224, 224) # Change this to match your model's input size
|
| 53 |
image = tf.image.resize(image, target_size)
|
| 54 |
|
|
|
|
| 98 |
|
| 99 |
structured_query = f"""
|
| 100 |
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
|
|
|
|
| 101 |
{query_with_image}
|
|
|
|
| 102 |
Return only valid JSON with these fields:
|
| 103 |
- diagnosis_details
|
| 104 |
- probable_diagnoses (array)
|
|
|
|
| 132 |
return json.loads(answer)
|
| 133 |
except json.JSONDecodeError:
|
| 134 |
try:
|
| 135 |
+
# Find the first occurrence of '{' and last occurrence of '}'
|
| 136 |
start_idx = answer.find('{')
|
| 137 |
end_idx = answer.rfind('}') + 1
|
| 138 |
if start_idx != -1 and end_idx != 0:
|
|
|
|
| 142 |
logger.error("Failed to parse JSON from response")
|
| 143 |
raise
|
| 144 |
|
| 145 |
+
def format_prediction(prediction):
|
| 146 |
+
"""Format model prediction into a standardized structure"""
|
| 147 |
+
try:
|
| 148 |
+
# Adjust this based on your model's output format
|
| 149 |
+
confidence = float(prediction[0][0])
|
| 150 |
+
return {
|
| 151 |
+
"prediction": "abnormal" if confidence > 0.5 else "normal",
|
| 152 |
+
"confidence": round(confidence * 100, 2)
|
| 153 |
+
}
|
| 154 |
+
except Exception as e:
|
| 155 |
+
logger.error(f"Error formatting prediction: {str(e)}")
|
| 156 |
+
raise
|
| 157 |
+
|
| 158 |
# Initialize the model
|
| 159 |
+
try:
|
| 160 |
+
model = load_model()
|
| 161 |
+
except Exception as e:
|
| 162 |
+
logger.error(f"Failed to initialize model: {str(e)}")
|
| 163 |
+
model = None
|
| 164 |
|
| 165 |
def gradio_interface(patient_info, image):
|
| 166 |
try:
|
| 167 |
+
if model is None:
|
| 168 |
+
raise ValueError("Model not properly initialized")
|
| 169 |
+
|
| 170 |
# Process image if provided
|
| 171 |
image_analysis = None
|
| 172 |
if image is not None:
|
|
|
|
| 177 |
prediction = model.predict(processed_image)
|
| 178 |
|
| 179 |
# Format prediction results
|
| 180 |
+
image_analysis = format_prediction(prediction)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
# Create chat session and submit query
|
| 183 |
session_id = create_chat_session()
|
|
|
|
| 185 |
json.dumps(image_analysis) if image_analysis else None)
|
| 186 |
|
| 187 |
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
|
| 188 |
+
raise ValueError("Invalid response structure from LLM")
|
| 189 |
|
| 190 |
# Extract and clean JSON from the response
|
| 191 |
json_data = extract_json_from_answer(llm_response['data']['answer'])
|
| 192 |
|
| 193 |
+
# Format output for better readability
|
| 194 |
+
return json.dumps(json_data, indent=2)
|
| 195 |
|
| 196 |
except Exception as e:
|
| 197 |
logger.error(f"Error in gradio_interface: {str(e)}")
|
| 198 |
+
return json.dumps({"error": str(e)}, indent=2)
|
| 199 |
|
| 200 |
# Gradio interface
|
| 201 |
iface = gr.Interface(
|