File size: 12,286 Bytes
a149a7b
 
6eb0efb
 
f3a1e2d
c00355e
f3a1e2d
 
 
6eb0efb
 
 
 
e7f38cd
9639015
a149a7b
 
 
f3a1e2d
 
 
c00355e
 
 
 
 
 
 
 
 
 
f3a1e2d
 
 
 
 
 
 
 
 
 
 
 
 
c00355e
 
 
 
 
 
f3a1e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a149a7b
6eb0efb
 
 
 
 
 
 
 
 
 
 
 
7427814
10ac7ef
f1bd090
6eb0efb
 
 
3df9cbe
f3a1e2d
6eb0efb
 
 
 
 
 
a4acb7d
f3a1e2d
 
 
 
 
a4acb7d
f3a1e2d
 
10ac7ef
 
 
 
 
 
 
 
 
f3a1e2d
a4acb7d
 
6eb0efb
 
a4acb7d
6eb0efb
 
 
 
 
 
10ac7ef
6eb0efb
 
 
 
b1db750
10ac7ef
 
a4acb7d
10ac7ef
a4acb7d
10ac7ef
c00355e
10ac7ef
 
 
 
 
 
 
 
a4acb7d
c00355e
 
 
 
 
 
 
 
 
 
 
 
 
f3a1e2d
c00355e
 
 
 
 
f3a1e2d
 
6eb0efb
c00355e
 
 
f3a1e2d
 
 
 
 
 
 
 
 
 
c00355e
f3a1e2d
 
6eb0efb
f3a1e2d
 
6eb0efb
a4acb7d
c00355e
7427814
10ac7ef
 
6eb0efb
c00355e
 
6eb0efb
 
10ac7ef
c00355e
a149a7b
9639015
e7f38cd
 
 
 
 
a4acb7d
e7f38cd
 
f3a1e2d
 
 
 
 
a4acb7d
e7f38cd
a4acb7d
 
10ac7ef
a4acb7d
 
 
f3a1e2d
e7f38cd
 
6eb0efb
f3a1e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import requests
import gradio as gr
import logging
import json
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import io

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# API key and user ID for on-demand
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'

# Load the keras model
def load_model():
    try:
        # Define custom objects dictionary
        custom_objects = {
            'KerasLayer': hub.KerasLayer,
            # Add any other custom layers your model might use
        }
        
        # Load model with custom object scope
        with tf.keras.utils.custom_object_scope(custom_objects):
            model = tf.keras.models.load_model('model_epoch_01.h5.keras')
            
        logger.info("Model loaded successfully")
        return model
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        raise

# Preprocess image for model
def preprocess_image(image):
    try:
        # Convert to numpy array if needed
        if isinstance(image, Image.Image):
            image = np.array(image)
        
        # Ensure image has 3 channels (RGB)
        if len(image.shape) == 2:  # Grayscale image
            image = np.stack((image,) * 3, axis=-1)
        elif len(image.shape) == 3 and image.shape[2] == 4:  # RGBA image
            image = image[:, :, :3]
            
        # Resize image to match model's expected input shape
        target_size = (224, 224)  # Change this to match your model's input size
        image = tf.image.resize(image, target_size)
        
        # Normalize pixel values
        image = image / 255.0
        
        # Add batch dimension
        image = np.expand_dims(image, axis=0)
        
        return image
    except Exception as e:
        logger.error(f"Error preprocessing image: {str(e)}")
        raise

def create_chat_session():
    try:
        create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
        create_session_headers = {
            'apikey': api_key,
            'Content-Type': 'application/json'
        }
        create_session_body = {
            "pluginIds": [],
            "externalUserId": external_user_id
        }
        
        response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
        response.raise_for_status()
        return response.json()['data']['id']
    
    except requests.exceptions.RequestException as e:
        logger.error(f"Error creating chat session: {str(e)}")
        raise

def submit_query(session_id, query, image_analysis=None):
    try:
        submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
        submit_query_headers = {
            'apikey': api_key,
            'Content-Type': 'application/json'
        }
        
        # Include image analysis in the query if available
        query_with_image = query
        if image_analysis:
            query_with_image += f"\n\nImage Analysis Results: {image_analysis}"
        
        structured_query = f"""
        Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
        {query_with_image}
        Return only valid JSON with these fields:
        - diagnosis_details
        - probable_diagnoses (array)
        - treatment_plans (array)
        - lifestyle_modifications (array)
        - medications (array of objects with name and dosage)
        - additional_tests (array)
        - precautions (array)
        - follow_up (string)
        - image_findings (object with prediction and confidence)
        """
        
        submit_query_body = {
            "endpointId": "predefined-openai-gpt4o",
            "query": structured_query,
            "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
            "responseMode": "sync"
        }
        
        response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
        response.raise_for_status()
        return response.json()
    
    except requests.exceptions.RequestException as e:
        logger.error(f"Error submitting query: {str(e)}")
        raise

def extract_json_from_answer(answer):
    """Extract and clean JSON from the LLM response"""
    try:
        return json.loads(answer)
    except json.JSONDecodeError:
        try:
            # Find the first occurrence of '{' and last occurrence of '}'
            start_idx = answer.find('{')
            end_idx = answer.rfind('}') + 1
            if start_idx != -1 and end_idx != 0:
                json_str = answer[start_idx:end_idx]
                return json.loads(json_str)
        except (json.JSONDecodeError, ValueError):
            logger.error("Failed to parse JSON from response")
            raise

def format_prediction(prediction):
    """Format model prediction into a standardized structure"""
    try:
        # Adjust this based on your model's output format
        confidence = float(prediction[0][0])
        return {
            "prediction": "abnormal" if confidence > 0.5 else "normal",
            "confidence": round(confidence * 100, 2)
        }
    except Exception as e:
        logger.error(f"Error formatting prediction: {str(e)}")
        raise

# Initialize the model
try:
    model = load_model()
except Exception as e:
    logger.error(f"Failed to initialize model: {str(e)}")
    model = None

def gradio_interface(patient_info, image):
    try:
        if model is None:
            raise ValueError("Model not properly initialized")
            
        # Process image if provided
        image_analysis = None
        if image is not None:
            # Preprocess image
            processed_image = preprocess_image(image)
            
            # Get model prediction
            prediction = model.predict(processed_image)
            
            # Format prediction results
            image_analysis = format_prediction(prediction)
        
        # Create chat session and submit query
        session_id = create_chat_session()
        llm_response = submit_query(session_id, patient_info, 
                                  json.dumps(image_analysis) if image_analysis else None)
        
        if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
            raise ValueError("Invalid response structure from LLM")
        
        # Extract and clean JSON from the response
        json_data = extract_json_from_answer(llm_response['data']['answer'])
        
        # Format output for better readability
        return json.dumps(json_data, indent=2)
    
    except Exception as e:
        logger.error(f"Error in gradio_interface: {str(e)}")
        return json.dumps({"error": str(e)}, indent=2)

# Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(
            label="Patient Information",
            placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
            lines=5,
            max_lines=10
        ),
        gr.Image(
            label="Medical Image",
            type="numpy",
            optional=True
        )
    ],
    outputs=gr.Textbox(
        label="Medical Analysis",
        placeholder="JSON analysis will appear here...",
        lines=15
    ),
    title="Medical Diagnosis Assistant",
    description="Enter patient information and optionally upload a medical image for analysis."
)

if __name__ == "__main__":
    iface.launch()





# import requests
# import gradio as gr
# import logging
# import json

# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'

# def create_chat_session():
#     try:
#         create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
#         create_session_headers = {
#             'apikey': api_key,
#             'Content-Type': 'application/json'
#         }
#         create_session_body = {
#             "pluginIds": [],
#             "externalUserId": external_user_id
#         }
        
#         response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
#         response.raise_for_status()
#         return response.json()['data']['id']
    
#     except requests.exceptions.RequestException as e:
#         logger.error(f"Error creating chat session: {str(e)}")
#         raise

# def submit_query(session_id, query):
#     try:
#         submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
#         submit_query_headers = {
#             'apikey': api_key,
#             'Content-Type': 'application/json'
#         }
        
#         structured_query = f"""
#         Based on the following patient information, provide a detailed medical analysis in JSON format:

#         {query}

#         Return only valid JSON with these fields:
#         - diagnosis_details
#         - probable_diagnoses (array)
#         - treatment_plans (array)
#         - lifestyle_modifications (array)
#         - medications (array of objects with name and dosage)
#         - additional_tests (array)
#         - precautions (array)
#         - follow_up (string)
#         """
        
#         submit_query_body = {
#             "endpointId": "predefined-openai-gpt4o",
#             "query": structured_query,
#             "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
#             "responseMode": "sync"
#         }
        
#         response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
#         response.raise_for_status()
#         return response.json()
    
#     except requests.exceptions.RequestException as e:
#         logger.error(f"Error submitting query: {str(e)}")
#         raise

# def extract_json_from_answer(answer):
#     """Extract and clean JSON from the LLM response"""
#     try:
#         # First try to parse the answer directly
#         return json.loads(answer)
#     except json.JSONDecodeError:
#         try:
#             # If that fails, try to find JSON content and parse it
#             start_idx = answer.find('{')
#             end_idx = answer.rfind('}') + 1
#             if start_idx != -1 and end_idx != 0:
#                 json_str = answer[start_idx:end_idx]
#                 return json.loads(json_str)
#         except (json.JSONDecodeError, ValueError):
#             logger.error("Failed to parse JSON from response")
#             raise

# def gradio_interface(patient_info):
#     try:
#         session_id = create_chat_session()
#         llm_response = submit_query(session_id, patient_info)
        
#         if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
#             raise ValueError("Invalid response structure")
        
#         # Extract and clean JSON from the response
#         json_data = extract_json_from_answer(llm_response['data']['answer'])
        
#         # Return clean JSON string without extra formatting
#         return json.dumps(json_data)
    
#     except Exception as e:
#         logger.error(f"Error in gradio_interface: {str(e)}")
#         return json.dumps({"error": str(e)})

# # Gradio interface
# iface = gr.Interface(
#     fn=gradio_interface,
#     inputs=[
#         gr.Textbox(
#             label="Patient Information",
#             placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
#             lines=5,
#             max_lines=10
#         )
#     ],
#     outputs=gr.Textbox(
#         label="Medical Analysis",
#         placeholder="JSON analysis will appear here...",
#         lines=15
#     ),
#     title="Medical Diagnosis Assistant",
#     description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )

# if __name__ == "__main__":
#     iface.launch()