Spaces:
Running
Running
File size: 12,286 Bytes
a149a7b 6eb0efb f3a1e2d c00355e f3a1e2d 6eb0efb e7f38cd 9639015 a149a7b f3a1e2d c00355e f3a1e2d c00355e f3a1e2d a149a7b 6eb0efb 7427814 10ac7ef f1bd090 6eb0efb 3df9cbe f3a1e2d 6eb0efb a4acb7d f3a1e2d a4acb7d f3a1e2d 10ac7ef f3a1e2d a4acb7d 6eb0efb a4acb7d 6eb0efb 10ac7ef 6eb0efb b1db750 10ac7ef a4acb7d 10ac7ef a4acb7d 10ac7ef c00355e 10ac7ef a4acb7d c00355e f3a1e2d c00355e f3a1e2d 6eb0efb c00355e f3a1e2d c00355e f3a1e2d 6eb0efb f3a1e2d 6eb0efb a4acb7d c00355e 7427814 10ac7ef 6eb0efb c00355e 6eb0efb 10ac7ef c00355e a149a7b 9639015 e7f38cd a4acb7d e7f38cd f3a1e2d a4acb7d e7f38cd a4acb7d 10ac7ef a4acb7d f3a1e2d e7f38cd 6eb0efb f3a1e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import requests
import gradio as gr
import logging
import json
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import io
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API key and user ID for on-demand
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'
# Load the keras model
def load_model():
try:
# Define custom objects dictionary
custom_objects = {
'KerasLayer': hub.KerasLayer,
# Add any other custom layers your model might use
}
# Load model with custom object scope
with tf.keras.utils.custom_object_scope(custom_objects):
model = tf.keras.models.load_model('model_epoch_01.h5.keras')
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
# Preprocess image for model
def preprocess_image(image):
try:
# Convert to numpy array if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure image has 3 channels (RGB)
if len(image.shape) == 2: # Grayscale image
image = np.stack((image,) * 3, axis=-1)
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
image = image[:, :, :3]
# Resize image to match model's expected input shape
target_size = (224, 224) # Change this to match your model's input size
image = tf.image.resize(image, target_size)
# Normalize pixel values
image = image / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0)
return image
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
raise
def create_chat_session():
try:
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
create_session_headers = {
'apikey': api_key,
'Content-Type': 'application/json'
}
create_session_body = {
"pluginIds": [],
"externalUserId": external_user_id
}
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
response.raise_for_status()
return response.json()['data']['id']
except requests.exceptions.RequestException as e:
logger.error(f"Error creating chat session: {str(e)}")
raise
def submit_query(session_id, query, image_analysis=None):
try:
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
submit_query_headers = {
'apikey': api_key,
'Content-Type': 'application/json'
}
# Include image analysis in the query if available
query_with_image = query
if image_analysis:
query_with_image += f"\n\nImage Analysis Results: {image_analysis}"
structured_query = f"""
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
{query_with_image}
Return only valid JSON with these fields:
- diagnosis_details
- probable_diagnoses (array)
- treatment_plans (array)
- lifestyle_modifications (array)
- medications (array of objects with name and dosage)
- additional_tests (array)
- precautions (array)
- follow_up (string)
- image_findings (object with prediction and confidence)
"""
submit_query_body = {
"endpointId": "predefined-openai-gpt4o",
"query": structured_query,
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
"responseMode": "sync"
}
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"Error submitting query: {str(e)}")
raise
def extract_json_from_answer(answer):
"""Extract and clean JSON from the LLM response"""
try:
return json.loads(answer)
except json.JSONDecodeError:
try:
# Find the first occurrence of '{' and last occurrence of '}'
start_idx = answer.find('{')
end_idx = answer.rfind('}') + 1
if start_idx != -1 and end_idx != 0:
json_str = answer[start_idx:end_idx]
return json.loads(json_str)
except (json.JSONDecodeError, ValueError):
logger.error("Failed to parse JSON from response")
raise
def format_prediction(prediction):
"""Format model prediction into a standardized structure"""
try:
# Adjust this based on your model's output format
confidence = float(prediction[0][0])
return {
"prediction": "abnormal" if confidence > 0.5 else "normal",
"confidence": round(confidence * 100, 2)
}
except Exception as e:
logger.error(f"Error formatting prediction: {str(e)}")
raise
# Initialize the model
try:
model = load_model()
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
model = None
def gradio_interface(patient_info, image):
try:
if model is None:
raise ValueError("Model not properly initialized")
# Process image if provided
image_analysis = None
if image is not None:
# Preprocess image
processed_image = preprocess_image(image)
# Get model prediction
prediction = model.predict(processed_image)
# Format prediction results
image_analysis = format_prediction(prediction)
# Create chat session and submit query
session_id = create_chat_session()
llm_response = submit_query(session_id, patient_info,
json.dumps(image_analysis) if image_analysis else None)
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
raise ValueError("Invalid response structure from LLM")
# Extract and clean JSON from the response
json_data = extract_json_from_answer(llm_response['data']['answer'])
# Format output for better readability
return json.dumps(json_data, indent=2)
except Exception as e:
logger.error(f"Error in gradio_interface: {str(e)}")
return json.dumps({"error": str(e)}, indent=2)
# Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(
label="Patient Information",
placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
lines=5,
max_lines=10
),
gr.Image(
label="Medical Image",
type="numpy",
optional=True
)
],
outputs=gr.Textbox(
label="Medical Analysis",
placeholder="JSON analysis will appear here...",
lines=15
),
title="Medical Diagnosis Assistant",
description="Enter patient information and optionally upload a medical image for analysis."
)
if __name__ == "__main__":
iface.launch()
# import requests
# import gradio as gr
# import logging
# import json
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'
# def create_chat_session():
# try:
# create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
# create_session_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# create_session_body = {
# "pluginIds": [],
# "externalUserId": external_user_id
# }
# response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
# response.raise_for_status()
# return response.json()['data']['id']
# except requests.exceptions.RequestException as e:
# logger.error(f"Error creating chat session: {str(e)}")
# raise
# def submit_query(session_id, query):
# try:
# submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
# submit_query_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# structured_query = f"""
# Based on the following patient information, provide a detailed medical analysis in JSON format:
# {query}
# Return only valid JSON with these fields:
# - diagnosis_details
# - probable_diagnoses (array)
# - treatment_plans (array)
# - lifestyle_modifications (array)
# - medications (array of objects with name and dosage)
# - additional_tests (array)
# - precautions (array)
# - follow_up (string)
# """
# submit_query_body = {
# "endpointId": "predefined-openai-gpt4o",
# "query": structured_query,
# "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
# "responseMode": "sync"
# }
# response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
# response.raise_for_status()
# return response.json()
# except requests.exceptions.RequestException as e:
# logger.error(f"Error submitting query: {str(e)}")
# raise
# def extract_json_from_answer(answer):
# """Extract and clean JSON from the LLM response"""
# try:
# # First try to parse the answer directly
# return json.loads(answer)
# except json.JSONDecodeError:
# try:
# # If that fails, try to find JSON content and parse it
# start_idx = answer.find('{')
# end_idx = answer.rfind('}') + 1
# if start_idx != -1 and end_idx != 0:
# json_str = answer[start_idx:end_idx]
# return json.loads(json_str)
# except (json.JSONDecodeError, ValueError):
# logger.error("Failed to parse JSON from response")
# raise
# def gradio_interface(patient_info):
# try:
# session_id = create_chat_session()
# llm_response = submit_query(session_id, patient_info)
# if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
# raise ValueError("Invalid response structure")
# # Extract and clean JSON from the response
# json_data = extract_json_from_answer(llm_response['data']['answer'])
# # Return clean JSON string without extra formatting
# return json.dumps(json_data)
# except Exception as e:
# logger.error(f"Error in gradio_interface: {str(e)}")
# return json.dumps({"error": str(e)})
# # Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Textbox(
# label="Patient Information",
# placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
# lines=5,
# max_lines=10
# )
# ],
# outputs=gr.Textbox(
# label="Medical Analysis",
# placeholder="JSON analysis will appear here...",
# lines=15
# ),
# title="Medical Diagnosis Assistant",
# description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )
# if __name__ == "__main__":
# iface.launch() |