Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
-
from tensorflow import keras
|
5 |
import tensorflow_hub as hub
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
# Load models
|
@@ -17,8 +17,43 @@ from PIL import Image
|
|
17 |
#)
|
18 |
#model_alzheimer = keras.models.load_model(
|
19 |
# "models/model_alzheimer.h5", custom_objects={'KerasLayer': hub.KerasLayer}
|
20 |
-
#)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
class CombinedDiseaseModel(tf.keras.Model):
|
23 |
def __init__(self, model_initial, model_alzheimer, model_tumor, model_stroke):
|
24 |
super(CombinedDiseaseModel, self).__init__()
|
@@ -60,37 +95,50 @@ class CombinedDiseaseModel(tf.keras.Model):
|
|
60 |
|
61 |
return f"The MRI image shows {main_disease} with a probability of {main_disease_prob*100:.2f}%.\nThe subcategory of {main_disease} is {sub_category} with a probability of {sub_category_prob*100:.2f}%."
|
62 |
|
63 |
-
|
64 |
-
#
|
65 |
-
#cnn_model = CombinedDiseaseModel(
|
66 |
-
# model_initial=model_initial,
|
67 |
-
# model_alzheimer=model_alzheimer,
|
68 |
-
# model_tumor=model_tumor,
|
69 |
-
# model_stroke=model_stroke
|
70 |
-
#)
|
71 |
-
|
72 |
|
73 |
def process_image(image):
|
|
|
|
|
|
|
74 |
image = image.resize((256, 256))
|
75 |
-
image.convert("RGB")
|
76 |
image_array = np.array(image) / 255.0
|
77 |
image_array = np.expand_dims(image_array, axis=0)
|
78 |
-
|
|
|
79 |
return predictions
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if image is not None:
|
84 |
image_response = process_image(image)
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
iface = gr.Interface(
|
95 |
fn=gradio_interface,
|
96 |
inputs=[
|
@@ -101,16 +149,19 @@ iface = gr.Interface(
|
|
101 |
max_lines=10
|
102 |
),
|
103 |
gr.Textbox(
|
104 |
-
label="Query Type"
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
110 |
],
|
111 |
outputs=gr.Textbox(label="Response", placeholder="The response will appear here..."),
|
112 |
-
title="Medical Diagnosis with MRI",
|
113 |
-
description="Upload MRI images and provide patient information for diagnosis."
|
114 |
)
|
115 |
|
116 |
-
|
|
|
|
1 |
+
import requests
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
|
|
4 |
import tensorflow_hub as hub
|
5 |
+
import gradio as gr
|
6 |
from PIL import Image
|
7 |
|
8 |
# Load models
|
|
|
17 |
#)
|
18 |
#model_alzheimer = keras.models.load_model(
|
19 |
# "models/model_alzheimer.h5", custom_objects={'KerasLayer': hub.KerasLayer}
|
|
|
20 |
|
21 |
+
# API key and user ID for the new API
|
22 |
+
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
|
23 |
+
external_user_id = 'plugin-1717464304'
|
24 |
+
|
25 |
+
# Step 1: Create a chat session
|
26 |
+
def create_chat_session():
|
27 |
+
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
|
28 |
+
create_session_headers = {
|
29 |
+
'apikey': api_key
|
30 |
+
}
|
31 |
+
create_session_body = {
|
32 |
+
"pluginIds": [],
|
33 |
+
"externalUserId": external_user_id
|
34 |
+
}
|
35 |
+
# Make the request to create a chat session
|
36 |
+
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
|
37 |
+
response_data = response.json()
|
38 |
+
session_id = response_data['data']['id']
|
39 |
+
return session_id
|
40 |
+
|
41 |
+
# Step 2: Submit a query to the API
|
42 |
+
def submit_query(session_id, query):
|
43 |
+
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
|
44 |
+
submit_query_headers = {
|
45 |
+
'apikey': api_key
|
46 |
+
}
|
47 |
+
submit_query_body = {
|
48 |
+
"endpointId": "predefined-openai-gpt4o",
|
49 |
+
"query": query,
|
50 |
+
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
|
51 |
+
"responseMode": "sync"
|
52 |
+
}
|
53 |
+
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
|
54 |
+
return response.json()['data']['response']
|
55 |
+
|
56 |
+
# CNN Model for MRI Image Diagnosis (mockup since actual model code isn't available)
|
57 |
class CombinedDiseaseModel(tf.keras.Model):
|
58 |
def __init__(self, model_initial, model_alzheimer, model_tumor, model_stroke):
|
59 |
super(CombinedDiseaseModel, self).__init__()
|
|
|
95 |
|
96 |
return f"The MRI image shows {main_disease} with a probability of {main_disease_prob*100:.2f}%.\nThe subcategory of {main_disease} is {sub_category} with a probability of {sub_category_prob*100:.2f}%."
|
97 |
|
98 |
+
# Example CNN models (mockup)
|
99 |
+
# cnn_model = CombinedDiseaseModel(model_initial, model_alzheimer, model_tumor, model_stroke)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
def process_image(image):
|
102 |
+
"""
|
103 |
+
Processes the uploaded MRI image and makes predictions using the combined CNN model.
|
104 |
+
"""
|
105 |
image = image.resize((256, 256))
|
106 |
+
image = image.convert("RGB")
|
107 |
image_array = np.array(image) / 255.0
|
108 |
image_array = np.expand_dims(image_array, axis=0)
|
109 |
+
|
110 |
+
predictions = cnn_model(image_array) # Call the model to get predictions (replace with actual model call)
|
111 |
return predictions
|
112 |
|
113 |
+
def query_llm_via_on_demand(patient_info, query_type):
|
114 |
+
"""
|
115 |
+
Sends patient information and query type to the on-demand API and returns the generated response.
|
116 |
+
"""
|
117 |
+
session_id = create_chat_session()
|
118 |
+
query = f"Patient Information: {patient_info}\nQuery Type: {query_type}\nPlease provide additional insights."
|
119 |
+
|
120 |
+
response = submit_query(session_id, query)
|
121 |
+
return response
|
122 |
+
|
123 |
+
def gradio_interface(patient_info, query_type, image=None):
|
124 |
+
"""
|
125 |
+
Gradio interface function that processes patient info, query type, and an optional MRI image,
|
126 |
+
and provides results from both the CNN model and the on-demand LLM API.
|
127 |
+
"""
|
128 |
+
image_response = ""
|
129 |
if image is not None:
|
130 |
image_response = process_image(image)
|
131 |
+
|
132 |
+
llm_response = query_llm_via_on_demand(patient_info, query_type)
|
133 |
+
|
134 |
+
response = f"Patient Info: {patient_info}\nQuery Type: {query_type}\n\nLLM Response:\n{llm_response}"
|
135 |
+
|
136 |
+
if image_response:
|
137 |
+
response += f"\n\nImage Diagnosis:\n{image_response}"
|
138 |
+
|
139 |
+
return response
|
140 |
+
|
141 |
+
# Create Gradio interface with MRI image upload option
|
142 |
iface = gr.Interface(
|
143 |
fn=gradio_interface,
|
144 |
inputs=[
|
|
|
149 |
max_lines=10
|
150 |
),
|
151 |
gr.Textbox(
|
152 |
+
label="Query Type",
|
153 |
+
placeholder="Enter the query type here..."
|
154 |
+
),
|
155 |
+
gr.Image(
|
156 |
+
type="pil",
|
157 |
+
label="Upload an MRI Image",
|
158 |
+
optional=True # Allow the image input to be optional
|
159 |
+
)
|
160 |
],
|
161 |
outputs=gr.Textbox(label="Response", placeholder="The response will appear here..."),
|
162 |
+
title="Medical Diagnosis with MRI and On-Demand LLM Insights",
|
163 |
+
description="Upload MRI images and provide patient information for diagnosis. The system integrates MRI diagnosis with insights from the on-demand LLM API."
|
164 |
)
|
165 |
|
166 |
+
# Launch the Gradio app
|
167 |
+
iface.launch()
|