Spaces:
Running
Running
File size: 10,531 Bytes
a149a7b 6eb0efb c07a771 c00355e f3a1e2d fd482de dfaf276 6eb0efb dfaf276 aa3dc7a 6eb0efb e7f38cd dfaf276 aa3dc7a dfaf276 c00355e dfaf276 aa3dc7a dfaf276 ef3808c dfaf276 f7e3b0e ef3808c dfaf276 f7e3b0e dfaf276 ef3808c dfaf276 f3a1e2d dfaf276 aff9b10 dfaf276 dad3de7 dfaf276 aff9b10 dfaf276 aff9b10 dfaf276 ef3808c dfaf276 ef3808c dfaf276 aa3dc7a dfaf276 f3a1e2d dfaf276 ef6f45f dfaf276 e7f38cd 6eb0efb dfaf276 aa3dc7a f3a1e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import requests
import gradio as gr
import logging
import json
import tf_keras
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import io
import os
# Set up logging with more detailed format
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# API key and user ID for on-demand
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'
def load_model():
try:
model_path = 'model_epoch_01.h5.keras'
# Check if model file exists
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
logger.info(f"Attempting to load model from {model_path}")
# Define custom objects dictionary
custom_objects = {
'KerasLayer': hub.KerasLayer
# Add more custom objects if needed
}
# Try loading with different configurations
try:
logger.info("Attempting to load model with custom objects...")
model = tf_keras.models.load_model(model_path, custom_objects={'KerasLayer': hub.KerasLayer})
except Exception as e:
logger.error(f"Failed to load with custom objects: {str(e)}")
logger.info("Attempting to load model without custom objects...")
model = tf_keras.models.load_model(model_path)
# Verify model loaded correctly
if model is None:
raise ValueError("Model loading returned None")
# Print model summary for debugging
model.summary()
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
logger.error(f"Model loading failed with exception type: {type(e)}")
raise
# Initialize the model globally
try:
logger.info("Initializing model...")
model = load_model()
logger.info("Model initialization completed")
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
model = None
def preprocess_image(image):
try:
# Log image shape and type for debugging
#logger.info(f"Input image shape: {image.}, dtype: {image.dtype}")
image = image.convert('rgb')
image = image.resize((256, 256, 3))
image = np.array(image)
# Normalize pixel values
image = image / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0)
logger.info(f"Final preprocessed image shape: {image.shape}")
return image
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
raise
def gradio_interface(patient_info, image):
try:
if model is None:
logger.error("Model is not initialized")
return json.dumps({
"error": "Model initialization failed. Please check the logs for details.",
"status": "error"
}, indent=2)
# Process image if provided
image_analysis = None
if image is not None:
logger.info("Processing uploaded image")
# Preprocess image
processed_image = preprocess_image(image)
# Get model prediction
logger.info("Running model prediction")
prediction = model.predict(processed_image)
logger.info(f"Raw prediction shape: {prediction.shape}")
logger.info(f"Prediction: {prediction}")
# Format prediction results
image_analysis = {
"prediction": float(prediction[0][0]),
"confidence": float(prediction[0][0]) * 100
}
logger.info(f"Image analysis results: {image_analysis}")
# Create chat session and submit query
session_id = create_chat_session()
llm_response = submit_query(session_id, patient_info,
json.dumps(image_analysis) if image_analysis else None)
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
raise ValueError("Invalid response structure from LLM")
# Extract and clean JSON from the response
json_data = extract_json_from_answer(llm_response['data']['answer'])
return json.dumps(json_data, indent=2)
except Exception as e:
logger.error(f"Error in gradio_interface: {str(e)}")
return json.dumps({
"error": str(e),
"status": "error",
"details": "Check the application logs for more information"
}, indent=2)
# Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(
label="Patient Information",
placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
lines=5,
max_lines=10
),
gr.Image(
label="Medical Image",
type="pil",
interactive=True
)
],
outputs=gr.Textbox(
label="Medical Analysis",
placeholder="JSON analysis will appear here...",
lines=15
),
title="Medical Diagnosis Assistant",
description="Enter patient information and optionally upload a medical image for analysis."
)
if __name__ == "__main__":
# Add version information logging
logger.info(f"TensorFlow Keras version: {tf_keras.__version__}")
logger.info(f"TensorFlow Hub version: {hub.__version__}")
logger.info(f"Gradio version: {gr.__version__}")
iface.launch(
server_name="0.0.0.0",
debug=True
)
# import requests
# import gradio as gr
# import logging
# import json
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'
# def create_chat_session():
# try:
# create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
# create_session_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# create_session_body = {
# "pluginIds": [],
# "externalUserId": external_user_id
# }
# response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
# response.raise_for_status()
# return response.json()['data']['id']
# except requests.exceptions.RequestException as e:
# logger.error(f"Error creating chat session: {str(e)}")
# raise
# def submit_query(session_id, query):
# try:
# submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
# submit_query_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# structured_query = f"""
# Based on the following patient information, provide a detailed medical analysis in JSON format:
# {query}
# Return only valid JSON with these fields:
# - diagnosis_details
# - probable_diagnoses (array)
# - treatment_plans (array)
# - lifestyle_modifications (array)
# - medications (array of objects with name and dosage)
# - additional_tests (array)
# - precautions (array)
# - follow_up (string)
# """
# submit_query_body = {
# "endpointId": "predefined-openai-gpt4o",
# "query": structured_query,
# "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
# "responseMode": "sync"
# }
# response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
# response.raise_for_status()
# return response.json()
# except requests.exceptions.RequestException as e:
# logger.error(f"Error submitting query: {str(e)}")
# raise
# def extract_json_from_answer(answer):
# """Extract and clean JSON from the LLM response"""
# try:
# # First try to parse the answer directly
# return json.loads(answer)
# except json.JSONDecodeError:
# try:
# # If that fails, try to find JSON content and parse it
# start_idx = answer.find('{')
# end_idx = answer.rfind('}') + 1
# if start_idx != -1 and end_idx != 0:
# json_str = answer[start_idx:end_idx]
# return json.loads(json_str)
# except (json.JSONDecodeError, ValueError):
# logger.error("Failed to parse JSON from response")
# raise
# def gradio_interface(patient_info):
# try:
# session_id = create_chat_session()
# llm_response = submit_query(session_id, patient_info)
# if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
# raise ValueError("Invalid response structure")
# # Extract and clean JSON from the response
# json_data = extract_json_from_answer(llm_response['data']['answer'])
# # Return clean JSON string without extra formatting
# return json.dumps(json_data)
# except Exception as e:
# logger.error(f"Error in gradio_interface: {str(e)}")
# return json.dumps({"error": str(e)})
# # Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Textbox(
# label="Patient Information",
# placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
# lines=5,
# max_lines=10
# )
# ],
# outputs=gr.Textbox(
# label="Medical Analysis",
# placeholder="JSON analysis will appear here...",
# lines=15
# ),
# title="Medical Diagnosis Assistant",
# description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )
# if __name__ == "__main__":
# iface.launch() |