Spaces:
Running
Running
File size: 13,266 Bytes
a149a7b 6eb0efb c07a771 c00355e f3a1e2d aa3dc7a ef3808c 6eb0efb ef3808c aa3dc7a 6eb0efb e7f38cd ef3808c aa3dc7a ef3808c aa3dc7a ef3808c ae01e5c ef3808c aa3dc7a ef3808c aa3dc7a ef3808c c00355e ef3808c aa3dc7a ef3808c f3a1e2d ef3808c aff9b10 ef3808c aff9b10 ef3808c aff9b10 ef3808c aff9b10 ef3808c aff9b10 ef3808c aa3dc7a ef3808c f3a1e2d ef3808c e7f38cd 6eb0efb ef3808c aa3dc7a ef3808c aa3dc7a f3a1e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import requests
import gradio as gr
import logging
import json
import tf_keras
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import os
from typing import Optional, Dict, Any, Union
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class MedicalDiagnosisModel:
def __init__(self, model_path: str):
self.model_path = model_path
self.model = self._load_model()
def _load_model(self) -> Optional[tf_keras.Model]:
"""Load the transfer learning model with proper error handling."""
try:
if not os.path.exists(self.model_path):
raise FileNotFoundError(f"Model file not found at {self.model_path}")
logger.info(f"Loading model from {self.model_path}")
# Define custom objects dictionary for transfer learning
custom_objects = {
'KerasLayer': hub.KerasLayer
}
try:
logger.info("Attempting to load model with custom objects...")
with tf_keras.utils.custom_object_scope(custom_objects):
model = tf_keras.models.load_model(self.model_path, compile=False)
except Exception as e:
logger.error(f"Failed to load with custom objects: {str(e)}")
logger.info("Attempting to load model without custom objects...")
model = tf_keras.models.load_model(self.model_path, compile=False)
model.summary()
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return None
def preprocess_image(self, image: Image.Image):
"""Preprocess the input image for model prediction."""
try:
# Convert to RGB and resize
image = image.convert('RGB')
image = image.resize((256, 256))
# Convert to numpy array and normalize
image_array = np.array(image)
image_array = image_array / 255.0
# Add batch dimension
image_array = np.expand_dims(image_array, axis=0)
logger.info(f"Preprocessed image shape: {image_array.shape}")
return image_array
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
raise
def predict(self, image: np.ndarray) -> Dict[str, float]:
"""Run model prediction and return results."""
try:
prediction = self.model.predict(image)
return {
"prediction": float(prediction[0][0]),
"confidence": float(prediction[0][0]) * 100
}
except Exception as e:
logger.error(f"Error during prediction: {str(e)}")
raise
class MedicalDiagnosisAPI:
def __init__(self, api_key: str, user_id: str):
self.api_key = api_key
self.user_id = user_id
self.base_url = "https://api.example.com/v1" # Replace with actual API URL
def create_chat_session(self) -> str:
"""Create a new chat session and return session ID."""
try:
response = requests.post(
f"{self.base_url}/sessions",
headers={
"Authorization": f"Bearer {self.api_key}",
"X-User-ID": self.user_id
}
)
response.raise_for_status()
return response.json()["session_id"]
except Exception as e:
logger.error(f"Error creating chat session: {str(e)}")
raise
def submit_query(self, session_id: str, patient_info: str,
image_analysis: Optional[str] = None) -> Dict[str, Any]:
"""Submit a query to the API and return the response."""
try:
payload = {
"patient_info": patient_info,
"image_analysis": image_analysis
}
response = requests.post(
f"{self.base_url}/sessions/{session_id}/query",
headers={
"Authorization": f"Bearer {self.api_key}",
"X-User-ID": self.user_id
},
json=payload
)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error submitting query: {str(e)}")
raise
def extract_json_from_answer(answer: str) -> Dict[str, Any]:
"""Extract and parse JSON from the API response."""
try:
# Find JSON content between triple backticks if present
if "```json" in answer and "```" in answer:
json_str = answer.split("```json")[1].split("```")[0].strip()
else:
json_str = answer.strip()
return json.loads(json_str)
except Exception as e:
logger.error(f"Error extracting JSON from answer: {str(e)}")
raise
class MedicalDiagnosisApp:
def __init__(self, model_path: str, api_key: str, user_id: str):
self.model = MedicalDiagnosisModel(model_path)
self.api = MedicalDiagnosisAPI(api_key, user_id)
def process_request(self, patient_info: str,
image: Optional[Image.Image]) -> str:
"""Process a medical diagnosis request."""
try:
if self.model.model is None:
return json.dumps({
"error": "Model initialization failed",
"status": "error"
}, indent=2)
# Process image if provided
image_analysis = None
if image is not None:
processed_image = self.model.preprocess_image(image)
image_analysis = self.model.predict(processed_image)
logger.info(f"Image analysis results: {image_analysis}")
# Create chat session and submit query
session_id = self.api.create_chat_session()
llm_response = self.api.submit_query(
session_id,
patient_info,
json.dumps(image_analysis) if image_analysis else None
)
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
raise ValueError("Invalid response structure from LLM")
json_data = extract_json_from_answer(llm_response['data']['answer'])
return json.dumps(json_data, indent=2)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
return json.dumps({
"error": str(e),
"status": "error",
"details": "Check the application logs for more information"
}, indent=2)
def create_gradio_interface() -> gr.Interface:
"""Create and configure the Gradio interface."""
app = MedicalDiagnosisApp(
model_path='model_epoch_01.h5.keras',
api_key='KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3',
user_id='plugin-1717464304'
)
return gr.Interface(
fn=app.process_request,
inputs=[
gr.Textbox(
label="Patient Information",
placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
lines=5,
max_lines=10
),
gr.Image(
label="Medical Image",
type="numpy",
interactive=True
)
],
outputs=gr.Textbox(
label="Medical Analysis",
placeholder="JSON analysis will appear here...",
lines=15
),
title="Medical Diagnosis Assistant",
description="Enter patient information and optionally upload a medical image for analysis."
)
if __name__ == "__main__":
# Log version information
logger.info(f"TF-Keras version: {tf_keras.__version__}")
logger.info(f"TensorFlow Hub version: {hub.__version__}")
logger.info(f"Gradio version: {gr.__version__}")
# Create and launch the interface
iface = create_gradio_interface()
iface.launch(
server_name="0.0.0.0",
debug=True
)
# import requests
# import gradio as gr
# import logging
# import json
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'
# def create_chat_session():
# try:
# create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
# create_session_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# create_session_body = {
# "pluginIds": [],
# "externalUserId": external_user_id
# }
# response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
# response.raise_for_status()
# return response.json()['data']['id']
# except requests.exceptions.RequestException as e:
# logger.error(f"Error creating chat session: {str(e)}")
# raise
# def submit_query(session_id, query):
# try:
# submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
# submit_query_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# structured_query = f"""
# Based on the following patient information, provide a detailed medical analysis in JSON format:
# {query}
# Return only valid JSON with these fields:
# - diagnosis_details
# - probable_diagnoses (array)
# - treatment_plans (array)
# - lifestyle_modifications (array)
# - medications (array of objects with name and dosage)
# - additional_tests (array)
# - precautions (array)
# - follow_up (string)
# """
# submit_query_body = {
# "endpointId": "predefined-openai-gpt4o",
# "query": structured_query,
# "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
# "responseMode": "sync"
# }
# response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
# response.raise_for_status()
# return response.json()
# except requests.exceptions.RequestException as e:
# logger.error(f"Error submitting query: {str(e)}")
# raise
# def extract_json_from_answer(answer):
# """Extract and clean JSON from the LLM response"""
# try:
# # First try to parse the answer directly
# return json.loads(answer)
# except json.JSONDecodeError:
# try:
# # If that fails, try to find JSON content and parse it
# start_idx = answer.find('{')
# end_idx = answer.rfind('}') + 1
# if start_idx != -1 and end_idx != 0:
# json_str = answer[start_idx:end_idx]
# return json.loads(json_str)
# except (json.JSONDecodeError, ValueError):
# logger.error("Failed to parse JSON from response")
# raise
# def gradio_interface(patient_info):
# try:
# session_id = create_chat_session()
# llm_response = submit_query(session_id, patient_info)
# if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
# raise ValueError("Invalid response structure")
# # Extract and clean JSON from the response
# json_data = extract_json_from_answer(llm_response['data']['answer'])
# # Return clean JSON string without extra formatting
# return json.dumps(json_data)
# except Exception as e:
# logger.error(f"Error in gradio_interface: {str(e)}")
# return json.dumps({"error": str(e)})
# # Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Textbox(
# label="Patient Information",
# placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
# lines=5,
# max_lines=10
# )
# ],
# outputs=gr.Textbox(
# label="Medical Analysis",
# placeholder="JSON analysis will appear here...",
# lines=15
# ),
# title="Medical Diagnosis Assistant",
# description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )
# if __name__ == "__main__":
# iface.launch() |