File size: 13,266 Bytes
a149a7b
 
6eb0efb
 
c07a771
c00355e
f3a1e2d
 
aa3dc7a
ef3808c
6eb0efb
ef3808c
aa3dc7a
 
 
 
6eb0efb
e7f38cd
ef3808c
 
 
 
aa3dc7a
ef3808c
 
 
 
 
 
 
aa3dc7a
ef3808c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae01e5c
ef3808c
aa3dc7a
ef3808c
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3dc7a
ef3808c
 
c00355e
ef3808c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3dc7a
ef3808c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a1e2d
ef3808c
 
aff9b10
ef3808c
 
 
 
 
 
 
aff9b10
ef3808c
aff9b10
 
ef3808c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff9b10
ef3808c
 
 
 
 
aff9b10
ef3808c
 
 
 
 
 
 
aa3dc7a
ef3808c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a1e2d
ef3808c
 
 
e7f38cd
6eb0efb
ef3808c
 
aa3dc7a
 
 
ef3808c
 
aa3dc7a
 
 
 
f3a1e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import requests
import gradio as gr
import logging
import json
import tf_keras
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import os
from typing import Optional, Dict, Any, Union

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class MedicalDiagnosisModel:
    def __init__(self, model_path: str):
        self.model_path = model_path
        self.model = self._load_model()
        
    def _load_model(self) -> Optional[tf_keras.Model]:
        """Load the transfer learning model with proper error handling."""
        try:
            if not os.path.exists(self.model_path):
                raise FileNotFoundError(f"Model file not found at {self.model_path}")
                
            logger.info(f"Loading model from {self.model_path}")
            
            # Define custom objects dictionary for transfer learning
            custom_objects = {
                'KerasLayer': hub.KerasLayer
            }
            
            try:
                logger.info("Attempting to load model with custom objects...")
                with tf_keras.utils.custom_object_scope(custom_objects):
                    model = tf_keras.models.load_model(self.model_path, compile=False)
            except Exception as e:
                logger.error(f"Failed to load with custom objects: {str(e)}")
                logger.info("Attempting to load model without custom objects...")
                model = tf_keras.models.load_model(self.model_path, compile=False)
                
            model.summary()
            logger.info("Model loaded successfully")
            return model
            
        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            return None
            
    def preprocess_image(self, image: Image.Image):
        """Preprocess the input image for model prediction."""
        try:
            # Convert to RGB and resize
            image = image.convert('RGB')
            image = image.resize((256, 256))
            
            # Convert to numpy array and normalize
            image_array = np.array(image)
            image_array = image_array / 255.0
            
            # Add batch dimension
            image_array = np.expand_dims(image_array, axis=0)
            logger.info(f"Preprocessed image shape: {image_array.shape}")
            
            return image_array
            
        except Exception as e:
            logger.error(f"Error preprocessing image: {str(e)}")
            raise
            
    def predict(self, image: np.ndarray) -> Dict[str, float]:
        """Run model prediction and return results."""
        try:
            prediction = self.model.predict(image)
            return {
                "prediction": float(prediction[0][0]),
                "confidence": float(prediction[0][0]) * 100
            }
        except Exception as e:
            logger.error(f"Error during prediction: {str(e)}")
            raise

class MedicalDiagnosisAPI:
    def __init__(self, api_key: str, user_id: str):
        self.api_key = api_key
        self.user_id = user_id
        self.base_url = "https://api.example.com/v1"  # Replace with actual API URL
        
    def create_chat_session(self) -> str:
        """Create a new chat session and return session ID."""
        try:
            response = requests.post(
                f"{self.base_url}/sessions",
                headers={
                    "Authorization": f"Bearer {self.api_key}",
                    "X-User-ID": self.user_id
                }
            )
            response.raise_for_status()
            return response.json()["session_id"]
        except Exception as e:
            logger.error(f"Error creating chat session: {str(e)}")
            raise
            
    def submit_query(self, session_id: str, patient_info: str, 
                    image_analysis: Optional[str] = None) -> Dict[str, Any]:
        """Submit a query to the API and return the response."""
        try:
            payload = {
                "patient_info": patient_info,
                "image_analysis": image_analysis
            }
            
            response = requests.post(
                f"{self.base_url}/sessions/{session_id}/query",
                headers={
                    "Authorization": f"Bearer {self.api_key}",
                    "X-User-ID": self.user_id
                },
                json=payload
            )
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logger.error(f"Error submitting query: {str(e)}")
            raise

def extract_json_from_answer(answer: str) -> Dict[str, Any]:
    """Extract and parse JSON from the API response."""
    try:
        # Find JSON content between triple backticks if present
        if "```json" in answer and "```" in answer:
            json_str = answer.split("```json")[1].split("```")[0].strip()
        else:
            json_str = answer.strip()
            
        return json.loads(json_str)
    except Exception as e:
        logger.error(f"Error extracting JSON from answer: {str(e)}")
        raise

class MedicalDiagnosisApp:
    def __init__(self, model_path: str, api_key: str, user_id: str):
        self.model = MedicalDiagnosisModel(model_path)
        self.api = MedicalDiagnosisAPI(api_key, user_id)
        
    def process_request(self, patient_info: str, 
                       image: Optional[Image.Image]) -> str:
        """Process a medical diagnosis request."""
        try:
            if self.model.model is None:
                return json.dumps({
                    "error": "Model initialization failed",
                    "status": "error"
                }, indent=2)
                
            # Process image if provided
            image_analysis = None
            if image is not None:
                processed_image = self.model.preprocess_image(image)
                image_analysis = self.model.predict(processed_image)
                logger.info(f"Image analysis results: {image_analysis}")
                
            # Create chat session and submit query
            session_id = self.api.create_chat_session()
            llm_response = self.api.submit_query(
                session_id, 
                patient_info,
                json.dumps(image_analysis) if image_analysis else None
            )
            
            if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
                raise ValueError("Invalid response structure from LLM")
                
            json_data = extract_json_from_answer(llm_response['data']['answer'])
            return json.dumps(json_data, indent=2)
            
        except Exception as e:
            logger.error(f"Error processing request: {str(e)}")
            return json.dumps({
                "error": str(e),
                "status": "error",
                "details": "Check the application logs for more information"
            }, indent=2)

def create_gradio_interface() -> gr.Interface:
    """Create and configure the Gradio interface."""
    app = MedicalDiagnosisApp(
        model_path='model_epoch_01.h5.keras',
        api_key='KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3',
        user_id='plugin-1717464304'
    )
    
    return gr.Interface(
        fn=app.process_request,
        inputs=[
            gr.Textbox(
                label="Patient Information",
                placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
                lines=5,
                max_lines=10
            ),
            gr.Image(
                label="Medical Image",
                type="numpy",
                interactive=True
            )
        ],
        outputs=gr.Textbox(
            label="Medical Analysis",
            placeholder="JSON analysis will appear here...",
            lines=15
        ),
        title="Medical Diagnosis Assistant",
        description="Enter patient information and optionally upload a medical image for analysis."
    )

if __name__ == "__main__":
    # Log version information
    logger.info(f"TF-Keras version: {tf_keras.__version__}")
    logger.info(f"TensorFlow Hub version: {hub.__version__}")
    logger.info(f"Gradio version: {gr.__version__}")
    
    # Create and launch the interface
    iface = create_gradio_interface()
    iface.launch(
        server_name="0.0.0.0",
        debug=True
    )



# import requests
# import gradio as gr
# import logging
# import json

# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'

# def create_chat_session():
#     try:
#         create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
#         create_session_headers = {
#             'apikey': api_key,
#             'Content-Type': 'application/json'
#         }
#         create_session_body = {
#             "pluginIds": [],
#             "externalUserId": external_user_id
#         }
        
#         response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
#         response.raise_for_status()
#         return response.json()['data']['id']
    
#     except requests.exceptions.RequestException as e:
#         logger.error(f"Error creating chat session: {str(e)}")
#         raise

# def submit_query(session_id, query):
#     try:
#         submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
#         submit_query_headers = {
#             'apikey': api_key,
#             'Content-Type': 'application/json'
#         }
        
#         structured_query = f"""
#         Based on the following patient information, provide a detailed medical analysis in JSON format:

#         {query}

#         Return only valid JSON with these fields:
#         - diagnosis_details
#         - probable_diagnoses (array)
#         - treatment_plans (array)
#         - lifestyle_modifications (array)
#         - medications (array of objects with name and dosage)
#         - additional_tests (array)
#         - precautions (array)
#         - follow_up (string)
#         """
        
#         submit_query_body = {
#             "endpointId": "predefined-openai-gpt4o",
#             "query": structured_query,
#             "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
#             "responseMode": "sync"
#         }
        
#         response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
#         response.raise_for_status()
#         return response.json()
    
#     except requests.exceptions.RequestException as e:
#         logger.error(f"Error submitting query: {str(e)}")
#         raise

# def extract_json_from_answer(answer):
#     """Extract and clean JSON from the LLM response"""
#     try:
#         # First try to parse the answer directly
#         return json.loads(answer)
#     except json.JSONDecodeError:
#         try:
#             # If that fails, try to find JSON content and parse it
#             start_idx = answer.find('{')
#             end_idx = answer.rfind('}') + 1
#             if start_idx != -1 and end_idx != 0:
#                 json_str = answer[start_idx:end_idx]
#                 return json.loads(json_str)
#         except (json.JSONDecodeError, ValueError):
#             logger.error("Failed to parse JSON from response")
#             raise

# def gradio_interface(patient_info):
#     try:
#         session_id = create_chat_session()
#         llm_response = submit_query(session_id, patient_info)
        
#         if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
#             raise ValueError("Invalid response structure")
        
#         # Extract and clean JSON from the response
#         json_data = extract_json_from_answer(llm_response['data']['answer'])
        
#         # Return clean JSON string without extra formatting
#         return json.dumps(json_data)
    
#     except Exception as e:
#         logger.error(f"Error in gradio_interface: {str(e)}")
#         return json.dumps({"error": str(e)})

# # Gradio interface
# iface = gr.Interface(
#     fn=gradio_interface,
#     inputs=[
#         gr.Textbox(
#             label="Patient Information",
#             placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
#             lines=5,
#             max_lines=10
#         )
#     ],
#     outputs=gr.Textbox(
#         label="Medical Analysis",
#         placeholder="JSON analysis will appear here...",
#         lines=15
#     ),
#     title="Medical Diagnosis Assistant",
#     description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )

# if __name__ == "__main__":
#     iface.launch()