Spaces:
Running
on
Zero
Running
on
Zero
ImgRoboAssetGen
/
thirdparty
/TRELLIS
/trellis
/representations
/mesh
/flexicubes
/examples
/render.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import numpy as np | |
import copy | |
import math | |
from ipywidgets import interactive, HBox, VBox, FloatLogSlider, IntSlider | |
import torch | |
import nvdiffrast.torch as dr | |
import kaolin as kal | |
import util | |
############################################################################### | |
# Functions adapted from https://github.com/NVlabs/nvdiffrec | |
############################################################################### | |
def get_random_camera_batch(batch_size, fovy = np.deg2rad(45), iter_res=[512,512], cam_near_far=[0.1, 1000.0], cam_radius=3.0, device="cuda", use_kaolin=True): | |
if use_kaolin: | |
camera_pos = torch.stack(kal.ops.coords.spherical2cartesian( | |
*kal.ops.random.sample_spherical_coords((batch_size,), azimuth_low=0., azimuth_high=math.pi * 2, | |
elevation_low=-math.pi / 2., elevation_high=math.pi / 2., device='cuda'), | |
cam_radius | |
), dim=-1) | |
return kal.render.camera.Camera.from_args( | |
eye=camera_pos + torch.rand((batch_size, 1), device='cuda') * 0.5 - 0.25, | |
at=torch.zeros(batch_size, 3), | |
up=torch.tensor([[0., 1., 0.]]), | |
fov=fovy, | |
near=cam_near_far[0], far=cam_near_far[1], | |
height=iter_res[0], width=iter_res[1], | |
device='cuda' | |
) | |
else: | |
def get_random_camera(): | |
proj_mtx = util.perspective(fovy, iter_res[1] / iter_res[0], cam_near_far[0], cam_near_far[1]) | |
mv = util.translate(0, 0, -cam_radius) @ util.random_rotation_translation(0.25) | |
mvp = proj_mtx @ mv | |
return mv, mvp | |
mv_batch = [] | |
mvp_batch = [] | |
for i in range(batch_size): | |
mv, mvp = get_random_camera() | |
mv_batch.append(mv) | |
mvp_batch.append(mvp) | |
return torch.stack(mv_batch).to(device), torch.stack(mvp_batch).to(device) | |
def get_rotate_camera(itr, fovy = np.deg2rad(45), iter_res=[512,512], cam_near_far=[0.1, 1000.0], cam_radius=3.0, device="cuda", use_kaolin=True): | |
if use_kaolin: | |
ang = (itr / 10) * np.pi * 2 | |
camera_pos = torch.stack(kal.ops.coords.spherical2cartesian(torch.tensor(ang), torch.tensor(0.4), -torch.tensor(cam_radius))) | |
return kal.render.camera.Camera.from_args( | |
eye=camera_pos, | |
at=torch.zeros(3), | |
up=torch.tensor([0., 1., 0.]), | |
fov=fovy, | |
near=cam_near_far[0], far=cam_near_far[1], | |
height=iter_res[0], width=iter_res[1], | |
device='cuda' | |
) | |
else: | |
proj_mtx = util.perspective(fovy, iter_res[1] / iter_res[0], cam_near_far[0], cam_near_far[1]) | |
# Smooth rotation for display. | |
ang = (itr / 10) * np.pi * 2 | |
mv = util.translate(0, 0, -cam_radius) @ (util.rotate_x(-0.4) @ util.rotate_y(ang)) | |
mvp = proj_mtx @ mv | |
return mv.to(device), mvp.to(device) | |
glctx = dr.RasterizeGLContext() | |
def render_mesh(mesh, camera, iter_res, return_types = ["mask", "depth"], white_bg=False, wireframe_thickness=0.4): | |
vertices_camera = camera.extrinsics.transform(mesh.vertices) | |
face_vertices_camera = kal.ops.mesh.index_vertices_by_faces( | |
vertices_camera, mesh.faces | |
) | |
# Projection: nvdiffrast take clip coordinates as input to apply barycentric perspective correction. | |
# Using `camera.intrinsics.transform(vertices_camera) would return the normalized device coordinates. | |
proj = camera.projection_matrix().unsqueeze(1) | |
proj[:, :, 1, 1] = -proj[:, :, 1, 1] | |
homogeneous_vecs = kal.render.camera.up_to_homogeneous( | |
vertices_camera | |
) | |
vertices_clip = (proj @ homogeneous_vecs.unsqueeze(-1)).squeeze(-1) | |
faces_int = mesh.faces.int() | |
rast, _ = dr.rasterize( | |
glctx, vertices_clip, faces_int, iter_res) | |
out_dict = {} | |
for type in return_types: | |
if type == "mask" : | |
img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int) | |
elif type == "depth": | |
img = dr.interpolate(homogeneous_vecs, rast, faces_int)[0] | |
elif type == "wireframe": | |
img = torch.logical_or( | |
torch.logical_or(rast[..., 0] < wireframe_thickness, rast[..., 1] < wireframe_thickness), | |
(rast[..., 0] + rast[..., 1]) > (1. - wireframe_thickness) | |
).unsqueeze(-1) | |
elif type == "normals" : | |
img = dr.interpolate( | |
mesh.face_normals.reshape(len(mesh), -1, 3), rast, | |
torch.arange(mesh.faces.shape[0] * 3, device='cuda', dtype=torch.int).reshape(-1, 3) | |
)[0] | |
if white_bg: | |
bg = torch.ones_like(img) | |
alpha = (rast[..., -1:] > 0).float() | |
img = torch.lerp(bg, img, alpha) | |
out_dict[type] = img | |
return out_dict | |
def render_mesh_paper(mesh, mv, mvp, iter_res, return_types = ["mask", "depth"], white_bg=False): | |
''' | |
The rendering function used to produce the results in the paper. | |
''' | |
v_pos_clip = util.xfm_points(mesh.vertices.unsqueeze(0), mvp) # Rotate it to camera coordinates | |
rast, db = dr.rasterize( | |
dr.RasterizeGLContext(), v_pos_clip, mesh.faces.int(), iter_res) | |
out_dict = {} | |
for type in return_types: | |
if type == "mask" : | |
img = dr.antialias((rast[..., -1:] > 0).float(), rast, v_pos_clip, mesh.faces.int()) | |
elif type == "depth": | |
v_pos_cam = util.xfm_points(mesh.vertices.unsqueeze(0), mv) | |
img, _ = util.interpolate(v_pos_cam, rast, mesh.faces.int()) | |
elif type == "normal" : | |
normal_indices = (torch.arange(0, mesh.nrm.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3) | |
img, _ = util.interpolate(mesh.nrm.unsqueeze(0).contiguous(), rast, normal_indices.int()) | |
elif type == "vertex_normal": | |
img, _ = util.interpolate(mesh.v_nrm.unsqueeze(0).contiguous(), rast, mesh.faces.int()) | |
img = dr.antialias((img + 1) * 0.5, rast, v_pos_clip, mesh.faces.int()) | |
if white_bg: | |
bg = torch.ones_like(img) | |
alpha = (rast[..., -1:] > 0).float() | |
img = torch.lerp(bg, img, alpha) | |
out_dict[type] = img | |
return out_dict | |
class SplitVisualizer(): | |
def __init__(self, lh_mesh, rh_mesh, height, width): | |
self.lh_mesh = lh_mesh | |
self.rh_mesh = rh_mesh | |
self.height = height | |
self.width = width | |
self.wireframe_thickness = 0.4 | |
def render(self, camera): | |
lh_outputs = render_mesh( | |
self.lh_mesh, camera, (self.height, self.width), | |
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness | |
) | |
rh_outputs = render_mesh( | |
self.rh_mesh, camera, (self.height, self.width), | |
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness | |
) | |
outputs = { | |
k: torch.cat( | |
[lh_outputs[k][0].permute(1, 0, 2), rh_outputs[k][0].permute(1, 0, 2)], | |
dim=0 | |
).permute(1, 0, 2) for k in ["normals", "wireframe"] | |
} | |
return { | |
'img': (outputs['wireframe'] * ((outputs['normals'] + 1.) / 2.) * 255).to(torch.uint8), | |
'normals': outputs['normals'] | |
} | |
def show(self, init_camera): | |
visualizer = kal.visualize.IpyTurntableVisualizer( | |
self.height, self.width * 2, copy.deepcopy(init_camera), self.render, | |
max_fps=24, world_up_axis=1) | |
def slider_callback(new_wireframe_thickness): | |
"""ipywidgets sliders callback""" | |
with visualizer.out: # This is in case of bug | |
self.wireframe_thickness = new_wireframe_thickness | |
# this is how we request a new update | |
visualizer.render_update() | |
wireframe_thickness_slider = FloatLogSlider( | |
value=self.wireframe_thickness, | |
base=10, | |
min=-3, | |
max=-0.4, | |
step=0.1, | |
description='wireframe_thickness', | |
continuous_update=True, | |
readout=True, | |
readout_format='.3f', | |
) | |
interactive_slider = interactive( | |
slider_callback, | |
new_wireframe_thickness=wireframe_thickness_slider, | |
) | |
full_output = VBox([visualizer.canvas, interactive_slider]) | |
display(full_output, visualizer.out) | |
class TimelineVisualizer(): | |
def __init__(self, meshes, height, width): | |
self.meshes = meshes | |
self.height = height | |
self.width = width | |
self.wireframe_thickness = 0.4 | |
self.idx = len(meshes) - 1 | |
def render(self, camera): | |
outputs = render_mesh( | |
self.meshes[self.idx], camera, (self.height, self.width), | |
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness | |
) | |
return { | |
'img': (outputs['wireframe'] * ((outputs['normals'] + 1.) / 2.) * 255).to(torch.uint8)[0], | |
'normals': outputs['normals'][0] | |
} | |
def show(self, init_camera): | |
visualizer = kal.visualize.IpyTurntableVisualizer( | |
self.height, self.width, copy.deepcopy(init_camera), self.render, | |
max_fps=24, world_up_axis=1) | |
def slider_callback(new_wireframe_thickness, new_idx): | |
"""ipywidgets sliders callback""" | |
with visualizer.out: # This is in case of bug | |
self.wireframe_thickness = new_wireframe_thickness | |
self.idx = new_idx | |
# this is how we request a new update | |
visualizer.render_update() | |
wireframe_thickness_slider = FloatLogSlider( | |
value=self.wireframe_thickness, | |
base=10, | |
min=-3, | |
max=-0.4, | |
step=0.1, | |
description='wireframe_thickness', | |
continuous_update=True, | |
readout=True, | |
readout_format='.3f', | |
) | |
idx_slider = IntSlider( | |
value=self.idx, | |
min=0, | |
max=len(self.meshes) - 1, | |
description='idx', | |
continuous_update=True, | |
readout=True | |
) | |
interactive_slider = interactive( | |
slider_callback, | |
new_wireframe_thickness=wireframe_thickness_slider, | |
new_idx=idx_slider | |
) | |
full_output = HBox([visualizer.canvas, interactive_slider]) | |
display(full_output, visualizer.out) | |