Spaces:
Running
on
Zero
Running
on
Zero
xinjie.wang
commited on
Commit
·
9b53de6
1
Parent(s):
7dfbfa6
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +2 -2
- asset3d_gen/models/segment.py +1 -1
- asset3d_gen/utils/gpt_clients.py +3 -1
- common.py +5 -3
- requirements.txt +1 -0
- thirdparty/TRELLIS/trellis/__init__.py +6 -0
- thirdparty/TRELLIS/trellis/models/__init__.py +70 -0
- thirdparty/TRELLIS/trellis/models/sparse_structure_flow.py +200 -0
- thirdparty/TRELLIS/trellis/models/sparse_structure_vae.py +306 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_flow.py +262 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_vae/__init__.py +4 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_vae/base.py +117 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_vae/decoder_gs.py +122 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_vae/decoder_mesh.py +167 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_vae/decoder_rf.py +104 -0
- thirdparty/TRELLIS/trellis/models/structured_latent_vae/encoder.py +72 -0
- thirdparty/TRELLIS/trellis/modules/attention/__init__.py +36 -0
- thirdparty/TRELLIS/trellis/modules/attention/full_attn.py +140 -0
- thirdparty/TRELLIS/trellis/modules/attention/modules.py +146 -0
- thirdparty/TRELLIS/trellis/modules/norm.py +25 -0
- thirdparty/TRELLIS/trellis/modules/sparse/__init__.py +102 -0
- thirdparty/TRELLIS/trellis/modules/sparse/attention/__init__.py +4 -0
- thirdparty/TRELLIS/trellis/modules/sparse/attention/full_attn.py +215 -0
- thirdparty/TRELLIS/trellis/modules/sparse/attention/modules.py +139 -0
- thirdparty/TRELLIS/trellis/modules/sparse/attention/serialized_attn.py +193 -0
- thirdparty/TRELLIS/trellis/modules/sparse/attention/windowed_attn.py +135 -0
- thirdparty/TRELLIS/trellis/modules/sparse/basic.py +459 -0
- thirdparty/TRELLIS/trellis/modules/sparse/conv/__init__.py +21 -0
- thirdparty/TRELLIS/trellis/modules/sparse/conv/conv_spconv.py +80 -0
- thirdparty/TRELLIS/trellis/modules/sparse/conv/conv_torchsparse.py +38 -0
- thirdparty/TRELLIS/trellis/modules/sparse/linear.py +15 -0
- thirdparty/TRELLIS/trellis/modules/sparse/nonlinearity.py +35 -0
- thirdparty/TRELLIS/trellis/modules/sparse/norm.py +58 -0
- thirdparty/TRELLIS/trellis/modules/sparse/spatial.py +110 -0
- thirdparty/TRELLIS/trellis/modules/sparse/transformer/__init__.py +2 -0
- thirdparty/TRELLIS/trellis/modules/sparse/transformer/blocks.py +151 -0
- thirdparty/TRELLIS/trellis/modules/sparse/transformer/modulated.py +166 -0
- thirdparty/TRELLIS/trellis/modules/spatial.py +48 -0
- thirdparty/TRELLIS/trellis/modules/transformer/__init__.py +2 -0
- thirdparty/TRELLIS/trellis/modules/transformer/blocks.py +182 -0
- thirdparty/TRELLIS/trellis/modules/transformer/modulated.py +157 -0
- thirdparty/TRELLIS/trellis/modules/utils.py +54 -0
- thirdparty/TRELLIS/trellis/pipelines/__init__.py +24 -0
- thirdparty/TRELLIS/trellis/pipelines/base.py +66 -0
- thirdparty/TRELLIS/trellis/pipelines/samplers/__init__.py +2 -0
- thirdparty/TRELLIS/trellis/pipelines/samplers/base.py +20 -0
- thirdparty/TRELLIS/trellis/pipelines/samplers/classifier_free_guidance_mixin.py +12 -0
- thirdparty/TRELLIS/trellis/pipelines/samplers/flow_euler.py +199 -0
- thirdparty/TRELLIS/trellis/pipelines/samplers/guidance_interval_mixin.py +15 -0
- thirdparty/TRELLIS/trellis/pipelines/trellis_image_to_3d.py +376 -0
app.py
CHANGED
@@ -17,7 +17,7 @@ from common import (
|
|
17 |
select_point,
|
18 |
)
|
19 |
from gradio.themes import Default
|
20 |
-
from gradio.themes.utils.colors import slate
|
21 |
from gradio_litmodel3d import LitModel3D
|
22 |
from asset3d_gen.models.delight import DelightingModel
|
23 |
from asset3d_gen.models.segment import RembgRemover, SAMPredictor
|
@@ -64,7 +64,7 @@ def end_session(req: gr.Request) -> None:
|
|
64 |
|
65 |
|
66 |
with gr.Blocks(
|
67 |
-
delete_cache=(43200, 43200), theme=Default(primary_hue=
|
68 |
) as demo:
|
69 |
gr.Markdown(
|
70 |
f"""
|
|
|
17 |
select_point,
|
18 |
)
|
19 |
from gradio.themes import Default
|
20 |
+
from gradio.themes.utils.colors import slate
|
21 |
from gradio_litmodel3d import LitModel3D
|
22 |
from asset3d_gen.models.delight import DelightingModel
|
23 |
from asset3d_gen.models.segment import RembgRemover, SAMPredictor
|
|
|
64 |
|
65 |
|
66 |
with gr.Blocks(
|
67 |
+
delete_cache=(43200, 43200), theme=Default(primary_hue=slate)
|
68 |
) as demo:
|
69 |
gr.Markdown(
|
70 |
f"""
|
asset3d_gen/models/segment.py
CHANGED
@@ -162,7 +162,7 @@ class SAMPredictor(object):
|
|
162 |
checkpoint: str = None,
|
163 |
model_type: str = "vit_h",
|
164 |
binary_thresh: float = 0.1,
|
165 |
-
device: str = "cuda"
|
166 |
):
|
167 |
self.device = device
|
168 |
self.model_type = model_type
|
|
|
162 |
checkpoint: str = None,
|
163 |
model_type: str = "vit_h",
|
164 |
binary_thresh: float = 0.1,
|
165 |
+
device: str = "cuda",
|
166 |
):
|
167 |
self.device = device
|
168 |
self.model_type = model_type
|
asset3d_gen/utils/gpt_clients.py
CHANGED
@@ -186,5 +186,7 @@ if __name__ == "__main__":
|
|
186 |
print(response)
|
187 |
|
188 |
# test2: text prompt
|
189 |
-
response = GPT_CLIENT.query(
|
|
|
|
|
190 |
print(response)
|
|
|
186 |
print(response)
|
187 |
|
188 |
# test2: text prompt
|
189 |
+
response = GPT_CLIENT.query(
|
190 |
+
text_prompt="What is the capital of China?"
|
191 |
+
)
|
192 |
print(response)
|
common.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
-
import spaces
|
2 |
import gc
|
3 |
import logging
|
4 |
import os
|
5 |
import sys
|
6 |
from glob import glob
|
7 |
from typing import Union
|
|
|
8 |
import cv2
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
|
|
11 |
import torch
|
12 |
import trimesh
|
13 |
from easydict import EasyDict as edict
|
@@ -44,8 +45,9 @@ from asset3d_gen.validators.quality_checkers import (
|
|
44 |
)
|
45 |
from asset3d_gen.validators.urdf_convertor import URDFGenerator, zip_files
|
46 |
|
47 |
-
|
48 |
-
|
|
|
49 |
from thirdparty.TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
|
50 |
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer
|
51 |
from thirdparty.TRELLIS.trellis.representations import (
|
|
|
|
|
1 |
import gc
|
2 |
import logging
|
3 |
import os
|
4 |
import sys
|
5 |
from glob import glob
|
6 |
from typing import Union
|
7 |
+
|
8 |
import cv2
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
+
import spaces
|
12 |
import torch
|
13 |
import trimesh
|
14 |
from easydict import EasyDict as edict
|
|
|
45 |
)
|
46 |
from asset3d_gen.validators.urdf_convertor import URDFGenerator, zip_files
|
47 |
|
48 |
+
current_file_path = os.path.abspath(__file__)
|
49 |
+
current_dir = os.path.dirname(current_file_path)
|
50 |
+
sys.path.append(os.path.join(current_dir, "../.."))
|
51 |
from thirdparty.TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
|
52 |
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer
|
53 |
from thirdparty.TRELLIS.trellis.representations import (
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
|
|
|
3 |
torch==2.1.0
|
4 |
torchaudio==2.1.0
|
5 |
torchvision==0.16.0
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
|
3 |
+
|
4 |
torch==2.1.0
|
5 |
torchaudio==2.1.0
|
6 |
torchvision==0.16.0
|
thirdparty/TRELLIS/trellis/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import models
|
2 |
+
from . import modules
|
3 |
+
from . import pipelines
|
4 |
+
from . import renderers
|
5 |
+
from . import representations
|
6 |
+
from . import utils
|
thirdparty/TRELLIS/trellis/models/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
__attributes = {
|
4 |
+
'SparseStructureEncoder': 'sparse_structure_vae',
|
5 |
+
'SparseStructureDecoder': 'sparse_structure_vae',
|
6 |
+
'SparseStructureFlowModel': 'sparse_structure_flow',
|
7 |
+
'SLatEncoder': 'structured_latent_vae',
|
8 |
+
'SLatGaussianDecoder': 'structured_latent_vae',
|
9 |
+
'SLatRadianceFieldDecoder': 'structured_latent_vae',
|
10 |
+
'SLatMeshDecoder': 'structured_latent_vae',
|
11 |
+
'SLatFlowModel': 'structured_latent_flow',
|
12 |
+
}
|
13 |
+
|
14 |
+
__submodules = []
|
15 |
+
|
16 |
+
__all__ = list(__attributes.keys()) + __submodules
|
17 |
+
|
18 |
+
def __getattr__(name):
|
19 |
+
if name not in globals():
|
20 |
+
if name in __attributes:
|
21 |
+
module_name = __attributes[name]
|
22 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
23 |
+
globals()[name] = getattr(module, name)
|
24 |
+
elif name in __submodules:
|
25 |
+
module = importlib.import_module(f".{name}", __name__)
|
26 |
+
globals()[name] = module
|
27 |
+
else:
|
28 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
29 |
+
return globals()[name]
|
30 |
+
|
31 |
+
|
32 |
+
def from_pretrained(path: str, **kwargs):
|
33 |
+
"""
|
34 |
+
Load a model from a pretrained checkpoint.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
|
38 |
+
NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
|
39 |
+
**kwargs: Additional arguments for the model constructor.
|
40 |
+
"""
|
41 |
+
import os
|
42 |
+
import json
|
43 |
+
from safetensors.torch import load_file
|
44 |
+
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
45 |
+
|
46 |
+
if is_local:
|
47 |
+
config_file = f"{path}.json"
|
48 |
+
model_file = f"{path}.safetensors"
|
49 |
+
else:
|
50 |
+
from huggingface_hub import hf_hub_download
|
51 |
+
path_parts = path.split('/')
|
52 |
+
repo_id = f'{path_parts[0]}/{path_parts[1]}'
|
53 |
+
model_name = '/'.join(path_parts[2:])
|
54 |
+
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
55 |
+
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
56 |
+
|
57 |
+
with open(config_file, 'r') as f:
|
58 |
+
config = json.load(f)
|
59 |
+
model = __getattr__(config['name'])(**config['args'], **kwargs)
|
60 |
+
model.load_state_dict(load_file(model_file))
|
61 |
+
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
# For Pylance
|
66 |
+
if __name__ == '__main__':
|
67 |
+
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
68 |
+
from .sparse_structure_flow import SparseStructureFlowModel
|
69 |
+
from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder
|
70 |
+
from .structured_latent_flow import SLatFlowModel
|
thirdparty/TRELLIS/trellis/models/sparse_structure_flow.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
|
8 |
+
from ..modules.spatial import patchify, unpatchify
|
9 |
+
|
10 |
+
|
11 |
+
class TimestepEmbedder(nn.Module):
|
12 |
+
"""
|
13 |
+
Embeds scalar timesteps into vector representations.
|
14 |
+
"""
|
15 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
16 |
+
super().__init__()
|
17 |
+
self.mlp = nn.Sequential(
|
18 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
19 |
+
nn.SiLU(),
|
20 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
21 |
+
)
|
22 |
+
self.frequency_embedding_size = frequency_embedding_size
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def timestep_embedding(t, dim, max_period=10000):
|
26 |
+
"""
|
27 |
+
Create sinusoidal timestep embeddings.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
t: a 1-D Tensor of N indices, one per batch element.
|
31 |
+
These may be fractional.
|
32 |
+
dim: the dimension of the output.
|
33 |
+
max_period: controls the minimum frequency of the embeddings.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
an (N, D) Tensor of positional embeddings.
|
37 |
+
"""
|
38 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
39 |
+
half = dim // 2
|
40 |
+
freqs = torch.exp(
|
41 |
+
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
42 |
+
).to(device=t.device)
|
43 |
+
args = t[:, None].float() * freqs[None]
|
44 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
+
if dim % 2:
|
46 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
+
return embedding
|
48 |
+
|
49 |
+
def forward(self, t):
|
50 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
51 |
+
t_emb = self.mlp(t_freq)
|
52 |
+
return t_emb
|
53 |
+
|
54 |
+
|
55 |
+
class SparseStructureFlowModel(nn.Module):
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
resolution: int,
|
59 |
+
in_channels: int,
|
60 |
+
model_channels: int,
|
61 |
+
cond_channels: int,
|
62 |
+
out_channels: int,
|
63 |
+
num_blocks: int,
|
64 |
+
num_heads: Optional[int] = None,
|
65 |
+
num_head_channels: Optional[int] = 64,
|
66 |
+
mlp_ratio: float = 4,
|
67 |
+
patch_size: int = 2,
|
68 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
69 |
+
use_fp16: bool = False,
|
70 |
+
use_checkpoint: bool = False,
|
71 |
+
share_mod: bool = False,
|
72 |
+
qk_rms_norm: bool = False,
|
73 |
+
qk_rms_norm_cross: bool = False,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
self.resolution = resolution
|
77 |
+
self.in_channels = in_channels
|
78 |
+
self.model_channels = model_channels
|
79 |
+
self.cond_channels = cond_channels
|
80 |
+
self.out_channels = out_channels
|
81 |
+
self.num_blocks = num_blocks
|
82 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
83 |
+
self.mlp_ratio = mlp_ratio
|
84 |
+
self.patch_size = patch_size
|
85 |
+
self.pe_mode = pe_mode
|
86 |
+
self.use_fp16 = use_fp16
|
87 |
+
self.use_checkpoint = use_checkpoint
|
88 |
+
self.share_mod = share_mod
|
89 |
+
self.qk_rms_norm = qk_rms_norm
|
90 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
91 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
92 |
+
|
93 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
94 |
+
if share_mod:
|
95 |
+
self.adaLN_modulation = nn.Sequential(
|
96 |
+
nn.SiLU(),
|
97 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
98 |
+
)
|
99 |
+
|
100 |
+
if pe_mode == "ape":
|
101 |
+
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
102 |
+
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
|
103 |
+
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
104 |
+
pos_emb = pos_embedder(coords)
|
105 |
+
self.register_buffer("pos_emb", pos_emb)
|
106 |
+
|
107 |
+
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
108 |
+
|
109 |
+
self.blocks = nn.ModuleList([
|
110 |
+
ModulatedTransformerCrossBlock(
|
111 |
+
model_channels,
|
112 |
+
cond_channels,
|
113 |
+
num_heads=self.num_heads,
|
114 |
+
mlp_ratio=self.mlp_ratio,
|
115 |
+
attn_mode='full',
|
116 |
+
use_checkpoint=self.use_checkpoint,
|
117 |
+
use_rope=(pe_mode == "rope"),
|
118 |
+
share_mod=share_mod,
|
119 |
+
qk_rms_norm=self.qk_rms_norm,
|
120 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
121 |
+
)
|
122 |
+
for _ in range(num_blocks)
|
123 |
+
])
|
124 |
+
|
125 |
+
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
126 |
+
|
127 |
+
self.initialize_weights()
|
128 |
+
if use_fp16:
|
129 |
+
self.convert_to_fp16()
|
130 |
+
|
131 |
+
@property
|
132 |
+
def device(self) -> torch.device:
|
133 |
+
"""
|
134 |
+
Return the device of the model.
|
135 |
+
"""
|
136 |
+
return next(self.parameters()).device
|
137 |
+
|
138 |
+
def convert_to_fp16(self) -> None:
|
139 |
+
"""
|
140 |
+
Convert the torso of the model to float16.
|
141 |
+
"""
|
142 |
+
self.blocks.apply(convert_module_to_f16)
|
143 |
+
|
144 |
+
def convert_to_fp32(self) -> None:
|
145 |
+
"""
|
146 |
+
Convert the torso of the model to float32.
|
147 |
+
"""
|
148 |
+
self.blocks.apply(convert_module_to_f32)
|
149 |
+
|
150 |
+
def initialize_weights(self) -> None:
|
151 |
+
# Initialize transformer layers:
|
152 |
+
def _basic_init(module):
|
153 |
+
if isinstance(module, nn.Linear):
|
154 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
155 |
+
if module.bias is not None:
|
156 |
+
nn.init.constant_(module.bias, 0)
|
157 |
+
self.apply(_basic_init)
|
158 |
+
|
159 |
+
# Initialize timestep embedding MLP:
|
160 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
161 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
162 |
+
|
163 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
164 |
+
if self.share_mod:
|
165 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
166 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
167 |
+
else:
|
168 |
+
for block in self.blocks:
|
169 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
170 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
171 |
+
|
172 |
+
# Zero-out output layers:
|
173 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
174 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
|
177 |
+
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
|
178 |
+
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
|
179 |
+
|
180 |
+
h = patchify(x, self.patch_size)
|
181 |
+
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
182 |
+
|
183 |
+
h = self.input_layer(h)
|
184 |
+
h = h + self.pos_emb[None]
|
185 |
+
t_emb = self.t_embedder(t)
|
186 |
+
if self.share_mod:
|
187 |
+
t_emb = self.adaLN_modulation(t_emb)
|
188 |
+
t_emb = t_emb.type(self.dtype)
|
189 |
+
h = h.type(self.dtype)
|
190 |
+
cond = cond.type(self.dtype)
|
191 |
+
for block in self.blocks:
|
192 |
+
h = block(h, t_emb, cond)
|
193 |
+
h = h.type(x.dtype)
|
194 |
+
h = F.layer_norm(h, h.shape[-1:])
|
195 |
+
h = self.out_layer(h)
|
196 |
+
|
197 |
+
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
|
198 |
+
h = unpatchify(h, self.patch_size).contiguous()
|
199 |
+
|
200 |
+
return h
|
thirdparty/TRELLIS/trellis/models/sparse_structure_vae.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ..modules.norm import GroupNorm32, ChannelLayerNorm32
|
6 |
+
from ..modules.spatial import pixel_shuffle_3d
|
7 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
8 |
+
|
9 |
+
|
10 |
+
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
|
11 |
+
"""
|
12 |
+
Return a normalization layer.
|
13 |
+
"""
|
14 |
+
if norm_type == "group":
|
15 |
+
return GroupNorm32(32, *args, **kwargs)
|
16 |
+
elif norm_type == "layer":
|
17 |
+
return ChannelLayerNorm32(*args, **kwargs)
|
18 |
+
else:
|
19 |
+
raise ValueError(f"Invalid norm type {norm_type}")
|
20 |
+
|
21 |
+
|
22 |
+
class ResBlock3d(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
channels: int,
|
26 |
+
out_channels: Optional[int] = None,
|
27 |
+
norm_type: Literal["group", "layer"] = "layer",
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.channels = channels
|
31 |
+
self.out_channels = out_channels or channels
|
32 |
+
|
33 |
+
self.norm1 = norm_layer(norm_type, channels)
|
34 |
+
self.norm2 = norm_layer(norm_type, self.out_channels)
|
35 |
+
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
|
36 |
+
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
|
37 |
+
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
h = self.norm1(x)
|
41 |
+
h = F.silu(h)
|
42 |
+
h = self.conv1(h)
|
43 |
+
h = self.norm2(h)
|
44 |
+
h = F.silu(h)
|
45 |
+
h = self.conv2(h)
|
46 |
+
h = h + self.skip_connection(x)
|
47 |
+
return h
|
48 |
+
|
49 |
+
|
50 |
+
class DownsampleBlock3d(nn.Module):
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
in_channels: int,
|
54 |
+
out_channels: int,
|
55 |
+
mode: Literal["conv", "avgpool"] = "conv",
|
56 |
+
):
|
57 |
+
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"
|
58 |
+
|
59 |
+
super().__init__()
|
60 |
+
self.in_channels = in_channels
|
61 |
+
self.out_channels = out_channels
|
62 |
+
|
63 |
+
if mode == "conv":
|
64 |
+
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
|
65 |
+
elif mode == "avgpool":
|
66 |
+
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
if hasattr(self, "conv"):
|
70 |
+
return self.conv(x)
|
71 |
+
else:
|
72 |
+
return F.avg_pool3d(x, 2)
|
73 |
+
|
74 |
+
|
75 |
+
class UpsampleBlock3d(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
in_channels: int,
|
79 |
+
out_channels: int,
|
80 |
+
mode: Literal["conv", "nearest"] = "conv",
|
81 |
+
):
|
82 |
+
assert mode in ["conv", "nearest"], f"Invalid mode {mode}"
|
83 |
+
|
84 |
+
super().__init__()
|
85 |
+
self.in_channels = in_channels
|
86 |
+
self.out_channels = out_channels
|
87 |
+
|
88 |
+
if mode == "conv":
|
89 |
+
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
|
90 |
+
elif mode == "nearest":
|
91 |
+
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels"
|
92 |
+
|
93 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
94 |
+
if hasattr(self, "conv"):
|
95 |
+
x = self.conv(x)
|
96 |
+
return pixel_shuffle_3d(x, 2)
|
97 |
+
else:
|
98 |
+
return F.interpolate(x, scale_factor=2, mode="nearest")
|
99 |
+
|
100 |
+
|
101 |
+
class SparseStructureEncoder(nn.Module):
|
102 |
+
"""
|
103 |
+
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
|
104 |
+
|
105 |
+
Args:
|
106 |
+
in_channels (int): Channels of the input.
|
107 |
+
latent_channels (int): Channels of the latent representation.
|
108 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
109 |
+
channels (List[int]): Channels of the encoder blocks.
|
110 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
111 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
112 |
+
use_fp16 (bool): Whether to use FP16.
|
113 |
+
"""
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
in_channels: int,
|
117 |
+
latent_channels: int,
|
118 |
+
num_res_blocks: int,
|
119 |
+
channels: List[int],
|
120 |
+
num_res_blocks_middle: int = 2,
|
121 |
+
norm_type: Literal["group", "layer"] = "layer",
|
122 |
+
use_fp16: bool = False,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.in_channels = in_channels
|
126 |
+
self.latent_channels = latent_channels
|
127 |
+
self.num_res_blocks = num_res_blocks
|
128 |
+
self.channels = channels
|
129 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
130 |
+
self.norm_type = norm_type
|
131 |
+
self.use_fp16 = use_fp16
|
132 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
133 |
+
|
134 |
+
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)
|
135 |
+
|
136 |
+
self.blocks = nn.ModuleList([])
|
137 |
+
for i, ch in enumerate(channels):
|
138 |
+
self.blocks.extend([
|
139 |
+
ResBlock3d(ch, ch)
|
140 |
+
for _ in range(num_res_blocks)
|
141 |
+
])
|
142 |
+
if i < len(channels) - 1:
|
143 |
+
self.blocks.append(
|
144 |
+
DownsampleBlock3d(ch, channels[i+1])
|
145 |
+
)
|
146 |
+
|
147 |
+
self.middle_block = nn.Sequential(*[
|
148 |
+
ResBlock3d(channels[-1], channels[-1])
|
149 |
+
for _ in range(num_res_blocks_middle)
|
150 |
+
])
|
151 |
+
|
152 |
+
self.out_layer = nn.Sequential(
|
153 |
+
norm_layer(norm_type, channels[-1]),
|
154 |
+
nn.SiLU(),
|
155 |
+
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
|
156 |
+
)
|
157 |
+
|
158 |
+
if use_fp16:
|
159 |
+
self.convert_to_fp16()
|
160 |
+
|
161 |
+
@property
|
162 |
+
def device(self) -> torch.device:
|
163 |
+
"""
|
164 |
+
Return the device of the model.
|
165 |
+
"""
|
166 |
+
return next(self.parameters()).device
|
167 |
+
|
168 |
+
def convert_to_fp16(self) -> None:
|
169 |
+
"""
|
170 |
+
Convert the torso of the model to float16.
|
171 |
+
"""
|
172 |
+
self.use_fp16 = True
|
173 |
+
self.dtype = torch.float16
|
174 |
+
self.blocks.apply(convert_module_to_f16)
|
175 |
+
self.middle_block.apply(convert_module_to_f16)
|
176 |
+
|
177 |
+
def convert_to_fp32(self) -> None:
|
178 |
+
"""
|
179 |
+
Convert the torso of the model to float32.
|
180 |
+
"""
|
181 |
+
self.use_fp16 = False
|
182 |
+
self.dtype = torch.float32
|
183 |
+
self.blocks.apply(convert_module_to_f32)
|
184 |
+
self.middle_block.apply(convert_module_to_f32)
|
185 |
+
|
186 |
+
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor:
|
187 |
+
h = self.input_layer(x)
|
188 |
+
h = h.type(self.dtype)
|
189 |
+
|
190 |
+
for block in self.blocks:
|
191 |
+
h = block(h)
|
192 |
+
h = self.middle_block(h)
|
193 |
+
|
194 |
+
h = h.type(x.dtype)
|
195 |
+
h = self.out_layer(h)
|
196 |
+
|
197 |
+
mean, logvar = h.chunk(2, dim=1)
|
198 |
+
|
199 |
+
if sample_posterior:
|
200 |
+
std = torch.exp(0.5 * logvar)
|
201 |
+
z = mean + std * torch.randn_like(std)
|
202 |
+
else:
|
203 |
+
z = mean
|
204 |
+
|
205 |
+
if return_raw:
|
206 |
+
return z, mean, logvar
|
207 |
+
return z
|
208 |
+
|
209 |
+
|
210 |
+
class SparseStructureDecoder(nn.Module):
|
211 |
+
"""
|
212 |
+
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
out_channels (int): Channels of the output.
|
216 |
+
latent_channels (int): Channels of the latent representation.
|
217 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
218 |
+
channels (List[int]): Channels of the decoder blocks.
|
219 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
220 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
221 |
+
use_fp16 (bool): Whether to use FP16.
|
222 |
+
"""
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
out_channels: int,
|
226 |
+
latent_channels: int,
|
227 |
+
num_res_blocks: int,
|
228 |
+
channels: List[int],
|
229 |
+
num_res_blocks_middle: int = 2,
|
230 |
+
norm_type: Literal["group", "layer"] = "layer",
|
231 |
+
use_fp16: bool = False,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
self.out_channels = out_channels
|
235 |
+
self.latent_channels = latent_channels
|
236 |
+
self.num_res_blocks = num_res_blocks
|
237 |
+
self.channels = channels
|
238 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
239 |
+
self.norm_type = norm_type
|
240 |
+
self.use_fp16 = use_fp16
|
241 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
242 |
+
|
243 |
+
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
|
244 |
+
|
245 |
+
self.middle_block = nn.Sequential(*[
|
246 |
+
ResBlock3d(channels[0], channels[0])
|
247 |
+
for _ in range(num_res_blocks_middle)
|
248 |
+
])
|
249 |
+
|
250 |
+
self.blocks = nn.ModuleList([])
|
251 |
+
for i, ch in enumerate(channels):
|
252 |
+
self.blocks.extend([
|
253 |
+
ResBlock3d(ch, ch)
|
254 |
+
for _ in range(num_res_blocks)
|
255 |
+
])
|
256 |
+
if i < len(channels) - 1:
|
257 |
+
self.blocks.append(
|
258 |
+
UpsampleBlock3d(ch, channels[i+1])
|
259 |
+
)
|
260 |
+
|
261 |
+
self.out_layer = nn.Sequential(
|
262 |
+
norm_layer(norm_type, channels[-1]),
|
263 |
+
nn.SiLU(),
|
264 |
+
nn.Conv3d(channels[-1], out_channels, 3, padding=1)
|
265 |
+
)
|
266 |
+
|
267 |
+
if use_fp16:
|
268 |
+
self.convert_to_fp16()
|
269 |
+
|
270 |
+
@property
|
271 |
+
def device(self) -> torch.device:
|
272 |
+
"""
|
273 |
+
Return the device of the model.
|
274 |
+
"""
|
275 |
+
return next(self.parameters()).device
|
276 |
+
|
277 |
+
def convert_to_fp16(self) -> None:
|
278 |
+
"""
|
279 |
+
Convert the torso of the model to float16.
|
280 |
+
"""
|
281 |
+
self.use_fp16 = True
|
282 |
+
self.dtype = torch.float16
|
283 |
+
self.blocks.apply(convert_module_to_f16)
|
284 |
+
self.middle_block.apply(convert_module_to_f16)
|
285 |
+
|
286 |
+
def convert_to_fp32(self) -> None:
|
287 |
+
"""
|
288 |
+
Convert the torso of the model to float32.
|
289 |
+
"""
|
290 |
+
self.use_fp16 = False
|
291 |
+
self.dtype = torch.float32
|
292 |
+
self.blocks.apply(convert_module_to_f32)
|
293 |
+
self.middle_block.apply(convert_module_to_f32)
|
294 |
+
|
295 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
296 |
+
h = self.input_layer(x)
|
297 |
+
|
298 |
+
h = h.type(self.dtype)
|
299 |
+
|
300 |
+
h = self.middle_block(h)
|
301 |
+
for block in self.blocks:
|
302 |
+
h = block(h)
|
303 |
+
|
304 |
+
h = h.type(x.dtype)
|
305 |
+
h = self.out_layer(h)
|
306 |
+
return h
|
thirdparty/TRELLIS/trellis/models/structured_latent_flow.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ..modules.transformer import AbsolutePositionEmbedder
|
8 |
+
from ..modules.norm import LayerNorm32
|
9 |
+
from ..modules import sparse as sp
|
10 |
+
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
|
11 |
+
from .sparse_structure_flow import TimestepEmbedder
|
12 |
+
|
13 |
+
|
14 |
+
class SparseResBlock3d(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
channels: int,
|
18 |
+
emb_channels: int,
|
19 |
+
out_channels: Optional[int] = None,
|
20 |
+
downsample: bool = False,
|
21 |
+
upsample: bool = False,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.emb_channels = emb_channels
|
26 |
+
self.out_channels = out_channels or channels
|
27 |
+
self.downsample = downsample
|
28 |
+
self.upsample = upsample
|
29 |
+
|
30 |
+
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
|
31 |
+
|
32 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
33 |
+
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
34 |
+
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
35 |
+
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
|
36 |
+
self.emb_layers = nn.Sequential(
|
37 |
+
nn.SiLU(),
|
38 |
+
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
39 |
+
)
|
40 |
+
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
|
41 |
+
self.updown = None
|
42 |
+
if self.downsample:
|
43 |
+
self.updown = sp.SparseDownsample(2)
|
44 |
+
elif self.upsample:
|
45 |
+
self.updown = sp.SparseUpsample(2)
|
46 |
+
|
47 |
+
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
48 |
+
if self.updown is not None:
|
49 |
+
x = self.updown(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
|
53 |
+
emb_out = self.emb_layers(emb).type(x.dtype)
|
54 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
55 |
+
|
56 |
+
x = self._updown(x)
|
57 |
+
h = x.replace(self.norm1(x.feats))
|
58 |
+
h = h.replace(F.silu(h.feats))
|
59 |
+
h = self.conv1(h)
|
60 |
+
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
|
61 |
+
h = h.replace(F.silu(h.feats))
|
62 |
+
h = self.conv2(h)
|
63 |
+
h = h + self.skip_connection(x)
|
64 |
+
|
65 |
+
return h
|
66 |
+
|
67 |
+
|
68 |
+
class SLatFlowModel(nn.Module):
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
resolution: int,
|
72 |
+
in_channels: int,
|
73 |
+
model_channels: int,
|
74 |
+
cond_channels: int,
|
75 |
+
out_channels: int,
|
76 |
+
num_blocks: int,
|
77 |
+
num_heads: Optional[int] = None,
|
78 |
+
num_head_channels: Optional[int] = 64,
|
79 |
+
mlp_ratio: float = 4,
|
80 |
+
patch_size: int = 2,
|
81 |
+
num_io_res_blocks: int = 2,
|
82 |
+
io_block_channels: List[int] = None,
|
83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
84 |
+
use_fp16: bool = False,
|
85 |
+
use_checkpoint: bool = False,
|
86 |
+
use_skip_connection: bool = True,
|
87 |
+
share_mod: bool = False,
|
88 |
+
qk_rms_norm: bool = False,
|
89 |
+
qk_rms_norm_cross: bool = False,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.resolution = resolution
|
93 |
+
self.in_channels = in_channels
|
94 |
+
self.model_channels = model_channels
|
95 |
+
self.cond_channels = cond_channels
|
96 |
+
self.out_channels = out_channels
|
97 |
+
self.num_blocks = num_blocks
|
98 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
99 |
+
self.mlp_ratio = mlp_ratio
|
100 |
+
self.patch_size = patch_size
|
101 |
+
self.num_io_res_blocks = num_io_res_blocks
|
102 |
+
self.io_block_channels = io_block_channels
|
103 |
+
self.pe_mode = pe_mode
|
104 |
+
self.use_fp16 = use_fp16
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.use_skip_connection = use_skip_connection
|
107 |
+
self.share_mod = share_mod
|
108 |
+
self.qk_rms_norm = qk_rms_norm
|
109 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
110 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
111 |
+
|
112 |
+
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
|
113 |
+
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
|
114 |
+
|
115 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
116 |
+
if share_mod:
|
117 |
+
self.adaLN_modulation = nn.Sequential(
|
118 |
+
nn.SiLU(),
|
119 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
120 |
+
)
|
121 |
+
|
122 |
+
if pe_mode == "ape":
|
123 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
124 |
+
|
125 |
+
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
126 |
+
self.input_blocks = nn.ModuleList([])
|
127 |
+
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
|
128 |
+
self.input_blocks.extend([
|
129 |
+
SparseResBlock3d(
|
130 |
+
chs,
|
131 |
+
model_channels,
|
132 |
+
out_channels=chs,
|
133 |
+
)
|
134 |
+
for _ in range(num_io_res_blocks-1)
|
135 |
+
])
|
136 |
+
self.input_blocks.append(
|
137 |
+
SparseResBlock3d(
|
138 |
+
chs,
|
139 |
+
model_channels,
|
140 |
+
out_channels=next_chs,
|
141 |
+
downsample=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
self.blocks = nn.ModuleList([
|
146 |
+
ModulatedSparseTransformerCrossBlock(
|
147 |
+
model_channels,
|
148 |
+
cond_channels,
|
149 |
+
num_heads=self.num_heads,
|
150 |
+
mlp_ratio=self.mlp_ratio,
|
151 |
+
attn_mode='full',
|
152 |
+
use_checkpoint=self.use_checkpoint,
|
153 |
+
use_rope=(pe_mode == "rope"),
|
154 |
+
share_mod=self.share_mod,
|
155 |
+
qk_rms_norm=self.qk_rms_norm,
|
156 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
157 |
+
)
|
158 |
+
for _ in range(num_blocks)
|
159 |
+
])
|
160 |
+
|
161 |
+
self.out_blocks = nn.ModuleList([])
|
162 |
+
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
|
163 |
+
self.out_blocks.append(
|
164 |
+
SparseResBlock3d(
|
165 |
+
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
166 |
+
model_channels,
|
167 |
+
out_channels=chs,
|
168 |
+
upsample=True,
|
169 |
+
)
|
170 |
+
)
|
171 |
+
self.out_blocks.extend([
|
172 |
+
SparseResBlock3d(
|
173 |
+
chs * 2 if self.use_skip_connection else chs,
|
174 |
+
model_channels,
|
175 |
+
out_channels=chs,
|
176 |
+
)
|
177 |
+
for _ in range(num_io_res_blocks-1)
|
178 |
+
])
|
179 |
+
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
180 |
+
|
181 |
+
self.initialize_weights()
|
182 |
+
if use_fp16:
|
183 |
+
self.convert_to_fp16()
|
184 |
+
|
185 |
+
@property
|
186 |
+
def device(self) -> torch.device:
|
187 |
+
"""
|
188 |
+
Return the device of the model.
|
189 |
+
"""
|
190 |
+
return next(self.parameters()).device
|
191 |
+
|
192 |
+
def convert_to_fp16(self) -> None:
|
193 |
+
"""
|
194 |
+
Convert the torso of the model to float16.
|
195 |
+
"""
|
196 |
+
self.input_blocks.apply(convert_module_to_f16)
|
197 |
+
self.blocks.apply(convert_module_to_f16)
|
198 |
+
self.out_blocks.apply(convert_module_to_f16)
|
199 |
+
|
200 |
+
def convert_to_fp32(self) -> None:
|
201 |
+
"""
|
202 |
+
Convert the torso of the model to float32.
|
203 |
+
"""
|
204 |
+
self.input_blocks.apply(convert_module_to_f32)
|
205 |
+
self.blocks.apply(convert_module_to_f32)
|
206 |
+
self.out_blocks.apply(convert_module_to_f32)
|
207 |
+
|
208 |
+
def initialize_weights(self) -> None:
|
209 |
+
# Initialize transformer layers:
|
210 |
+
def _basic_init(module):
|
211 |
+
if isinstance(module, nn.Linear):
|
212 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
213 |
+
if module.bias is not None:
|
214 |
+
nn.init.constant_(module.bias, 0)
|
215 |
+
self.apply(_basic_init)
|
216 |
+
|
217 |
+
# Initialize timestep embedding MLP:
|
218 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
219 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
220 |
+
|
221 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
222 |
+
if self.share_mod:
|
223 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
224 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
225 |
+
else:
|
226 |
+
for block in self.blocks:
|
227 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
228 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
229 |
+
|
230 |
+
# Zero-out output layers:
|
231 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
232 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
233 |
+
|
234 |
+
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor:
|
235 |
+
h = self.input_layer(x).type(self.dtype)
|
236 |
+
t_emb = self.t_embedder(t)
|
237 |
+
if self.share_mod:
|
238 |
+
t_emb = self.adaLN_modulation(t_emb)
|
239 |
+
t_emb = t_emb.type(self.dtype)
|
240 |
+
cond = cond.type(self.dtype)
|
241 |
+
|
242 |
+
skips = []
|
243 |
+
# pack with input blocks
|
244 |
+
for block in self.input_blocks:
|
245 |
+
h = block(h, t_emb)
|
246 |
+
skips.append(h.feats)
|
247 |
+
|
248 |
+
if self.pe_mode == "ape":
|
249 |
+
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
250 |
+
for block in self.blocks:
|
251 |
+
h = block(h, t_emb, cond)
|
252 |
+
|
253 |
+
# unpack with output blocks
|
254 |
+
for block, skip in zip(self.out_blocks, reversed(skips)):
|
255 |
+
if self.use_skip_connection:
|
256 |
+
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb)
|
257 |
+
else:
|
258 |
+
h = block(h, t_emb)
|
259 |
+
|
260 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
261 |
+
h = self.out_layer(h.type(x.dtype))
|
262 |
+
return h
|
thirdparty/TRELLIS/trellis/models/structured_latent_vae/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .encoder import SLatEncoder
|
2 |
+
from .decoder_gs import SLatGaussianDecoder
|
3 |
+
from .decoder_rf import SLatRadianceFieldDecoder
|
4 |
+
from .decoder_mesh import SLatMeshDecoder
|
thirdparty/TRELLIS/trellis/models/structured_latent_vae/base.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ...modules.utils import convert_module_to_f16, convert_module_to_f32
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from ...modules.transformer import AbsolutePositionEmbedder
|
7 |
+
from ...modules.sparse.transformer import SparseTransformerBlock
|
8 |
+
|
9 |
+
|
10 |
+
def block_attn_config(self):
|
11 |
+
"""
|
12 |
+
Return the attention configuration of the model.
|
13 |
+
"""
|
14 |
+
for i in range(self.num_blocks):
|
15 |
+
if self.attn_mode == "shift_window":
|
16 |
+
yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
|
17 |
+
elif self.attn_mode == "shift_sequence":
|
18 |
+
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
|
19 |
+
elif self.attn_mode == "shift_order":
|
20 |
+
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
|
21 |
+
elif self.attn_mode == "full":
|
22 |
+
yield "full", None, None, None, None
|
23 |
+
elif self.attn_mode == "swin":
|
24 |
+
yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None
|
25 |
+
|
26 |
+
|
27 |
+
class SparseTransformerBase(nn.Module):
|
28 |
+
"""
|
29 |
+
Sparse Transformer without output layers.
|
30 |
+
Serve as the base class for encoder and decoder.
|
31 |
+
"""
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_channels: int,
|
35 |
+
model_channels: int,
|
36 |
+
num_blocks: int,
|
37 |
+
num_heads: Optional[int] = None,
|
38 |
+
num_head_channels: Optional[int] = 64,
|
39 |
+
mlp_ratio: float = 4.0,
|
40 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
41 |
+
window_size: Optional[int] = None,
|
42 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
43 |
+
use_fp16: bool = False,
|
44 |
+
use_checkpoint: bool = False,
|
45 |
+
qk_rms_norm: bool = False,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.in_channels = in_channels
|
49 |
+
self.model_channels = model_channels
|
50 |
+
self.num_blocks = num_blocks
|
51 |
+
self.window_size = window_size
|
52 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
53 |
+
self.mlp_ratio = mlp_ratio
|
54 |
+
self.attn_mode = attn_mode
|
55 |
+
self.pe_mode = pe_mode
|
56 |
+
self.use_fp16 = use_fp16
|
57 |
+
self.use_checkpoint = use_checkpoint
|
58 |
+
self.qk_rms_norm = qk_rms_norm
|
59 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
60 |
+
|
61 |
+
if pe_mode == "ape":
|
62 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
63 |
+
|
64 |
+
self.input_layer = sp.SparseLinear(in_channels, model_channels)
|
65 |
+
self.blocks = nn.ModuleList([
|
66 |
+
SparseTransformerBlock(
|
67 |
+
model_channels,
|
68 |
+
num_heads=self.num_heads,
|
69 |
+
mlp_ratio=self.mlp_ratio,
|
70 |
+
attn_mode=attn_mode,
|
71 |
+
window_size=window_size,
|
72 |
+
shift_sequence=shift_sequence,
|
73 |
+
shift_window=shift_window,
|
74 |
+
serialize_mode=serialize_mode,
|
75 |
+
use_checkpoint=self.use_checkpoint,
|
76 |
+
use_rope=(pe_mode == "rope"),
|
77 |
+
qk_rms_norm=self.qk_rms_norm,
|
78 |
+
)
|
79 |
+
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
|
80 |
+
])
|
81 |
+
|
82 |
+
@property
|
83 |
+
def device(self) -> torch.device:
|
84 |
+
"""
|
85 |
+
Return the device of the model.
|
86 |
+
"""
|
87 |
+
return next(self.parameters()).device
|
88 |
+
|
89 |
+
def convert_to_fp16(self) -> None:
|
90 |
+
"""
|
91 |
+
Convert the torso of the model to float16.
|
92 |
+
"""
|
93 |
+
self.blocks.apply(convert_module_to_f16)
|
94 |
+
|
95 |
+
def convert_to_fp32(self) -> None:
|
96 |
+
"""
|
97 |
+
Convert the torso of the model to float32.
|
98 |
+
"""
|
99 |
+
self.blocks.apply(convert_module_to_f32)
|
100 |
+
|
101 |
+
def initialize_weights(self) -> None:
|
102 |
+
# Initialize transformer layers:
|
103 |
+
def _basic_init(module):
|
104 |
+
if isinstance(module, nn.Linear):
|
105 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
106 |
+
if module.bias is not None:
|
107 |
+
nn.init.constant_(module.bias, 0)
|
108 |
+
self.apply(_basic_init)
|
109 |
+
|
110 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
111 |
+
h = self.input_layer(x)
|
112 |
+
if self.pe_mode == "ape":
|
113 |
+
h = h + self.pos_embedder(x.coords[:, 1:])
|
114 |
+
h = h.type(self.dtype)
|
115 |
+
for block in self.blocks:
|
116 |
+
h = block(h)
|
117 |
+
return h
|
thirdparty/TRELLIS/trellis/models/structured_latent_vae/decoder_gs.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from ...utils.random_utils import hammersley_sequence
|
7 |
+
from .base import SparseTransformerBase
|
8 |
+
from ...representations import Gaussian
|
9 |
+
|
10 |
+
|
11 |
+
class SLatGaussianDecoder(SparseTransformerBase):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
resolution: int,
|
15 |
+
model_channels: int,
|
16 |
+
latent_channels: int,
|
17 |
+
num_blocks: int,
|
18 |
+
num_heads: Optional[int] = None,
|
19 |
+
num_head_channels: Optional[int] = 64,
|
20 |
+
mlp_ratio: float = 4,
|
21 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
22 |
+
window_size: int = 8,
|
23 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
24 |
+
use_fp16: bool = False,
|
25 |
+
use_checkpoint: bool = False,
|
26 |
+
qk_rms_norm: bool = False,
|
27 |
+
representation_config: dict = None,
|
28 |
+
):
|
29 |
+
super().__init__(
|
30 |
+
in_channels=latent_channels,
|
31 |
+
model_channels=model_channels,
|
32 |
+
num_blocks=num_blocks,
|
33 |
+
num_heads=num_heads,
|
34 |
+
num_head_channels=num_head_channels,
|
35 |
+
mlp_ratio=mlp_ratio,
|
36 |
+
attn_mode=attn_mode,
|
37 |
+
window_size=window_size,
|
38 |
+
pe_mode=pe_mode,
|
39 |
+
use_fp16=use_fp16,
|
40 |
+
use_checkpoint=use_checkpoint,
|
41 |
+
qk_rms_norm=qk_rms_norm,
|
42 |
+
)
|
43 |
+
self.resolution = resolution
|
44 |
+
self.rep_config = representation_config
|
45 |
+
self._calc_layout()
|
46 |
+
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
|
47 |
+
self._build_perturbation()
|
48 |
+
|
49 |
+
self.initialize_weights()
|
50 |
+
if use_fp16:
|
51 |
+
self.convert_to_fp16()
|
52 |
+
|
53 |
+
def initialize_weights(self) -> None:
|
54 |
+
super().initialize_weights()
|
55 |
+
# Zero-out output layers:
|
56 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
57 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
58 |
+
|
59 |
+
def _build_perturbation(self) -> None:
|
60 |
+
perturbation = [hammersley_sequence(3, i, self.rep_config['num_gaussians']) for i in range(self.rep_config['num_gaussians'])]
|
61 |
+
perturbation = torch.tensor(perturbation).float() * 2 - 1
|
62 |
+
perturbation = perturbation / self.rep_config['voxel_size']
|
63 |
+
perturbation = torch.atanh(perturbation).to(self.device)
|
64 |
+
self.register_buffer('offset_perturbation', perturbation)
|
65 |
+
|
66 |
+
def _calc_layout(self) -> None:
|
67 |
+
self.layout = {
|
68 |
+
'_xyz' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
|
69 |
+
'_features_dc' : {'shape': (self.rep_config['num_gaussians'], 1, 3), 'size': self.rep_config['num_gaussians'] * 3},
|
70 |
+
'_scaling' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
|
71 |
+
'_rotation' : {'shape': (self.rep_config['num_gaussians'], 4), 'size': self.rep_config['num_gaussians'] * 4},
|
72 |
+
'_opacity' : {'shape': (self.rep_config['num_gaussians'], 1), 'size': self.rep_config['num_gaussians']},
|
73 |
+
}
|
74 |
+
start = 0
|
75 |
+
for k, v in self.layout.items():
|
76 |
+
v['range'] = (start, start + v['size'])
|
77 |
+
start += v['size']
|
78 |
+
self.out_channels = start
|
79 |
+
|
80 |
+
def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
|
81 |
+
"""
|
82 |
+
Convert a batch of network outputs to 3D representations.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
x: The [N x * x C] sparse tensor output by the network.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
list of representations
|
89 |
+
"""
|
90 |
+
ret = []
|
91 |
+
for i in range(x.shape[0]):
|
92 |
+
representation = Gaussian(
|
93 |
+
sh_degree=0,
|
94 |
+
aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
|
95 |
+
mininum_kernel_size = self.rep_config['3d_filter_kernel_size'],
|
96 |
+
scaling_bias = self.rep_config['scaling_bias'],
|
97 |
+
opacity_bias = self.rep_config['opacity_bias'],
|
98 |
+
scaling_activation = self.rep_config['scaling_activation']
|
99 |
+
)
|
100 |
+
xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
101 |
+
for k, v in self.layout.items():
|
102 |
+
if k == '_xyz':
|
103 |
+
offset = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape'])
|
104 |
+
offset = offset * self.rep_config['lr'][k]
|
105 |
+
if self.rep_config['perturb_offset']:
|
106 |
+
offset = offset + self.offset_perturbation
|
107 |
+
offset = torch.tanh(offset) / self.resolution * 0.5 * self.rep_config['voxel_size']
|
108 |
+
_xyz = xyz.unsqueeze(1) + offset
|
109 |
+
setattr(representation, k, _xyz.flatten(0, 1))
|
110 |
+
else:
|
111 |
+
feats = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']).flatten(0, 1)
|
112 |
+
feats = feats * self.rep_config['lr'][k]
|
113 |
+
setattr(representation, k, feats)
|
114 |
+
ret.append(representation)
|
115 |
+
return ret
|
116 |
+
|
117 |
+
def forward(self, x: sp.SparseTensor) -> List[Gaussian]:
|
118 |
+
h = super().forward(x)
|
119 |
+
h = h.type(x.dtype)
|
120 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
121 |
+
h = self.out_layer(h)
|
122 |
+
return self.to_representation(h)
|
thirdparty/TRELLIS/trellis/models/structured_latent_vae/decoder_mesh.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ...modules import sparse as sp
|
8 |
+
from .base import SparseTransformerBase
|
9 |
+
from ...representations import MeshExtractResult
|
10 |
+
from ...representations.mesh import SparseFeatures2Mesh
|
11 |
+
|
12 |
+
|
13 |
+
class SparseSubdivideBlock3d(nn.Module):
|
14 |
+
"""
|
15 |
+
A 3D subdivide block that can subdivide the sparse tensor.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
channels: channels in the inputs and outputs.
|
19 |
+
out_channels: if specified, the number of output channels.
|
20 |
+
num_groups: the number of groups for the group norm.
|
21 |
+
"""
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
channels: int,
|
25 |
+
resolution: int,
|
26 |
+
out_channels: Optional[int] = None,
|
27 |
+
num_groups: int = 32
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.channels = channels
|
31 |
+
self.resolution = resolution
|
32 |
+
self.out_resolution = resolution * 2
|
33 |
+
self.out_channels = out_channels or channels
|
34 |
+
|
35 |
+
self.act_layers = nn.Sequential(
|
36 |
+
sp.SparseGroupNorm32(num_groups, channels),
|
37 |
+
sp.SparseSiLU()
|
38 |
+
)
|
39 |
+
|
40 |
+
self.sub = sp.SparseSubdivide()
|
41 |
+
|
42 |
+
self.out_layers = nn.Sequential(
|
43 |
+
sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"),
|
44 |
+
sp.SparseGroupNorm32(num_groups, self.out_channels),
|
45 |
+
sp.SparseSiLU(),
|
46 |
+
zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")),
|
47 |
+
)
|
48 |
+
|
49 |
+
if self.out_channels == channels:
|
50 |
+
self.skip_connection = nn.Identity()
|
51 |
+
else:
|
52 |
+
self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}")
|
53 |
+
|
54 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
55 |
+
"""
|
56 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
x: an [N x C x ...] Tensor of features.
|
60 |
+
Returns:
|
61 |
+
an [N x C x ...] Tensor of outputs.
|
62 |
+
"""
|
63 |
+
h = self.act_layers(x)
|
64 |
+
h = self.sub(h)
|
65 |
+
x = self.sub(x)
|
66 |
+
h = self.out_layers(h)
|
67 |
+
h = h + self.skip_connection(x)
|
68 |
+
return h
|
69 |
+
|
70 |
+
|
71 |
+
class SLatMeshDecoder(SparseTransformerBase):
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
resolution: int,
|
75 |
+
model_channels: int,
|
76 |
+
latent_channels: int,
|
77 |
+
num_blocks: int,
|
78 |
+
num_heads: Optional[int] = None,
|
79 |
+
num_head_channels: Optional[int] = 64,
|
80 |
+
mlp_ratio: float = 4,
|
81 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
82 |
+
window_size: int = 8,
|
83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
84 |
+
use_fp16: bool = False,
|
85 |
+
use_checkpoint: bool = False,
|
86 |
+
qk_rms_norm: bool = False,
|
87 |
+
representation_config: dict = None,
|
88 |
+
):
|
89 |
+
super().__init__(
|
90 |
+
in_channels=latent_channels,
|
91 |
+
model_channels=model_channels,
|
92 |
+
num_blocks=num_blocks,
|
93 |
+
num_heads=num_heads,
|
94 |
+
num_head_channels=num_head_channels,
|
95 |
+
mlp_ratio=mlp_ratio,
|
96 |
+
attn_mode=attn_mode,
|
97 |
+
window_size=window_size,
|
98 |
+
pe_mode=pe_mode,
|
99 |
+
use_fp16=use_fp16,
|
100 |
+
use_checkpoint=use_checkpoint,
|
101 |
+
qk_rms_norm=qk_rms_norm,
|
102 |
+
)
|
103 |
+
self.resolution = resolution
|
104 |
+
self.rep_config = representation_config
|
105 |
+
self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
|
106 |
+
self.out_channels = self.mesh_extractor.feats_channels
|
107 |
+
self.upsample = nn.ModuleList([
|
108 |
+
SparseSubdivideBlock3d(
|
109 |
+
channels=model_channels,
|
110 |
+
resolution=resolution,
|
111 |
+
out_channels=model_channels // 4
|
112 |
+
),
|
113 |
+
SparseSubdivideBlock3d(
|
114 |
+
channels=model_channels // 4,
|
115 |
+
resolution=resolution * 2,
|
116 |
+
out_channels=model_channels // 8
|
117 |
+
)
|
118 |
+
])
|
119 |
+
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)
|
120 |
+
|
121 |
+
self.initialize_weights()
|
122 |
+
if use_fp16:
|
123 |
+
self.convert_to_fp16()
|
124 |
+
|
125 |
+
def initialize_weights(self) -> None:
|
126 |
+
super().initialize_weights()
|
127 |
+
# Zero-out output layers:
|
128 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
129 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
130 |
+
|
131 |
+
def convert_to_fp16(self) -> None:
|
132 |
+
"""
|
133 |
+
Convert the torso of the model to float16.
|
134 |
+
"""
|
135 |
+
super().convert_to_fp16()
|
136 |
+
self.upsample.apply(convert_module_to_f16)
|
137 |
+
|
138 |
+
def convert_to_fp32(self) -> None:
|
139 |
+
"""
|
140 |
+
Convert the torso of the model to float32.
|
141 |
+
"""
|
142 |
+
super().convert_to_fp32()
|
143 |
+
self.upsample.apply(convert_module_to_f32)
|
144 |
+
|
145 |
+
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
146 |
+
"""
|
147 |
+
Convert a batch of network outputs to 3D representations.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
x: The [N x * x C] sparse tensor output by the network.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
list of representations
|
154 |
+
"""
|
155 |
+
ret = []
|
156 |
+
for i in range(x.shape[0]):
|
157 |
+
mesh = self.mesh_extractor(x[i], training=self.training)
|
158 |
+
ret.append(mesh)
|
159 |
+
return ret
|
160 |
+
|
161 |
+
def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
162 |
+
h = super().forward(x)
|
163 |
+
for block in self.upsample:
|
164 |
+
h = block(h)
|
165 |
+
h = h.type(x.dtype)
|
166 |
+
h = self.out_layer(h)
|
167 |
+
return self.to_representation(h)
|
thirdparty/TRELLIS/trellis/models/structured_latent_vae/decoder_rf.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ...modules import sparse as sp
|
7 |
+
from .base import SparseTransformerBase
|
8 |
+
from ...representations import Strivec
|
9 |
+
|
10 |
+
|
11 |
+
class SLatRadianceFieldDecoder(SparseTransformerBase):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
resolution: int,
|
15 |
+
model_channels: int,
|
16 |
+
latent_channels: int,
|
17 |
+
num_blocks: int,
|
18 |
+
num_heads: Optional[int] = None,
|
19 |
+
num_head_channels: Optional[int] = 64,
|
20 |
+
mlp_ratio: float = 4,
|
21 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
22 |
+
window_size: int = 8,
|
23 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
24 |
+
use_fp16: bool = False,
|
25 |
+
use_checkpoint: bool = False,
|
26 |
+
qk_rms_norm: bool = False,
|
27 |
+
representation_config: dict = None,
|
28 |
+
):
|
29 |
+
super().__init__(
|
30 |
+
in_channels=latent_channels,
|
31 |
+
model_channels=model_channels,
|
32 |
+
num_blocks=num_blocks,
|
33 |
+
num_heads=num_heads,
|
34 |
+
num_head_channels=num_head_channels,
|
35 |
+
mlp_ratio=mlp_ratio,
|
36 |
+
attn_mode=attn_mode,
|
37 |
+
window_size=window_size,
|
38 |
+
pe_mode=pe_mode,
|
39 |
+
use_fp16=use_fp16,
|
40 |
+
use_checkpoint=use_checkpoint,
|
41 |
+
qk_rms_norm=qk_rms_norm,
|
42 |
+
)
|
43 |
+
self.resolution = resolution
|
44 |
+
self.rep_config = representation_config
|
45 |
+
self._calc_layout()
|
46 |
+
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
|
47 |
+
|
48 |
+
self.initialize_weights()
|
49 |
+
if use_fp16:
|
50 |
+
self.convert_to_fp16()
|
51 |
+
|
52 |
+
def initialize_weights(self) -> None:
|
53 |
+
super().initialize_weights()
|
54 |
+
# Zero-out output layers:
|
55 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
56 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
57 |
+
|
58 |
+
def _calc_layout(self) -> None:
|
59 |
+
self.layout = {
|
60 |
+
'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']},
|
61 |
+
'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']},
|
62 |
+
'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3},
|
63 |
+
}
|
64 |
+
start = 0
|
65 |
+
for k, v in self.layout.items():
|
66 |
+
v['range'] = (start, start + v['size'])
|
67 |
+
start += v['size']
|
68 |
+
self.out_channels = start
|
69 |
+
|
70 |
+
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
|
71 |
+
"""
|
72 |
+
Convert a batch of network outputs to 3D representations.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
x: The [N x * x C] sparse tensor output by the network.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
list of representations
|
79 |
+
"""
|
80 |
+
ret = []
|
81 |
+
for i in range(x.shape[0]):
|
82 |
+
representation = Strivec(
|
83 |
+
sh_degree=0,
|
84 |
+
resolution=self.resolution,
|
85 |
+
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
|
86 |
+
rank=self.rep_config['rank'],
|
87 |
+
dim=self.rep_config['dim'],
|
88 |
+
device='cuda',
|
89 |
+
)
|
90 |
+
representation.density_shift = 0.0
|
91 |
+
representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
92 |
+
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda')
|
93 |
+
for k, v in self.layout.items():
|
94 |
+
setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']))
|
95 |
+
representation.trivec = representation.trivec + 1
|
96 |
+
ret.append(representation)
|
97 |
+
return ret
|
98 |
+
|
99 |
+
def forward(self, x: sp.SparseTensor) -> List[Strivec]:
|
100 |
+
h = super().forward(x)
|
101 |
+
h = h.type(x.dtype)
|
102 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
103 |
+
h = self.out_layer(h)
|
104 |
+
return self.to_representation(h)
|
thirdparty/TRELLIS/trellis/models/structured_latent_vae/encoder.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from .base import SparseTransformerBase
|
7 |
+
|
8 |
+
|
9 |
+
class SLatEncoder(SparseTransformerBase):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
resolution: int,
|
13 |
+
in_channels: int,
|
14 |
+
model_channels: int,
|
15 |
+
latent_channels: int,
|
16 |
+
num_blocks: int,
|
17 |
+
num_heads: Optional[int] = None,
|
18 |
+
num_head_channels: Optional[int] = 64,
|
19 |
+
mlp_ratio: float = 4,
|
20 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
21 |
+
window_size: int = 8,
|
22 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
23 |
+
use_fp16: bool = False,
|
24 |
+
use_checkpoint: bool = False,
|
25 |
+
qk_rms_norm: bool = False,
|
26 |
+
):
|
27 |
+
super().__init__(
|
28 |
+
in_channels=in_channels,
|
29 |
+
model_channels=model_channels,
|
30 |
+
num_blocks=num_blocks,
|
31 |
+
num_heads=num_heads,
|
32 |
+
num_head_channels=num_head_channels,
|
33 |
+
mlp_ratio=mlp_ratio,
|
34 |
+
attn_mode=attn_mode,
|
35 |
+
window_size=window_size,
|
36 |
+
pe_mode=pe_mode,
|
37 |
+
use_fp16=use_fp16,
|
38 |
+
use_checkpoint=use_checkpoint,
|
39 |
+
qk_rms_norm=qk_rms_norm,
|
40 |
+
)
|
41 |
+
self.resolution = resolution
|
42 |
+
self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)
|
43 |
+
|
44 |
+
self.initialize_weights()
|
45 |
+
if use_fp16:
|
46 |
+
self.convert_to_fp16()
|
47 |
+
|
48 |
+
def initialize_weights(self) -> None:
|
49 |
+
super().initialize_weights()
|
50 |
+
# Zero-out output layers:
|
51 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
52 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
53 |
+
|
54 |
+
def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False):
|
55 |
+
h = super().forward(x)
|
56 |
+
h = h.type(x.dtype)
|
57 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
58 |
+
h = self.out_layer(h)
|
59 |
+
|
60 |
+
# Sample from the posterior distribution
|
61 |
+
mean, logvar = h.feats.chunk(2, dim=-1)
|
62 |
+
if sample_posterior:
|
63 |
+
std = torch.exp(0.5 * logvar)
|
64 |
+
z = mean + std * torch.randn_like(std)
|
65 |
+
else:
|
66 |
+
z = mean
|
67 |
+
z = h.replace(z)
|
68 |
+
|
69 |
+
if return_raw:
|
70 |
+
return z, mean, logvar
|
71 |
+
else:
|
72 |
+
return z
|
thirdparty/TRELLIS/trellis/modules/attention/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
BACKEND = 'flash_attn'
|
4 |
+
DEBUG = False
|
5 |
+
|
6 |
+
def __from_env():
|
7 |
+
import os
|
8 |
+
|
9 |
+
global BACKEND
|
10 |
+
global DEBUG
|
11 |
+
|
12 |
+
env_attn_backend = os.environ.get('ATTN_BACKEND')
|
13 |
+
env_sttn_debug = os.environ.get('ATTN_DEBUG')
|
14 |
+
|
15 |
+
if env_attn_backend is not None and env_attn_backend in ['xformers', 'flash_attn', 'sdpa', 'naive']:
|
16 |
+
BACKEND = env_attn_backend
|
17 |
+
if env_sttn_debug is not None:
|
18 |
+
DEBUG = env_sttn_debug == '1'
|
19 |
+
|
20 |
+
print(f"[ATTENTION] Using backend: {BACKEND}")
|
21 |
+
|
22 |
+
|
23 |
+
__from_env()
|
24 |
+
|
25 |
+
|
26 |
+
def set_backend(backend: Literal['xformers', 'flash_attn']):
|
27 |
+
global BACKEND
|
28 |
+
BACKEND = backend
|
29 |
+
|
30 |
+
def set_debug(debug: bool):
|
31 |
+
global DEBUG
|
32 |
+
DEBUG = debug
|
33 |
+
|
34 |
+
|
35 |
+
from .full_attn import *
|
36 |
+
from .modules import *
|
thirdparty/TRELLIS/trellis/modules/attention/full_attn.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from . import DEBUG, BACKEND
|
5 |
+
|
6 |
+
if BACKEND == 'xformers':
|
7 |
+
import xformers.ops as xops
|
8 |
+
elif BACKEND == 'flash_attn':
|
9 |
+
import flash_attn
|
10 |
+
elif BACKEND == 'sdpa':
|
11 |
+
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
12 |
+
elif BACKEND == 'naive':
|
13 |
+
pass
|
14 |
+
else:
|
15 |
+
raise ValueError(f"Unknown attention backend: {BACKEND}")
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'scaled_dot_product_attention',
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
def _naive_sdpa(q, k, v):
|
24 |
+
"""
|
25 |
+
Naive implementation of scaled dot product attention.
|
26 |
+
"""
|
27 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
28 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
29 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
30 |
+
scale_factor = 1 / math.sqrt(q.size(-1))
|
31 |
+
attn_weight = q @ k.transpose(-2, -1) * scale_factor
|
32 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
33 |
+
out = attn_weight @ v
|
34 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
@overload
|
39 |
+
def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
|
40 |
+
"""
|
41 |
+
Apply scaled dot product attention.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.
|
45 |
+
"""
|
46 |
+
...
|
47 |
+
|
48 |
+
@overload
|
49 |
+
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
|
50 |
+
"""
|
51 |
+
Apply scaled dot product attention.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
q (torch.Tensor): A [N, L, H, C] tensor containing Qs.
|
55 |
+
kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.
|
56 |
+
"""
|
57 |
+
...
|
58 |
+
|
59 |
+
@overload
|
60 |
+
def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
61 |
+
"""
|
62 |
+
Apply scaled dot product attention.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.
|
66 |
+
k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.
|
67 |
+
v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.
|
68 |
+
|
69 |
+
Note:
|
70 |
+
k and v are assumed to have the same coordinate map.
|
71 |
+
"""
|
72 |
+
...
|
73 |
+
|
74 |
+
def scaled_dot_product_attention(*args, **kwargs):
|
75 |
+
arg_names_dict = {
|
76 |
+
1: ['qkv'],
|
77 |
+
2: ['q', 'kv'],
|
78 |
+
3: ['q', 'k', 'v']
|
79 |
+
}
|
80 |
+
num_all_args = len(args) + len(kwargs)
|
81 |
+
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
82 |
+
for key in arg_names_dict[num_all_args][len(args):]:
|
83 |
+
assert key in kwargs, f"Missing argument {key}"
|
84 |
+
|
85 |
+
if num_all_args == 1:
|
86 |
+
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
87 |
+
assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
|
88 |
+
device = qkv.device
|
89 |
+
|
90 |
+
elif num_all_args == 2:
|
91 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
92 |
+
kv = args[1] if len(args) > 1 else kwargs['kv']
|
93 |
+
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
94 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
95 |
+
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
96 |
+
device = q.device
|
97 |
+
|
98 |
+
elif num_all_args == 3:
|
99 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
100 |
+
k = args[1] if len(args) > 1 else kwargs['k']
|
101 |
+
v = args[2] if len(args) > 2 else kwargs['v']
|
102 |
+
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
103 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
104 |
+
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
105 |
+
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
106 |
+
device = q.device
|
107 |
+
|
108 |
+
if BACKEND == 'xformers':
|
109 |
+
if num_all_args == 1:
|
110 |
+
q, k, v = qkv.unbind(dim=2)
|
111 |
+
elif num_all_args == 2:
|
112 |
+
k, v = kv.unbind(dim=2)
|
113 |
+
out = xops.memory_efficient_attention(q, k, v)
|
114 |
+
elif BACKEND == 'flash_attn':
|
115 |
+
if num_all_args == 1:
|
116 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv)
|
117 |
+
elif num_all_args == 2:
|
118 |
+
out = flash_attn.flash_attn_kvpacked_func(q, kv)
|
119 |
+
elif num_all_args == 3:
|
120 |
+
out = flash_attn.flash_attn_func(q, k, v)
|
121 |
+
elif BACKEND == 'sdpa':
|
122 |
+
if num_all_args == 1:
|
123 |
+
q, k, v = qkv.unbind(dim=2)
|
124 |
+
elif num_all_args == 2:
|
125 |
+
k, v = kv.unbind(dim=2)
|
126 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
127 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
128 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
129 |
+
out = sdpa(q, k, v) # [N, H, L, C]
|
130 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
131 |
+
elif BACKEND == 'naive':
|
132 |
+
if num_all_args == 1:
|
133 |
+
q, k, v = qkv.unbind(dim=2)
|
134 |
+
elif num_all_args == 2:
|
135 |
+
k, v = kv.unbind(dim=2)
|
136 |
+
out = _naive_sdpa(q, k, v)
|
137 |
+
else:
|
138 |
+
raise ValueError(f"Unknown attention module: {BACKEND}")
|
139 |
+
|
140 |
+
return out
|
thirdparty/TRELLIS/trellis/modules/attention/modules.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from .full_attn import scaled_dot_product_attention
|
6 |
+
|
7 |
+
|
8 |
+
class MultiHeadRMSNorm(nn.Module):
|
9 |
+
def __init__(self, dim: int, heads: int):
|
10 |
+
super().__init__()
|
11 |
+
self.scale = dim ** 0.5
|
12 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
13 |
+
|
14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
15 |
+
return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype)
|
16 |
+
|
17 |
+
|
18 |
+
class RotaryPositionEmbedder(nn.Module):
|
19 |
+
def __init__(self, hidden_size: int, in_channels: int = 3):
|
20 |
+
super().__init__()
|
21 |
+
assert hidden_size % 2 == 0, "Hidden size must be divisible by 2"
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.in_channels = in_channels
|
24 |
+
self.freq_dim = hidden_size // in_channels // 2
|
25 |
+
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
26 |
+
self.freqs = 1.0 / (10000 ** self.freqs)
|
27 |
+
|
28 |
+
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
|
29 |
+
self.freqs = self.freqs.to(indices.device)
|
30 |
+
phases = torch.outer(indices, self.freqs)
|
31 |
+
phases = torch.polar(torch.ones_like(phases), phases)
|
32 |
+
return phases
|
33 |
+
|
34 |
+
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
|
35 |
+
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
36 |
+
x_rotated = x_complex * phases
|
37 |
+
x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
|
38 |
+
return x_embed
|
39 |
+
|
40 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
"""
|
42 |
+
Args:
|
43 |
+
q (sp.SparseTensor): [..., N, D] tensor of queries
|
44 |
+
k (sp.SparseTensor): [..., N, D] tensor of keys
|
45 |
+
indices (torch.Tensor): [..., N, C] tensor of spatial positions
|
46 |
+
"""
|
47 |
+
if indices is None:
|
48 |
+
indices = torch.arange(q.shape[-2], device=q.device)
|
49 |
+
if len(q.shape) > 2:
|
50 |
+
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
|
51 |
+
|
52 |
+
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
|
53 |
+
if phases.shape[1] < self.hidden_size // 2:
|
54 |
+
phases = torch.cat([phases, torch.polar(
|
55 |
+
torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device),
|
56 |
+
torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device)
|
57 |
+
)], dim=-1)
|
58 |
+
q_embed = self._rotary_embedding(q, phases)
|
59 |
+
k_embed = self._rotary_embedding(k, phases)
|
60 |
+
return q_embed, k_embed
|
61 |
+
|
62 |
+
|
63 |
+
class MultiHeadAttention(nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
channels: int,
|
67 |
+
num_heads: int,
|
68 |
+
ctx_channels: Optional[int]=None,
|
69 |
+
type: Literal["self", "cross"] = "self",
|
70 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
71 |
+
window_size: Optional[int] = None,
|
72 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
73 |
+
qkv_bias: bool = True,
|
74 |
+
use_rope: bool = False,
|
75 |
+
qk_rms_norm: bool = False,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
assert channels % num_heads == 0
|
79 |
+
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
80 |
+
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
|
81 |
+
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
|
82 |
+
|
83 |
+
if attn_mode == "windowed":
|
84 |
+
raise NotImplementedError("Windowed attention is not yet implemented")
|
85 |
+
|
86 |
+
self.channels = channels
|
87 |
+
self.head_dim = channels // num_heads
|
88 |
+
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
89 |
+
self.num_heads = num_heads
|
90 |
+
self._type = type
|
91 |
+
self.attn_mode = attn_mode
|
92 |
+
self.window_size = window_size
|
93 |
+
self.shift_window = shift_window
|
94 |
+
self.use_rope = use_rope
|
95 |
+
self.qk_rms_norm = qk_rms_norm
|
96 |
+
|
97 |
+
if self._type == "self":
|
98 |
+
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
|
99 |
+
else:
|
100 |
+
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
101 |
+
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
102 |
+
|
103 |
+
if self.qk_rms_norm:
|
104 |
+
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
105 |
+
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
106 |
+
|
107 |
+
self.to_out = nn.Linear(channels, channels)
|
108 |
+
|
109 |
+
if use_rope:
|
110 |
+
self.rope = RotaryPositionEmbedder(channels)
|
111 |
+
|
112 |
+
def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor:
|
113 |
+
B, L, C = x.shape
|
114 |
+
if self._type == "self":
|
115 |
+
qkv = self.to_qkv(x)
|
116 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1)
|
117 |
+
if self.use_rope:
|
118 |
+
q, k, v = qkv.unbind(dim=2)
|
119 |
+
q, k = self.rope(q, k, indices)
|
120 |
+
qkv = torch.stack([q, k, v], dim=2)
|
121 |
+
if self.attn_mode == "full":
|
122 |
+
if self.qk_rms_norm:
|
123 |
+
q, k, v = qkv.unbind(dim=2)
|
124 |
+
q = self.q_rms_norm(q)
|
125 |
+
k = self.k_rms_norm(k)
|
126 |
+
h = scaled_dot_product_attention(q, k, v)
|
127 |
+
else:
|
128 |
+
h = scaled_dot_product_attention(qkv)
|
129 |
+
elif self.attn_mode == "windowed":
|
130 |
+
raise NotImplementedError("Windowed attention is not yet implemented")
|
131 |
+
else:
|
132 |
+
Lkv = context.shape[1]
|
133 |
+
q = self.to_q(x)
|
134 |
+
kv = self.to_kv(context)
|
135 |
+
q = q.reshape(B, L, self.num_heads, -1)
|
136 |
+
kv = kv.reshape(B, Lkv, 2, self.num_heads, -1)
|
137 |
+
if self.qk_rms_norm:
|
138 |
+
q = self.q_rms_norm(q)
|
139 |
+
k, v = kv.unbind(dim=2)
|
140 |
+
k = self.k_rms_norm(k)
|
141 |
+
h = scaled_dot_product_attention(q, k, v)
|
142 |
+
else:
|
143 |
+
h = scaled_dot_product_attention(q, kv)
|
144 |
+
h = h.reshape(B, L, -1)
|
145 |
+
h = self.to_out(h)
|
146 |
+
return h
|
thirdparty/TRELLIS/trellis/modules/norm.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class LayerNorm32(nn.LayerNorm):
|
6 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
7 |
+
return super().forward(x.float()).type(x.dtype)
|
8 |
+
|
9 |
+
|
10 |
+
class GroupNorm32(nn.GroupNorm):
|
11 |
+
"""
|
12 |
+
A GroupNorm layer that converts to float32 before the forward pass.
|
13 |
+
"""
|
14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
15 |
+
return super().forward(x.float()).type(x.dtype)
|
16 |
+
|
17 |
+
|
18 |
+
class ChannelLayerNorm32(LayerNorm32):
|
19 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
20 |
+
DIM = x.dim()
|
21 |
+
x = x.permute(0, *range(2, DIM), 1).contiguous()
|
22 |
+
x = super().forward(x)
|
23 |
+
x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous()
|
24 |
+
return x
|
25 |
+
|
thirdparty/TRELLIS/trellis/modules/sparse/__init__.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
BACKEND = 'spconv'
|
4 |
+
DEBUG = False
|
5 |
+
ATTN = 'flash_attn'
|
6 |
+
|
7 |
+
def __from_env():
|
8 |
+
import os
|
9 |
+
|
10 |
+
global BACKEND
|
11 |
+
global DEBUG
|
12 |
+
global ATTN
|
13 |
+
|
14 |
+
env_sparse_backend = os.environ.get('SPARSE_BACKEND')
|
15 |
+
env_sparse_debug = os.environ.get('SPARSE_DEBUG')
|
16 |
+
env_sparse_attn = os.environ.get('SPARSE_ATTN_BACKEND')
|
17 |
+
if env_sparse_attn is None:
|
18 |
+
env_sparse_attn = os.environ.get('ATTN_BACKEND')
|
19 |
+
|
20 |
+
if env_sparse_backend is not None and env_sparse_backend in ['spconv', 'torchsparse']:
|
21 |
+
BACKEND = env_sparse_backend
|
22 |
+
if env_sparse_debug is not None:
|
23 |
+
DEBUG = env_sparse_debug == '1'
|
24 |
+
if env_sparse_attn is not None and env_sparse_attn in ['xformers', 'flash_attn']:
|
25 |
+
ATTN = env_sparse_attn
|
26 |
+
|
27 |
+
print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
|
28 |
+
|
29 |
+
|
30 |
+
__from_env()
|
31 |
+
|
32 |
+
|
33 |
+
def set_backend(backend: Literal['spconv', 'torchsparse']):
|
34 |
+
global BACKEND
|
35 |
+
BACKEND = backend
|
36 |
+
|
37 |
+
def set_debug(debug: bool):
|
38 |
+
global DEBUG
|
39 |
+
DEBUG = debug
|
40 |
+
|
41 |
+
def set_attn(attn: Literal['xformers', 'flash_attn']):
|
42 |
+
global ATTN
|
43 |
+
ATTN = attn
|
44 |
+
|
45 |
+
|
46 |
+
import importlib
|
47 |
+
|
48 |
+
__attributes = {
|
49 |
+
'SparseTensor': 'basic',
|
50 |
+
'sparse_batch_broadcast': 'basic',
|
51 |
+
'sparse_batch_op': 'basic',
|
52 |
+
'sparse_cat': 'basic',
|
53 |
+
'sparse_unbind': 'basic',
|
54 |
+
'SparseGroupNorm': 'norm',
|
55 |
+
'SparseLayerNorm': 'norm',
|
56 |
+
'SparseGroupNorm32': 'norm',
|
57 |
+
'SparseLayerNorm32': 'norm',
|
58 |
+
'SparseReLU': 'nonlinearity',
|
59 |
+
'SparseSiLU': 'nonlinearity',
|
60 |
+
'SparseGELU': 'nonlinearity',
|
61 |
+
'SparseActivation': 'nonlinearity',
|
62 |
+
'SparseLinear': 'linear',
|
63 |
+
'sparse_scaled_dot_product_attention': 'attention',
|
64 |
+
'SerializeMode': 'attention',
|
65 |
+
'sparse_serialized_scaled_dot_product_self_attention': 'attention',
|
66 |
+
'sparse_windowed_scaled_dot_product_self_attention': 'attention',
|
67 |
+
'SparseMultiHeadAttention': 'attention',
|
68 |
+
'SparseConv3d': 'conv',
|
69 |
+
'SparseInverseConv3d': 'conv',
|
70 |
+
'SparseDownsample': 'spatial',
|
71 |
+
'SparseUpsample': 'spatial',
|
72 |
+
'SparseSubdivide' : 'spatial'
|
73 |
+
}
|
74 |
+
|
75 |
+
__submodules = ['transformer']
|
76 |
+
|
77 |
+
__all__ = list(__attributes.keys()) + __submodules
|
78 |
+
|
79 |
+
def __getattr__(name):
|
80 |
+
if name not in globals():
|
81 |
+
if name in __attributes:
|
82 |
+
module_name = __attributes[name]
|
83 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
84 |
+
globals()[name] = getattr(module, name)
|
85 |
+
elif name in __submodules:
|
86 |
+
module = importlib.import_module(f".{name}", __name__)
|
87 |
+
globals()[name] = module
|
88 |
+
else:
|
89 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
90 |
+
return globals()[name]
|
91 |
+
|
92 |
+
|
93 |
+
# For Pylance
|
94 |
+
if __name__ == '__main__':
|
95 |
+
from .basic import *
|
96 |
+
from .norm import *
|
97 |
+
from .nonlinearity import *
|
98 |
+
from .linear import *
|
99 |
+
from .attention import *
|
100 |
+
from .conv import *
|
101 |
+
from .spatial import *
|
102 |
+
import transformer
|
thirdparty/TRELLIS/trellis/modules/sparse/attention/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .full_attn import *
|
2 |
+
from .serialized_attn import *
|
3 |
+
from .windowed_attn import *
|
4 |
+
from .modules import *
|
thirdparty/TRELLIS/trellis/modules/sparse/attention/full_attn.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
from .. import SparseTensor
|
4 |
+
from .. import DEBUG, ATTN
|
5 |
+
|
6 |
+
if ATTN == 'xformers':
|
7 |
+
import xformers.ops as xops
|
8 |
+
elif ATTN == 'flash_attn':
|
9 |
+
import flash_attn
|
10 |
+
else:
|
11 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
'sparse_scaled_dot_product_attention',
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
@overload
|
20 |
+
def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
|
21 |
+
"""
|
22 |
+
Apply scaled dot product attention to a sparse tensor.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
26 |
+
"""
|
27 |
+
...
|
28 |
+
|
29 |
+
@overload
|
30 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
|
31 |
+
"""
|
32 |
+
Apply scaled dot product attention to a sparse tensor.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
|
36 |
+
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
|
37 |
+
"""
|
38 |
+
...
|
39 |
+
|
40 |
+
@overload
|
41 |
+
def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
|
42 |
+
"""
|
43 |
+
Apply scaled dot product attention to a sparse tensor.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
|
47 |
+
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
|
48 |
+
"""
|
49 |
+
...
|
50 |
+
|
51 |
+
@overload
|
52 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
|
53 |
+
"""
|
54 |
+
Apply scaled dot product attention to a sparse tensor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
58 |
+
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
59 |
+
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
60 |
+
|
61 |
+
Note:
|
62 |
+
k and v are assumed to have the same coordinate map.
|
63 |
+
"""
|
64 |
+
...
|
65 |
+
|
66 |
+
@overload
|
67 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
|
68 |
+
"""
|
69 |
+
Apply scaled dot product attention to a sparse tensor.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
73 |
+
k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
|
74 |
+
v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
|
75 |
+
"""
|
76 |
+
...
|
77 |
+
|
78 |
+
@overload
|
79 |
+
def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
|
80 |
+
"""
|
81 |
+
Apply scaled dot product attention to a sparse tensor.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
|
85 |
+
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
86 |
+
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
87 |
+
"""
|
88 |
+
...
|
89 |
+
|
90 |
+
def sparse_scaled_dot_product_attention(*args, **kwargs):
|
91 |
+
arg_names_dict = {
|
92 |
+
1: ['qkv'],
|
93 |
+
2: ['q', 'kv'],
|
94 |
+
3: ['q', 'k', 'v']
|
95 |
+
}
|
96 |
+
num_all_args = len(args) + len(kwargs)
|
97 |
+
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
98 |
+
for key in arg_names_dict[num_all_args][len(args):]:
|
99 |
+
assert key in kwargs, f"Missing argument {key}"
|
100 |
+
|
101 |
+
if num_all_args == 1:
|
102 |
+
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
103 |
+
assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
|
104 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
105 |
+
device = qkv.device
|
106 |
+
|
107 |
+
s = qkv
|
108 |
+
q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
|
109 |
+
kv_seqlen = q_seqlen
|
110 |
+
qkv = qkv.feats # [T, 3, H, C]
|
111 |
+
|
112 |
+
elif num_all_args == 2:
|
113 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
114 |
+
kv = args[1] if len(args) > 1 else kwargs['kv']
|
115 |
+
assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
|
116 |
+
isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
|
117 |
+
f"Invalid types, got {type(q)} and {type(kv)}"
|
118 |
+
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
119 |
+
device = q.device
|
120 |
+
|
121 |
+
if isinstance(q, SparseTensor):
|
122 |
+
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
|
123 |
+
s = q
|
124 |
+
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
125 |
+
q = q.feats # [T_Q, H, C]
|
126 |
+
else:
|
127 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
128 |
+
s = None
|
129 |
+
N, L, H, C = q.shape
|
130 |
+
q_seqlen = [L] * N
|
131 |
+
q = q.reshape(N * L, H, C) # [T_Q, H, C]
|
132 |
+
|
133 |
+
if isinstance(kv, SparseTensor):
|
134 |
+
assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
|
135 |
+
kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
|
136 |
+
kv = kv.feats # [T_KV, 2, H, C]
|
137 |
+
else:
|
138 |
+
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
139 |
+
N, L, _, H, C = kv.shape
|
140 |
+
kv_seqlen = [L] * N
|
141 |
+
kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
|
142 |
+
|
143 |
+
elif num_all_args == 3:
|
144 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
145 |
+
k = args[1] if len(args) > 1 else kwargs['k']
|
146 |
+
v = args[2] if len(args) > 2 else kwargs['v']
|
147 |
+
assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
|
148 |
+
isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
|
149 |
+
f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
|
150 |
+
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
151 |
+
device = q.device
|
152 |
+
|
153 |
+
if isinstance(q, SparseTensor):
|
154 |
+
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
|
155 |
+
s = q
|
156 |
+
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
157 |
+
q = q.feats # [T_Q, H, Ci]
|
158 |
+
else:
|
159 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
160 |
+
s = None
|
161 |
+
N, L, H, CI = q.shape
|
162 |
+
q_seqlen = [L] * N
|
163 |
+
q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
|
164 |
+
|
165 |
+
if isinstance(k, SparseTensor):
|
166 |
+
assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
|
167 |
+
assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
|
168 |
+
kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
|
169 |
+
k = k.feats # [T_KV, H, Ci]
|
170 |
+
v = v.feats # [T_KV, H, Co]
|
171 |
+
else:
|
172 |
+
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
173 |
+
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
174 |
+
N, L, H, CI, CO = *k.shape, v.shape[-1]
|
175 |
+
kv_seqlen = [L] * N
|
176 |
+
k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
|
177 |
+
v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
|
178 |
+
|
179 |
+
if DEBUG:
|
180 |
+
if s is not None:
|
181 |
+
for i in range(s.shape[0]):
|
182 |
+
assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
|
183 |
+
if num_all_args in [2, 3]:
|
184 |
+
assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
|
185 |
+
if num_all_args == 3:
|
186 |
+
assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
|
187 |
+
assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
|
188 |
+
|
189 |
+
if ATTN == 'xformers':
|
190 |
+
if num_all_args == 1:
|
191 |
+
q, k, v = qkv.unbind(dim=1)
|
192 |
+
elif num_all_args == 2:
|
193 |
+
k, v = kv.unbind(dim=1)
|
194 |
+
q = q.unsqueeze(0)
|
195 |
+
k = k.unsqueeze(0)
|
196 |
+
v = v.unsqueeze(0)
|
197 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
|
198 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
199 |
+
elif ATTN == 'flash_attn':
|
200 |
+
cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
|
201 |
+
if num_all_args in [2, 3]:
|
202 |
+
cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
|
203 |
+
if num_all_args == 1:
|
204 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
|
205 |
+
elif num_all_args == 2:
|
206 |
+
out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
207 |
+
elif num_all_args == 3:
|
208 |
+
out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
209 |
+
else:
|
210 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
211 |
+
|
212 |
+
if s is not None:
|
213 |
+
return s.replace(out)
|
214 |
+
else:
|
215 |
+
return out.reshape(N, L, H, -1)
|
thirdparty/TRELLIS/trellis/modules/sparse/attention/modules.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from .. import SparseTensor
|
6 |
+
from .full_attn import sparse_scaled_dot_product_attention
|
7 |
+
from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention
|
8 |
+
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
|
9 |
+
from ...attention import RotaryPositionEmbedder
|
10 |
+
|
11 |
+
|
12 |
+
class SparseMultiHeadRMSNorm(nn.Module):
|
13 |
+
def __init__(self, dim: int, heads: int):
|
14 |
+
super().__init__()
|
15 |
+
self.scale = dim ** 0.5
|
16 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
17 |
+
|
18 |
+
def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
|
19 |
+
x_type = x.dtype
|
20 |
+
x = x.float()
|
21 |
+
if isinstance(x, SparseTensor):
|
22 |
+
x = x.replace(F.normalize(x.feats, dim=-1))
|
23 |
+
else:
|
24 |
+
x = F.normalize(x, dim=-1)
|
25 |
+
return (x * self.gamma * self.scale).to(x_type)
|
26 |
+
|
27 |
+
|
28 |
+
class SparseMultiHeadAttention(nn.Module):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
channels: int,
|
32 |
+
num_heads: int,
|
33 |
+
ctx_channels: Optional[int] = None,
|
34 |
+
type: Literal["self", "cross"] = "self",
|
35 |
+
attn_mode: Literal["full", "serialized", "windowed"] = "full",
|
36 |
+
window_size: Optional[int] = None,
|
37 |
+
shift_sequence: Optional[int] = None,
|
38 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
39 |
+
serialize_mode: Optional[SerializeMode] = None,
|
40 |
+
qkv_bias: bool = True,
|
41 |
+
use_rope: bool = False,
|
42 |
+
qk_rms_norm: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
assert channels % num_heads == 0
|
46 |
+
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
47 |
+
assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}"
|
48 |
+
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
|
49 |
+
assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention"
|
50 |
+
self.channels = channels
|
51 |
+
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self._type = type
|
54 |
+
self.attn_mode = attn_mode
|
55 |
+
self.window_size = window_size
|
56 |
+
self.shift_sequence = shift_sequence
|
57 |
+
self.shift_window = shift_window
|
58 |
+
self.serialize_mode = serialize_mode
|
59 |
+
self.use_rope = use_rope
|
60 |
+
self.qk_rms_norm = qk_rms_norm
|
61 |
+
|
62 |
+
if self._type == "self":
|
63 |
+
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
|
64 |
+
else:
|
65 |
+
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
66 |
+
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
67 |
+
|
68 |
+
if self.qk_rms_norm:
|
69 |
+
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
70 |
+
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
71 |
+
|
72 |
+
self.to_out = nn.Linear(channels, channels)
|
73 |
+
|
74 |
+
if use_rope:
|
75 |
+
self.rope = RotaryPositionEmbedder(channels)
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
|
79 |
+
if isinstance(x, SparseTensor):
|
80 |
+
return x.replace(module(x.feats))
|
81 |
+
else:
|
82 |
+
return module(x)
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]:
|
86 |
+
if isinstance(x, SparseTensor):
|
87 |
+
return x.reshape(*shape)
|
88 |
+
else:
|
89 |
+
return x.reshape(*x.shape[:2], *shape)
|
90 |
+
|
91 |
+
def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]:
|
92 |
+
if isinstance(x, SparseTensor):
|
93 |
+
x_feats = x.feats.unsqueeze(0)
|
94 |
+
else:
|
95 |
+
x_feats = x
|
96 |
+
x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1)
|
97 |
+
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
|
98 |
+
|
99 |
+
def _rope(self, qkv: SparseTensor) -> SparseTensor:
|
100 |
+
q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
|
101 |
+
q, k = self.rope(q, k, qkv.coords[:, 1:])
|
102 |
+
qkv = qkv.replace(torch.stack([q, k, v], dim=1))
|
103 |
+
return qkv
|
104 |
+
|
105 |
+
def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]:
|
106 |
+
if self._type == "self":
|
107 |
+
qkv = self._linear(self.to_qkv, x)
|
108 |
+
qkv = self._fused_pre(qkv, num_fused=3)
|
109 |
+
if self.use_rope:
|
110 |
+
qkv = self._rope(qkv)
|
111 |
+
if self.qk_rms_norm:
|
112 |
+
q, k, v = qkv.unbind(dim=1)
|
113 |
+
q = self.q_rms_norm(q)
|
114 |
+
k = self.k_rms_norm(k)
|
115 |
+
qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1))
|
116 |
+
if self.attn_mode == "full":
|
117 |
+
h = sparse_scaled_dot_product_attention(qkv)
|
118 |
+
elif self.attn_mode == "serialized":
|
119 |
+
h = sparse_serialized_scaled_dot_product_self_attention(
|
120 |
+
qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window
|
121 |
+
)
|
122 |
+
elif self.attn_mode == "windowed":
|
123 |
+
h = sparse_windowed_scaled_dot_product_self_attention(
|
124 |
+
qkv, self.window_size, shift_window=self.shift_window
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
q = self._linear(self.to_q, x)
|
128 |
+
q = self._reshape_chs(q, (self.num_heads, -1))
|
129 |
+
kv = self._linear(self.to_kv, context)
|
130 |
+
kv = self._fused_pre(kv, num_fused=2)
|
131 |
+
if self.qk_rms_norm:
|
132 |
+
q = self.q_rms_norm(q)
|
133 |
+
k, v = kv.unbind(dim=1)
|
134 |
+
k = self.k_rms_norm(k)
|
135 |
+
kv = kv.replace(torch.stack([k.feats, v.feats], dim=1))
|
136 |
+
h = sparse_scaled_dot_product_attention(q, kv)
|
137 |
+
h = self._reshape_chs(h, (-1,))
|
138 |
+
h = self._linear(self.to_out, h)
|
139 |
+
return h
|
thirdparty/TRELLIS/trellis/modules/sparse/attention/serialized_attn.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
from enum import Enum
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
from .. import SparseTensor
|
6 |
+
from .. import DEBUG, ATTN
|
7 |
+
|
8 |
+
if ATTN == 'xformers':
|
9 |
+
import xformers.ops as xops
|
10 |
+
elif ATTN == 'flash_attn':
|
11 |
+
import flash_attn
|
12 |
+
else:
|
13 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
14 |
+
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
'sparse_serialized_scaled_dot_product_self_attention',
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
class SerializeMode(Enum):
|
22 |
+
Z_ORDER = 0
|
23 |
+
Z_ORDER_TRANSPOSED = 1
|
24 |
+
HILBERT = 2
|
25 |
+
HILBERT_TRANSPOSED = 3
|
26 |
+
|
27 |
+
|
28 |
+
SerializeModes = [
|
29 |
+
SerializeMode.Z_ORDER,
|
30 |
+
SerializeMode.Z_ORDER_TRANSPOSED,
|
31 |
+
SerializeMode.HILBERT,
|
32 |
+
SerializeMode.HILBERT_TRANSPOSED
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
def calc_serialization(
|
37 |
+
tensor: SparseTensor,
|
38 |
+
window_size: int,
|
39 |
+
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
40 |
+
shift_sequence: int = 0,
|
41 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
42 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
43 |
+
"""
|
44 |
+
Calculate serialization and partitioning for a set of coordinates.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
tensor (SparseTensor): The input tensor.
|
48 |
+
window_size (int): The window size to use.
|
49 |
+
serialize_mode (SerializeMode): The serialization mode to use.
|
50 |
+
shift_sequence (int): The shift of serialized sequence.
|
51 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
(torch.Tensor, torch.Tensor): Forwards and backwards indices.
|
55 |
+
"""
|
56 |
+
fwd_indices = []
|
57 |
+
bwd_indices = []
|
58 |
+
seq_lens = []
|
59 |
+
seq_batch_indices = []
|
60 |
+
offsets = [0]
|
61 |
+
|
62 |
+
if 'vox2seq' not in globals():
|
63 |
+
import vox2seq
|
64 |
+
|
65 |
+
# Serialize the input
|
66 |
+
serialize_coords = tensor.coords[:, 1:].clone()
|
67 |
+
serialize_coords += torch.tensor(shift_window, dtype=torch.int32, device=tensor.device).reshape(1, 3)
|
68 |
+
if serialize_mode == SerializeMode.Z_ORDER:
|
69 |
+
code = vox2seq.encode(serialize_coords, mode='z_order', permute=[0, 1, 2])
|
70 |
+
elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
|
71 |
+
code = vox2seq.encode(serialize_coords, mode='z_order', permute=[1, 0, 2])
|
72 |
+
elif serialize_mode == SerializeMode.HILBERT:
|
73 |
+
code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[0, 1, 2])
|
74 |
+
elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
|
75 |
+
code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[1, 0, 2])
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Unknown serialize mode: {serialize_mode}")
|
78 |
+
|
79 |
+
for bi, s in enumerate(tensor.layout):
|
80 |
+
num_points = s.stop - s.start
|
81 |
+
num_windows = (num_points + window_size - 1) // window_size
|
82 |
+
valid_window_size = num_points / num_windows
|
83 |
+
to_ordered = torch.argsort(code[s.start:s.stop])
|
84 |
+
if num_windows == 1:
|
85 |
+
fwd_indices.append(to_ordered)
|
86 |
+
bwd_indices.append(torch.zeros_like(to_ordered).scatter_(0, to_ordered, torch.arange(num_points, device=tensor.device)))
|
87 |
+
fwd_indices[-1] += s.start
|
88 |
+
bwd_indices[-1] += offsets[-1]
|
89 |
+
seq_lens.append(num_points)
|
90 |
+
seq_batch_indices.append(bi)
|
91 |
+
offsets.append(offsets[-1] + seq_lens[-1])
|
92 |
+
else:
|
93 |
+
# Partition the input
|
94 |
+
offset = 0
|
95 |
+
mids = [(i + 0.5) * valid_window_size + shift_sequence for i in range(num_windows)]
|
96 |
+
split = [math.floor(i * valid_window_size + shift_sequence) for i in range(num_windows + 1)]
|
97 |
+
bwd_index = torch.zeros((num_points,), dtype=torch.int64, device=tensor.device)
|
98 |
+
for i in range(num_windows):
|
99 |
+
mid = mids[i]
|
100 |
+
valid_start = split[i]
|
101 |
+
valid_end = split[i + 1]
|
102 |
+
padded_start = math.floor(mid - 0.5 * window_size)
|
103 |
+
padded_end = padded_start + window_size
|
104 |
+
fwd_indices.append(to_ordered[torch.arange(padded_start, padded_end, device=tensor.device) % num_points])
|
105 |
+
offset += valid_start - padded_start
|
106 |
+
bwd_index.scatter_(0, fwd_indices[-1][valid_start-padded_start:valid_end-padded_start], torch.arange(offset, offset + valid_end - valid_start, device=tensor.device))
|
107 |
+
offset += padded_end - valid_start
|
108 |
+
fwd_indices[-1] += s.start
|
109 |
+
seq_lens.extend([window_size] * num_windows)
|
110 |
+
seq_batch_indices.extend([bi] * num_windows)
|
111 |
+
bwd_indices.append(bwd_index + offsets[-1])
|
112 |
+
offsets.append(offsets[-1] + num_windows * window_size)
|
113 |
+
|
114 |
+
fwd_indices = torch.cat(fwd_indices)
|
115 |
+
bwd_indices = torch.cat(bwd_indices)
|
116 |
+
|
117 |
+
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
118 |
+
|
119 |
+
|
120 |
+
def sparse_serialized_scaled_dot_product_self_attention(
|
121 |
+
qkv: SparseTensor,
|
122 |
+
window_size: int,
|
123 |
+
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
124 |
+
shift_sequence: int = 0,
|
125 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
126 |
+
) -> SparseTensor:
|
127 |
+
"""
|
128 |
+
Apply serialized scaled dot product self attention to a sparse tensor.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
132 |
+
window_size (int): The window size to use.
|
133 |
+
serialize_mode (SerializeMode): The serialization mode to use.
|
134 |
+
shift_sequence (int): The shift of serialized sequence.
|
135 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
136 |
+
shift (int): The shift to use.
|
137 |
+
"""
|
138 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
139 |
+
|
140 |
+
serialization_spatial_cache_name = f'serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}'
|
141 |
+
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
|
142 |
+
if serialization_spatial_cache is None:
|
143 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(qkv, window_size, serialize_mode, shift_sequence, shift_window)
|
144 |
+
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
|
145 |
+
else:
|
146 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
|
147 |
+
|
148 |
+
M = fwd_indices.shape[0]
|
149 |
+
T = qkv.feats.shape[0]
|
150 |
+
H = qkv.feats.shape[2]
|
151 |
+
C = qkv.feats.shape[3]
|
152 |
+
|
153 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
154 |
+
|
155 |
+
if DEBUG:
|
156 |
+
start = 0
|
157 |
+
qkv_coords = qkv.coords[fwd_indices]
|
158 |
+
for i in range(len(seq_lens)):
|
159 |
+
assert (qkv_coords[start:start+seq_lens[i], 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
160 |
+
start += seq_lens[i]
|
161 |
+
|
162 |
+
if all([seq_len == window_size for seq_len in seq_lens]):
|
163 |
+
B = len(seq_lens)
|
164 |
+
N = window_size
|
165 |
+
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
166 |
+
if ATTN == 'xformers':
|
167 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
168 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
169 |
+
elif ATTN == 'flash_attn':
|
170 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
171 |
+
else:
|
172 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
173 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
174 |
+
else:
|
175 |
+
if ATTN == 'xformers':
|
176 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
177 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
178 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
179 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
180 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
181 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
182 |
+
elif ATTN == 'flash_attn':
|
183 |
+
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
|
184 |
+
.to(qkv.device).int()
|
185 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
|
186 |
+
|
187 |
+
out = out[bwd_indices] # [T, H, C]
|
188 |
+
|
189 |
+
if DEBUG:
|
190 |
+
qkv_coords = qkv_coords[bwd_indices]
|
191 |
+
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
192 |
+
|
193 |
+
return qkv.replace(out)
|
thirdparty/TRELLIS/trellis/modules/sparse/attention/windowed_attn.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from .. import SparseTensor
|
5 |
+
from .. import DEBUG, ATTN
|
6 |
+
|
7 |
+
if ATTN == 'xformers':
|
8 |
+
import xformers.ops as xops
|
9 |
+
elif ATTN == 'flash_attn':
|
10 |
+
import flash_attn
|
11 |
+
else:
|
12 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
13 |
+
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'sparse_windowed_scaled_dot_product_self_attention',
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def calc_window_partition(
|
21 |
+
tensor: SparseTensor,
|
22 |
+
window_size: Union[int, Tuple[int, ...]],
|
23 |
+
shift_window: Union[int, Tuple[int, ...]] = 0
|
24 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
|
25 |
+
"""
|
26 |
+
Calculate serialization and partitioning for a set of coordinates.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
tensor (SparseTensor): The input tensor.
|
30 |
+
window_size (int): The window size to use.
|
31 |
+
shift_window (Tuple[int, ...]): The shift of serialized coordinates.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
(torch.Tensor): Forwards indices.
|
35 |
+
(torch.Tensor): Backwards indices.
|
36 |
+
(List[int]): Sequence lengths.
|
37 |
+
(List[int]): Sequence batch indices.
|
38 |
+
"""
|
39 |
+
DIM = tensor.coords.shape[1] - 1
|
40 |
+
shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
|
41 |
+
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
|
42 |
+
shifted_coords = tensor.coords.clone().detach()
|
43 |
+
shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
44 |
+
|
45 |
+
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
|
46 |
+
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
|
47 |
+
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
|
48 |
+
|
49 |
+
shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
50 |
+
shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
|
51 |
+
fwd_indices = torch.argsort(shifted_indices)
|
52 |
+
bwd_indices = torch.empty_like(fwd_indices)
|
53 |
+
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
|
54 |
+
seq_lens = torch.bincount(shifted_indices)
|
55 |
+
seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
|
56 |
+
mask = seq_lens != 0
|
57 |
+
seq_lens = seq_lens[mask].tolist()
|
58 |
+
seq_batch_indices = seq_batch_indices[mask].tolist()
|
59 |
+
|
60 |
+
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
61 |
+
|
62 |
+
|
63 |
+
def sparse_windowed_scaled_dot_product_self_attention(
|
64 |
+
qkv: SparseTensor,
|
65 |
+
window_size: int,
|
66 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
67 |
+
) -> SparseTensor:
|
68 |
+
"""
|
69 |
+
Apply windowed scaled dot product self attention to a sparse tensor.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
73 |
+
window_size (int): The window size to use.
|
74 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
75 |
+
shift (int): The shift to use.
|
76 |
+
"""
|
77 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
78 |
+
|
79 |
+
serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
|
80 |
+
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
|
81 |
+
if serialization_spatial_cache is None:
|
82 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
|
83 |
+
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
|
84 |
+
else:
|
85 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
|
86 |
+
|
87 |
+
M = fwd_indices.shape[0]
|
88 |
+
T = qkv.feats.shape[0]
|
89 |
+
H = qkv.feats.shape[2]
|
90 |
+
C = qkv.feats.shape[3]
|
91 |
+
|
92 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
93 |
+
|
94 |
+
if DEBUG:
|
95 |
+
start = 0
|
96 |
+
qkv_coords = qkv.coords[fwd_indices]
|
97 |
+
for i in range(len(seq_lens)):
|
98 |
+
seq_coords = qkv_coords[start:start+seq_lens[i]]
|
99 |
+
assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
100 |
+
assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
|
101 |
+
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
|
102 |
+
start += seq_lens[i]
|
103 |
+
|
104 |
+
if all([seq_len == window_size for seq_len in seq_lens]):
|
105 |
+
B = len(seq_lens)
|
106 |
+
N = window_size
|
107 |
+
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
108 |
+
if ATTN == 'xformers':
|
109 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
110 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
111 |
+
elif ATTN == 'flash_attn':
|
112 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
113 |
+
else:
|
114 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
115 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
116 |
+
else:
|
117 |
+
if ATTN == 'xformers':
|
118 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
119 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
120 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
121 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
122 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
123 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
124 |
+
elif ATTN == 'flash_attn':
|
125 |
+
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
|
126 |
+
.to(qkv.device).int()
|
127 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
|
128 |
+
|
129 |
+
out = out[bwd_indices] # [T, H, C]
|
130 |
+
|
131 |
+
if DEBUG:
|
132 |
+
qkv_coords = qkv_coords[bwd_indices]
|
133 |
+
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
134 |
+
|
135 |
+
return qkv.replace(out)
|
thirdparty/TRELLIS/trellis/modules/sparse/basic.py
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from . import BACKEND, DEBUG
|
5 |
+
SparseTensorData = None # Lazy import
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
'SparseTensor',
|
10 |
+
'sparse_batch_broadcast',
|
11 |
+
'sparse_batch_op',
|
12 |
+
'sparse_cat',
|
13 |
+
'sparse_unbind',
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
class SparseTensor:
|
18 |
+
"""
|
19 |
+
Sparse tensor with support for both torchsparse and spconv backends.
|
20 |
+
|
21 |
+
Parameters:
|
22 |
+
- feats (torch.Tensor): Features of the sparse tensor.
|
23 |
+
- coords (torch.Tensor): Coordinates of the sparse tensor.
|
24 |
+
- shape (torch.Size): Shape of the sparse tensor.
|
25 |
+
- layout (List[slice]): Layout of the sparse tensor for each batch
|
26 |
+
- data (SparseTensorData): Sparse tensor data used for convolusion
|
27 |
+
|
28 |
+
NOTE:
|
29 |
+
- Data corresponding to a same batch should be contiguous.
|
30 |
+
- Coords should be in [0, 1023]
|
31 |
+
"""
|
32 |
+
@overload
|
33 |
+
def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
|
34 |
+
|
35 |
+
@overload
|
36 |
+
def __init__(self, data, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
|
37 |
+
|
38 |
+
def __init__(self, *args, **kwargs):
|
39 |
+
# Lazy import of sparse tensor backend
|
40 |
+
global SparseTensorData
|
41 |
+
if SparseTensorData is None:
|
42 |
+
import importlib
|
43 |
+
if BACKEND == 'torchsparse':
|
44 |
+
SparseTensorData = importlib.import_module('torchsparse').SparseTensor
|
45 |
+
elif BACKEND == 'spconv':
|
46 |
+
SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
|
47 |
+
|
48 |
+
method_id = 0
|
49 |
+
if len(args) != 0:
|
50 |
+
method_id = 0 if isinstance(args[0], torch.Tensor) else 1
|
51 |
+
else:
|
52 |
+
method_id = 1 if 'data' in kwargs else 0
|
53 |
+
|
54 |
+
if method_id == 0:
|
55 |
+
feats, coords, shape, layout = args + (None,) * (4 - len(args))
|
56 |
+
if 'feats' in kwargs:
|
57 |
+
feats = kwargs['feats']
|
58 |
+
del kwargs['feats']
|
59 |
+
if 'coords' in kwargs:
|
60 |
+
coords = kwargs['coords']
|
61 |
+
del kwargs['coords']
|
62 |
+
if 'shape' in kwargs:
|
63 |
+
shape = kwargs['shape']
|
64 |
+
del kwargs['shape']
|
65 |
+
if 'layout' in kwargs:
|
66 |
+
layout = kwargs['layout']
|
67 |
+
del kwargs['layout']
|
68 |
+
|
69 |
+
if shape is None:
|
70 |
+
shape = self.__cal_shape(feats, coords)
|
71 |
+
if layout is None:
|
72 |
+
layout = self.__cal_layout(coords, shape[0])
|
73 |
+
if BACKEND == 'torchsparse':
|
74 |
+
self.data = SparseTensorData(feats, coords, **kwargs)
|
75 |
+
elif BACKEND == 'spconv':
|
76 |
+
spatial_shape = list(coords.max(0)[0] + 1)[1:]
|
77 |
+
self.data = SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape, shape[0], **kwargs)
|
78 |
+
self.data._features = feats
|
79 |
+
elif method_id == 1:
|
80 |
+
data, shape, layout = args + (None,) * (3 - len(args))
|
81 |
+
if 'data' in kwargs:
|
82 |
+
data = kwargs['data']
|
83 |
+
del kwargs['data']
|
84 |
+
if 'shape' in kwargs:
|
85 |
+
shape = kwargs['shape']
|
86 |
+
del kwargs['shape']
|
87 |
+
if 'layout' in kwargs:
|
88 |
+
layout = kwargs['layout']
|
89 |
+
del kwargs['layout']
|
90 |
+
|
91 |
+
self.data = data
|
92 |
+
if shape is None:
|
93 |
+
shape = self.__cal_shape(self.feats, self.coords)
|
94 |
+
if layout is None:
|
95 |
+
layout = self.__cal_layout(self.coords, shape[0])
|
96 |
+
|
97 |
+
self._shape = shape
|
98 |
+
self._layout = layout
|
99 |
+
self._scale = kwargs.get('scale', (1, 1, 1))
|
100 |
+
self._spatial_cache = kwargs.get('spatial_cache', {})
|
101 |
+
|
102 |
+
if DEBUG:
|
103 |
+
try:
|
104 |
+
assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
|
105 |
+
assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
|
106 |
+
assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
|
107 |
+
for i in range(self.shape[0]):
|
108 |
+
assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
|
109 |
+
except Exception as e:
|
110 |
+
print('Debugging information:')
|
111 |
+
print(f"- Shape: {self.shape}")
|
112 |
+
print(f"- Layout: {self.layout}")
|
113 |
+
print(f"- Scale: {self._scale}")
|
114 |
+
print(f"- Coords: {self.coords}")
|
115 |
+
raise e
|
116 |
+
|
117 |
+
def __cal_shape(self, feats, coords):
|
118 |
+
shape = []
|
119 |
+
shape.append(coords[:, 0].max().item() + 1)
|
120 |
+
shape.extend([*feats.shape[1:]])
|
121 |
+
return torch.Size(shape)
|
122 |
+
|
123 |
+
def __cal_layout(self, coords, batch_size):
|
124 |
+
seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
|
125 |
+
offset = torch.cumsum(seq_len, dim=0)
|
126 |
+
layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
|
127 |
+
return layout
|
128 |
+
|
129 |
+
@property
|
130 |
+
def shape(self) -> torch.Size:
|
131 |
+
return self._shape
|
132 |
+
|
133 |
+
def dim(self) -> int:
|
134 |
+
return len(self.shape)
|
135 |
+
|
136 |
+
@property
|
137 |
+
def layout(self) -> List[slice]:
|
138 |
+
return self._layout
|
139 |
+
|
140 |
+
@property
|
141 |
+
def feats(self) -> torch.Tensor:
|
142 |
+
if BACKEND == 'torchsparse':
|
143 |
+
return self.data.F
|
144 |
+
elif BACKEND == 'spconv':
|
145 |
+
return self.data.features
|
146 |
+
|
147 |
+
@feats.setter
|
148 |
+
def feats(self, value: torch.Tensor):
|
149 |
+
if BACKEND == 'torchsparse':
|
150 |
+
self.data.F = value
|
151 |
+
elif BACKEND == 'spconv':
|
152 |
+
self.data.features = value
|
153 |
+
|
154 |
+
@property
|
155 |
+
def coords(self) -> torch.Tensor:
|
156 |
+
if BACKEND == 'torchsparse':
|
157 |
+
return self.data.C
|
158 |
+
elif BACKEND == 'spconv':
|
159 |
+
return self.data.indices
|
160 |
+
|
161 |
+
@coords.setter
|
162 |
+
def coords(self, value: torch.Tensor):
|
163 |
+
if BACKEND == 'torchsparse':
|
164 |
+
self.data.C = value
|
165 |
+
elif BACKEND == 'spconv':
|
166 |
+
self.data.indices = value
|
167 |
+
|
168 |
+
@property
|
169 |
+
def dtype(self):
|
170 |
+
return self.feats.dtype
|
171 |
+
|
172 |
+
@property
|
173 |
+
def device(self):
|
174 |
+
return self.feats.device
|
175 |
+
|
176 |
+
@overload
|
177 |
+
def to(self, dtype: torch.dtype) -> 'SparseTensor': ...
|
178 |
+
|
179 |
+
@overload
|
180 |
+
def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None) -> 'SparseTensor': ...
|
181 |
+
|
182 |
+
def to(self, *args, **kwargs) -> 'SparseTensor':
|
183 |
+
device = None
|
184 |
+
dtype = None
|
185 |
+
if len(args) == 2:
|
186 |
+
device, dtype = args
|
187 |
+
elif len(args) == 1:
|
188 |
+
if isinstance(args[0], torch.dtype):
|
189 |
+
dtype = args[0]
|
190 |
+
else:
|
191 |
+
device = args[0]
|
192 |
+
if 'dtype' in kwargs:
|
193 |
+
assert dtype is None, "to() received multiple values for argument 'dtype'"
|
194 |
+
dtype = kwargs['dtype']
|
195 |
+
if 'device' in kwargs:
|
196 |
+
assert device is None, "to() received multiple values for argument 'device'"
|
197 |
+
device = kwargs['device']
|
198 |
+
|
199 |
+
new_feats = self.feats.to(device=device, dtype=dtype)
|
200 |
+
new_coords = self.coords.to(device=device)
|
201 |
+
return self.replace(new_feats, new_coords)
|
202 |
+
|
203 |
+
def type(self, dtype):
|
204 |
+
new_feats = self.feats.type(dtype)
|
205 |
+
return self.replace(new_feats)
|
206 |
+
|
207 |
+
def cpu(self) -> 'SparseTensor':
|
208 |
+
new_feats = self.feats.cpu()
|
209 |
+
new_coords = self.coords.cpu()
|
210 |
+
return self.replace(new_feats, new_coords)
|
211 |
+
|
212 |
+
def cuda(self) -> 'SparseTensor':
|
213 |
+
new_feats = self.feats.cuda()
|
214 |
+
new_coords = self.coords.cuda()
|
215 |
+
return self.replace(new_feats, new_coords)
|
216 |
+
|
217 |
+
def half(self) -> 'SparseTensor':
|
218 |
+
new_feats = self.feats.half()
|
219 |
+
return self.replace(new_feats)
|
220 |
+
|
221 |
+
def float(self) -> 'SparseTensor':
|
222 |
+
new_feats = self.feats.float()
|
223 |
+
return self.replace(new_feats)
|
224 |
+
|
225 |
+
def detach(self) -> 'SparseTensor':
|
226 |
+
new_coords = self.coords.detach()
|
227 |
+
new_feats = self.feats.detach()
|
228 |
+
return self.replace(new_feats, new_coords)
|
229 |
+
|
230 |
+
def dense(self) -> torch.Tensor:
|
231 |
+
if BACKEND == 'torchsparse':
|
232 |
+
return self.data.dense()
|
233 |
+
elif BACKEND == 'spconv':
|
234 |
+
return self.data.dense()
|
235 |
+
|
236 |
+
def reshape(self, *shape) -> 'SparseTensor':
|
237 |
+
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
|
238 |
+
return self.replace(new_feats)
|
239 |
+
|
240 |
+
def unbind(self, dim: int) -> List['SparseTensor']:
|
241 |
+
return sparse_unbind(self, dim)
|
242 |
+
|
243 |
+
def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
|
244 |
+
new_shape = [self.shape[0]]
|
245 |
+
new_shape.extend(feats.shape[1:])
|
246 |
+
if BACKEND == 'torchsparse':
|
247 |
+
new_data = SparseTensorData(
|
248 |
+
feats=feats,
|
249 |
+
coords=self.data.coords if coords is None else coords,
|
250 |
+
stride=self.data.stride,
|
251 |
+
spatial_range=self.data.spatial_range,
|
252 |
+
)
|
253 |
+
new_data._caches = self.data._caches
|
254 |
+
elif BACKEND == 'spconv':
|
255 |
+
new_data = SparseTensorData(
|
256 |
+
self.data.features.reshape(self.data.features.shape[0], -1),
|
257 |
+
self.data.indices,
|
258 |
+
self.data.spatial_shape,
|
259 |
+
self.data.batch_size,
|
260 |
+
self.data.grid,
|
261 |
+
self.data.voxel_num,
|
262 |
+
self.data.indice_dict
|
263 |
+
)
|
264 |
+
new_data._features = feats
|
265 |
+
new_data.benchmark = self.data.benchmark
|
266 |
+
new_data.benchmark_record = self.data.benchmark_record
|
267 |
+
new_data.thrust_allocator = self.data.thrust_allocator
|
268 |
+
new_data._timer = self.data._timer
|
269 |
+
new_data.force_algo = self.data.force_algo
|
270 |
+
new_data.int8_scale = self.data.int8_scale
|
271 |
+
if coords is not None:
|
272 |
+
new_data.indices = coords
|
273 |
+
new_tensor = SparseTensor(new_data, shape=torch.Size(new_shape), layout=self.layout, scale=self._scale, spatial_cache=self._spatial_cache)
|
274 |
+
return new_tensor
|
275 |
+
|
276 |
+
@staticmethod
|
277 |
+
def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
|
278 |
+
N, C = dim
|
279 |
+
x = torch.arange(aabb[0], aabb[3] + 1)
|
280 |
+
y = torch.arange(aabb[1], aabb[4] + 1)
|
281 |
+
z = torch.arange(aabb[2], aabb[5] + 1)
|
282 |
+
coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
|
283 |
+
coords = torch.cat([
|
284 |
+
torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
|
285 |
+
coords.repeat(N, 1),
|
286 |
+
], dim=1).to(dtype=torch.int32, device=device)
|
287 |
+
feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
|
288 |
+
return SparseTensor(feats=feats, coords=coords)
|
289 |
+
|
290 |
+
def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
|
291 |
+
new_cache = {}
|
292 |
+
for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
|
293 |
+
if k in self._spatial_cache:
|
294 |
+
new_cache[k] = self._spatial_cache[k]
|
295 |
+
if k in other._spatial_cache:
|
296 |
+
if k not in new_cache:
|
297 |
+
new_cache[k] = other._spatial_cache[k]
|
298 |
+
else:
|
299 |
+
new_cache[k].update(other._spatial_cache[k])
|
300 |
+
return new_cache
|
301 |
+
|
302 |
+
def __neg__(self) -> 'SparseTensor':
|
303 |
+
return self.replace(-self.feats)
|
304 |
+
|
305 |
+
def __elemwise__(self, other: Union[torch.Tensor, 'SparseTensor'], op: callable) -> 'SparseTensor':
|
306 |
+
if isinstance(other, torch.Tensor):
|
307 |
+
try:
|
308 |
+
other = torch.broadcast_to(other, self.shape)
|
309 |
+
other = sparse_batch_broadcast(self, other)
|
310 |
+
except:
|
311 |
+
pass
|
312 |
+
if isinstance(other, SparseTensor):
|
313 |
+
other = other.feats
|
314 |
+
new_feats = op(self.feats, other)
|
315 |
+
new_tensor = self.replace(new_feats)
|
316 |
+
if isinstance(other, SparseTensor):
|
317 |
+
new_tensor._spatial_cache = self.__merge_sparse_cache(other)
|
318 |
+
return new_tensor
|
319 |
+
|
320 |
+
def __add__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
321 |
+
return self.__elemwise__(other, torch.add)
|
322 |
+
|
323 |
+
def __radd__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
324 |
+
return self.__elemwise__(other, torch.add)
|
325 |
+
|
326 |
+
def __sub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
327 |
+
return self.__elemwise__(other, torch.sub)
|
328 |
+
|
329 |
+
def __rsub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
330 |
+
return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
|
331 |
+
|
332 |
+
def __mul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
333 |
+
return self.__elemwise__(other, torch.mul)
|
334 |
+
|
335 |
+
def __rmul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
336 |
+
return self.__elemwise__(other, torch.mul)
|
337 |
+
|
338 |
+
def __truediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
339 |
+
return self.__elemwise__(other, torch.div)
|
340 |
+
|
341 |
+
def __rtruediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
342 |
+
return self.__elemwise__(other, lambda x, y: torch.div(y, x))
|
343 |
+
|
344 |
+
def __getitem__(self, idx):
|
345 |
+
if isinstance(idx, int):
|
346 |
+
idx = [idx]
|
347 |
+
elif isinstance(idx, slice):
|
348 |
+
idx = range(*idx.indices(self.shape[0]))
|
349 |
+
elif isinstance(idx, torch.Tensor):
|
350 |
+
if idx.dtype == torch.bool:
|
351 |
+
assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
|
352 |
+
idx = idx.nonzero().squeeze(1)
|
353 |
+
elif idx.dtype in [torch.int32, torch.int64]:
|
354 |
+
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
|
355 |
+
else:
|
356 |
+
raise ValueError(f"Unknown index type: {idx.dtype}")
|
357 |
+
else:
|
358 |
+
raise ValueError(f"Unknown index type: {type(idx)}")
|
359 |
+
|
360 |
+
coords = []
|
361 |
+
feats = []
|
362 |
+
for new_idx, old_idx in enumerate(idx):
|
363 |
+
coords.append(self.coords[self.layout[old_idx]].clone())
|
364 |
+
coords[-1][:, 0] = new_idx
|
365 |
+
feats.append(self.feats[self.layout[old_idx]])
|
366 |
+
coords = torch.cat(coords, dim=0).contiguous()
|
367 |
+
feats = torch.cat(feats, dim=0).contiguous()
|
368 |
+
return SparseTensor(feats=feats, coords=coords)
|
369 |
+
|
370 |
+
def register_spatial_cache(self, key, value) -> None:
|
371 |
+
"""
|
372 |
+
Register a spatial cache.
|
373 |
+
The spatial cache can be any thing you want to cache.
|
374 |
+
The registery and retrieval of the cache is based on current scale.
|
375 |
+
"""
|
376 |
+
scale_key = str(self._scale)
|
377 |
+
if scale_key not in self._spatial_cache:
|
378 |
+
self._spatial_cache[scale_key] = {}
|
379 |
+
self._spatial_cache[scale_key][key] = value
|
380 |
+
|
381 |
+
def get_spatial_cache(self, key=None):
|
382 |
+
"""
|
383 |
+
Get a spatial cache.
|
384 |
+
"""
|
385 |
+
scale_key = str(self._scale)
|
386 |
+
cur_scale_cache = self._spatial_cache.get(scale_key, {})
|
387 |
+
if key is None:
|
388 |
+
return cur_scale_cache
|
389 |
+
return cur_scale_cache.get(key, None)
|
390 |
+
|
391 |
+
|
392 |
+
def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
|
393 |
+
"""
|
394 |
+
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
input (torch.Tensor): 1D tensor to broadcast.
|
398 |
+
target (SparseTensor): Sparse tensor to broadcast to.
|
399 |
+
op (callable): Operation to perform after broadcasting. Defaults to torch.add.
|
400 |
+
"""
|
401 |
+
coords, feats = input.coords, input.feats
|
402 |
+
broadcasted = torch.zeros_like(feats)
|
403 |
+
for k in range(input.shape[0]):
|
404 |
+
broadcasted[input.layout[k]] = other[k]
|
405 |
+
return broadcasted
|
406 |
+
|
407 |
+
|
408 |
+
def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = torch.add) -> SparseTensor:
|
409 |
+
"""
|
410 |
+
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
input (torch.Tensor): 1D tensor to broadcast.
|
414 |
+
target (SparseTensor): Sparse tensor to broadcast to.
|
415 |
+
op (callable): Operation to perform after broadcasting. Defaults to torch.add.
|
416 |
+
"""
|
417 |
+
return input.replace(op(input.feats, sparse_batch_broadcast(input, other)))
|
418 |
+
|
419 |
+
|
420 |
+
def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
|
421 |
+
"""
|
422 |
+
Concatenate a list of sparse tensors.
|
423 |
+
|
424 |
+
Args:
|
425 |
+
inputs (List[SparseTensor]): List of sparse tensors to concatenate.
|
426 |
+
"""
|
427 |
+
if dim == 0:
|
428 |
+
start = 0
|
429 |
+
coords = []
|
430 |
+
for input in inputs:
|
431 |
+
coords.append(input.coords.clone())
|
432 |
+
coords[-1][:, 0] += start
|
433 |
+
start += input.shape[0]
|
434 |
+
coords = torch.cat(coords, dim=0)
|
435 |
+
feats = torch.cat([input.feats for input in inputs], dim=0)
|
436 |
+
output = SparseTensor(
|
437 |
+
coords=coords,
|
438 |
+
feats=feats,
|
439 |
+
)
|
440 |
+
else:
|
441 |
+
feats = torch.cat([input.feats for input in inputs], dim=dim)
|
442 |
+
output = inputs[0].replace(feats)
|
443 |
+
|
444 |
+
return output
|
445 |
+
|
446 |
+
|
447 |
+
def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
|
448 |
+
"""
|
449 |
+
Unbind a sparse tensor along a dimension.
|
450 |
+
|
451 |
+
Args:
|
452 |
+
input (SparseTensor): Sparse tensor to unbind.
|
453 |
+
dim (int): Dimension to unbind.
|
454 |
+
"""
|
455 |
+
if dim == 0:
|
456 |
+
return [input[i] for i in range(input.shape[0])]
|
457 |
+
else:
|
458 |
+
feats = input.feats.unbind(dim)
|
459 |
+
return [input.replace(f) for f in feats]
|
thirdparty/TRELLIS/trellis/modules/sparse/conv/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .. import BACKEND
|
2 |
+
|
3 |
+
|
4 |
+
SPCONV_ALGO = 'auto' # 'auto', 'implicit_gemm', 'native'
|
5 |
+
|
6 |
+
def __from_env():
|
7 |
+
import os
|
8 |
+
|
9 |
+
global SPCONV_ALGO
|
10 |
+
env_spconv_algo = os.environ.get('SPCONV_ALGO')
|
11 |
+
if env_spconv_algo is not None and env_spconv_algo in ['auto', 'implicit_gemm', 'native']:
|
12 |
+
SPCONV_ALGO = env_spconv_algo
|
13 |
+
print(f"[SPARSE][CONV] spconv algo: {SPCONV_ALGO}")
|
14 |
+
|
15 |
+
|
16 |
+
__from_env()
|
17 |
+
|
18 |
+
if BACKEND == 'torchsparse':
|
19 |
+
from .conv_torchsparse import *
|
20 |
+
elif BACKEND == 'spconv':
|
21 |
+
from .conv_spconv import *
|
thirdparty/TRELLIS/trellis/modules/sparse/conv/conv_spconv.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .. import SparseTensor
|
4 |
+
from .. import DEBUG
|
5 |
+
from . import SPCONV_ALGO
|
6 |
+
|
7 |
+
class SparseConv3d(nn.Module):
|
8 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
|
9 |
+
super(SparseConv3d, self).__init__()
|
10 |
+
if 'spconv' not in globals():
|
11 |
+
import spconv.pytorch as spconv
|
12 |
+
algo = None
|
13 |
+
if SPCONV_ALGO == 'native':
|
14 |
+
algo = spconv.ConvAlgo.Native
|
15 |
+
elif SPCONV_ALGO == 'implicit_gemm':
|
16 |
+
algo = spconv.ConvAlgo.MaskImplicitGemm
|
17 |
+
if stride == 1 and (padding is None):
|
18 |
+
self.conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, dilation=dilation, bias=bias, indice_key=indice_key, algo=algo)
|
19 |
+
else:
|
20 |
+
self.conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, indice_key=indice_key, algo=algo)
|
21 |
+
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
|
22 |
+
self.padding = padding
|
23 |
+
|
24 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
25 |
+
spatial_changed = any(s != 1 for s in self.stride) or (self.padding is not None)
|
26 |
+
new_data = self.conv(x.data)
|
27 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
28 |
+
new_layout = None if spatial_changed else x.layout
|
29 |
+
|
30 |
+
if spatial_changed and (x.shape[0] != 1):
|
31 |
+
# spconv was non-1 stride will break the contiguous of the output tensor, sort by the coords
|
32 |
+
fwd = new_data.indices[:, 0].argsort()
|
33 |
+
bwd = torch.zeros_like(fwd).scatter_(0, fwd, torch.arange(fwd.shape[0], device=fwd.device))
|
34 |
+
sorted_feats = new_data.features[fwd]
|
35 |
+
sorted_coords = new_data.indices[fwd]
|
36 |
+
unsorted_data = new_data
|
37 |
+
new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size) # type: ignore
|
38 |
+
|
39 |
+
out = SparseTensor(
|
40 |
+
new_data, shape=torch.Size(new_shape), layout=new_layout,
|
41 |
+
scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
|
42 |
+
spatial_cache=x._spatial_cache,
|
43 |
+
)
|
44 |
+
|
45 |
+
if spatial_changed and (x.shape[0] != 1):
|
46 |
+
out.register_spatial_cache(f'conv_{self.stride}_unsorted_data', unsorted_data)
|
47 |
+
out.register_spatial_cache(f'conv_{self.stride}_sort_bwd', bwd)
|
48 |
+
|
49 |
+
return out
|
50 |
+
|
51 |
+
|
52 |
+
class SparseInverseConv3d(nn.Module):
|
53 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
54 |
+
super(SparseInverseConv3d, self).__init__()
|
55 |
+
if 'spconv' not in globals():
|
56 |
+
import spconv.pytorch as spconv
|
57 |
+
self.conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, bias=bias, indice_key=indice_key)
|
58 |
+
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
|
59 |
+
|
60 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
61 |
+
spatial_changed = any(s != 1 for s in self.stride)
|
62 |
+
if spatial_changed:
|
63 |
+
# recover the original spconv order
|
64 |
+
data = x.get_spatial_cache(f'conv_{self.stride}_unsorted_data')
|
65 |
+
bwd = x.get_spatial_cache(f'conv_{self.stride}_sort_bwd')
|
66 |
+
data = data.replace_feature(x.feats[bwd])
|
67 |
+
if DEBUG:
|
68 |
+
assert torch.equal(data.indices, x.coords[bwd]), 'Recover the original order failed'
|
69 |
+
else:
|
70 |
+
data = x.data
|
71 |
+
|
72 |
+
new_data = self.conv(data)
|
73 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
74 |
+
new_layout = None if spatial_changed else x.layout
|
75 |
+
out = SparseTensor(
|
76 |
+
new_data, shape=torch.Size(new_shape), layout=new_layout,
|
77 |
+
scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
|
78 |
+
spatial_cache=x._spatial_cache,
|
79 |
+
)
|
80 |
+
return out
|
thirdparty/TRELLIS/trellis/modules/sparse/conv/conv_torchsparse.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .. import SparseTensor
|
4 |
+
|
5 |
+
|
6 |
+
class SparseConv3d(nn.Module):
|
7 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
8 |
+
super(SparseConv3d, self).__init__()
|
9 |
+
if 'torchsparse' not in globals():
|
10 |
+
import torchsparse
|
11 |
+
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias)
|
12 |
+
|
13 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
14 |
+
out = self.conv(x.data)
|
15 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
16 |
+
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
|
17 |
+
out._spatial_cache = x._spatial_cache
|
18 |
+
out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
|
19 |
+
return out
|
20 |
+
|
21 |
+
|
22 |
+
class SparseInverseConv3d(nn.Module):
|
23 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
24 |
+
super(SparseInverseConv3d, self).__init__()
|
25 |
+
if 'torchsparse' not in globals():
|
26 |
+
import torchsparse
|
27 |
+
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
|
28 |
+
|
29 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
30 |
+
out = self.conv(x.data)
|
31 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
32 |
+
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
|
33 |
+
out._spatial_cache = x._spatial_cache
|
34 |
+
out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)])
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
|
thirdparty/TRELLIS/trellis/modules/sparse/linear.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from . import SparseTensor
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'SparseLinear'
|
7 |
+
]
|
8 |
+
|
9 |
+
|
10 |
+
class SparseLinear(nn.Linear):
|
11 |
+
def __init__(self, in_features, out_features, bias=True):
|
12 |
+
super(SparseLinear, self).__init__(in_features, out_features, bias)
|
13 |
+
|
14 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
15 |
+
return input.replace(super().forward(input.feats))
|
thirdparty/TRELLIS/trellis/modules/sparse/nonlinearity.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from . import SparseTensor
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'SparseReLU',
|
7 |
+
'SparseSiLU',
|
8 |
+
'SparseGELU',
|
9 |
+
'SparseActivation'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
class SparseReLU(nn.ReLU):
|
14 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
15 |
+
return input.replace(super().forward(input.feats))
|
16 |
+
|
17 |
+
|
18 |
+
class SparseSiLU(nn.SiLU):
|
19 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
20 |
+
return input.replace(super().forward(input.feats))
|
21 |
+
|
22 |
+
|
23 |
+
class SparseGELU(nn.GELU):
|
24 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
25 |
+
return input.replace(super().forward(input.feats))
|
26 |
+
|
27 |
+
|
28 |
+
class SparseActivation(nn.Module):
|
29 |
+
def __init__(self, activation: nn.Module):
|
30 |
+
super().__init__()
|
31 |
+
self.activation = activation
|
32 |
+
|
33 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
34 |
+
return input.replace(self.activation(input.feats))
|
35 |
+
|
thirdparty/TRELLIS/trellis/modules/sparse/norm.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from . import SparseTensor
|
4 |
+
from . import DEBUG
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'SparseGroupNorm',
|
8 |
+
'SparseLayerNorm',
|
9 |
+
'SparseGroupNorm32',
|
10 |
+
'SparseLayerNorm32',
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
class SparseGroupNorm(nn.GroupNorm):
|
15 |
+
def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
|
16 |
+
super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine)
|
17 |
+
|
18 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
19 |
+
nfeats = torch.zeros_like(input.feats)
|
20 |
+
for k in range(input.shape[0]):
|
21 |
+
if DEBUG:
|
22 |
+
assert (input.coords[input.layout[k], 0] == k).all(), f"SparseGroupNorm: batch index mismatch"
|
23 |
+
bfeats = input.feats[input.layout[k]]
|
24 |
+
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
|
25 |
+
bfeats = super().forward(bfeats)
|
26 |
+
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
|
27 |
+
nfeats[input.layout[k]] = bfeats
|
28 |
+
return input.replace(nfeats)
|
29 |
+
|
30 |
+
|
31 |
+
class SparseLayerNorm(nn.LayerNorm):
|
32 |
+
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
|
33 |
+
super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine)
|
34 |
+
|
35 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
36 |
+
nfeats = torch.zeros_like(input.feats)
|
37 |
+
for k in range(input.shape[0]):
|
38 |
+
bfeats = input.feats[input.layout[k]]
|
39 |
+
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
|
40 |
+
bfeats = super().forward(bfeats)
|
41 |
+
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
|
42 |
+
nfeats[input.layout[k]] = bfeats
|
43 |
+
return input.replace(nfeats)
|
44 |
+
|
45 |
+
|
46 |
+
class SparseGroupNorm32(SparseGroupNorm):
|
47 |
+
"""
|
48 |
+
A GroupNorm layer that converts to float32 before the forward pass.
|
49 |
+
"""
|
50 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
51 |
+
return super().forward(x.float()).type(x.dtype)
|
52 |
+
|
53 |
+
class SparseLayerNorm32(SparseLayerNorm):
|
54 |
+
"""
|
55 |
+
A LayerNorm layer that converts to float32 before the forward pass.
|
56 |
+
"""
|
57 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
58 |
+
return super().forward(x.float()).type(x.dtype)
|
thirdparty/TRELLIS/trellis/modules/sparse/spatial.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from . import SparseTensor
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'SparseDownsample',
|
8 |
+
'SparseUpsample',
|
9 |
+
'SparseSubdivide'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
class SparseDownsample(nn.Module):
|
14 |
+
"""
|
15 |
+
Downsample a sparse tensor by a factor of `factor`.
|
16 |
+
Implemented as average pooling.
|
17 |
+
"""
|
18 |
+
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
|
19 |
+
super(SparseDownsample, self).__init__()
|
20 |
+
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
21 |
+
|
22 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
23 |
+
DIM = input.coords.shape[-1] - 1
|
24 |
+
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
25 |
+
assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.'
|
26 |
+
|
27 |
+
coord = list(input.coords.unbind(dim=-1))
|
28 |
+
for i, f in enumerate(factor):
|
29 |
+
coord[i+1] = coord[i+1] // f
|
30 |
+
|
31 |
+
MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
|
32 |
+
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
|
33 |
+
code = sum([c * o for c, o in zip(coord, OFFSET)])
|
34 |
+
code, idx = code.unique(return_inverse=True)
|
35 |
+
|
36 |
+
new_feats = torch.scatter_reduce(
|
37 |
+
torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype),
|
38 |
+
dim=0,
|
39 |
+
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
|
40 |
+
src=input.feats,
|
41 |
+
reduce='mean'
|
42 |
+
)
|
43 |
+
new_coords = torch.stack(
|
44 |
+
[code // OFFSET[0]] +
|
45 |
+
[(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
|
46 |
+
dim=-1
|
47 |
+
)
|
48 |
+
out = SparseTensor(new_feats, new_coords, input.shape,)
|
49 |
+
out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
|
50 |
+
out._spatial_cache = input._spatial_cache
|
51 |
+
|
52 |
+
out.register_spatial_cache(f'upsample_{factor}_coords', input.coords)
|
53 |
+
out.register_spatial_cache(f'upsample_{factor}_layout', input.layout)
|
54 |
+
out.register_spatial_cache(f'upsample_{factor}_idx', idx)
|
55 |
+
|
56 |
+
return out
|
57 |
+
|
58 |
+
|
59 |
+
class SparseUpsample(nn.Module):
|
60 |
+
"""
|
61 |
+
Upsample a sparse tensor by a factor of `factor`.
|
62 |
+
Implemented as nearest neighbor interpolation.
|
63 |
+
"""
|
64 |
+
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
|
65 |
+
super(SparseUpsample, self).__init__()
|
66 |
+
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
67 |
+
|
68 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
69 |
+
DIM = input.coords.shape[-1] - 1
|
70 |
+
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
71 |
+
assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.'
|
72 |
+
|
73 |
+
new_coords = input.get_spatial_cache(f'upsample_{factor}_coords')
|
74 |
+
new_layout = input.get_spatial_cache(f'upsample_{factor}_layout')
|
75 |
+
idx = input.get_spatial_cache(f'upsample_{factor}_idx')
|
76 |
+
if any([x is None for x in [new_coords, new_layout, idx]]):
|
77 |
+
raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.')
|
78 |
+
new_feats = input.feats[idx]
|
79 |
+
out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
|
80 |
+
out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
|
81 |
+
out._spatial_cache = input._spatial_cache
|
82 |
+
return out
|
83 |
+
|
84 |
+
class SparseSubdivide(nn.Module):
|
85 |
+
"""
|
86 |
+
Upsample a sparse tensor by a factor of `factor`.
|
87 |
+
Implemented as nearest neighbor interpolation.
|
88 |
+
"""
|
89 |
+
def __init__(self):
|
90 |
+
super(SparseSubdivide, self).__init__()
|
91 |
+
|
92 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
93 |
+
DIM = input.coords.shape[-1] - 1
|
94 |
+
# upsample scale=2^DIM
|
95 |
+
n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
|
96 |
+
n_coords = torch.nonzero(n_cube)
|
97 |
+
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
|
98 |
+
factor = n_coords.shape[0]
|
99 |
+
assert factor == 2 ** DIM
|
100 |
+
# print(n_coords.shape)
|
101 |
+
new_coords = input.coords.clone()
|
102 |
+
new_coords[:, 1:] *= 2
|
103 |
+
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype)
|
104 |
+
|
105 |
+
new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:])
|
106 |
+
out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape)
|
107 |
+
out._scale = input._scale * 2
|
108 |
+
out._spatial_cache = input._spatial_cache
|
109 |
+
return out
|
110 |
+
|
thirdparty/TRELLIS/trellis/modules/sparse/transformer/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .blocks import *
|
2 |
+
from .modulated import *
|
thirdparty/TRELLIS/trellis/modules/sparse/transformer/blocks.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ..basic import SparseTensor
|
5 |
+
from ..linear import SparseLinear
|
6 |
+
from ..nonlinearity import SparseGELU
|
7 |
+
from ..attention import SparseMultiHeadAttention, SerializeMode
|
8 |
+
from ...norm import LayerNorm32
|
9 |
+
|
10 |
+
|
11 |
+
class SparseFeedForwardNet(nn.Module):
|
12 |
+
def __init__(self, channels: int, mlp_ratio: float = 4.0):
|
13 |
+
super().__init__()
|
14 |
+
self.mlp = nn.Sequential(
|
15 |
+
SparseLinear(channels, int(channels * mlp_ratio)),
|
16 |
+
SparseGELU(approximate="tanh"),
|
17 |
+
SparseLinear(int(channels * mlp_ratio), channels),
|
18 |
+
)
|
19 |
+
|
20 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
21 |
+
return self.mlp(x)
|
22 |
+
|
23 |
+
|
24 |
+
class SparseTransformerBlock(nn.Module):
|
25 |
+
"""
|
26 |
+
Sparse Transformer block (MSA + FFN).
|
27 |
+
"""
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
channels: int,
|
31 |
+
num_heads: int,
|
32 |
+
mlp_ratio: float = 4.0,
|
33 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
34 |
+
window_size: Optional[int] = None,
|
35 |
+
shift_sequence: Optional[int] = None,
|
36 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
37 |
+
serialize_mode: Optional[SerializeMode] = None,
|
38 |
+
use_checkpoint: bool = False,
|
39 |
+
use_rope: bool = False,
|
40 |
+
qk_rms_norm: bool = False,
|
41 |
+
qkv_bias: bool = True,
|
42 |
+
ln_affine: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.use_checkpoint = use_checkpoint
|
46 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
47 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
48 |
+
self.attn = SparseMultiHeadAttention(
|
49 |
+
channels,
|
50 |
+
num_heads=num_heads,
|
51 |
+
attn_mode=attn_mode,
|
52 |
+
window_size=window_size,
|
53 |
+
shift_sequence=shift_sequence,
|
54 |
+
shift_window=shift_window,
|
55 |
+
serialize_mode=serialize_mode,
|
56 |
+
qkv_bias=qkv_bias,
|
57 |
+
use_rope=use_rope,
|
58 |
+
qk_rms_norm=qk_rms_norm,
|
59 |
+
)
|
60 |
+
self.mlp = SparseFeedForwardNet(
|
61 |
+
channels,
|
62 |
+
mlp_ratio=mlp_ratio,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _forward(self, x: SparseTensor) -> SparseTensor:
|
66 |
+
h = x.replace(self.norm1(x.feats))
|
67 |
+
h = self.attn(h)
|
68 |
+
x = x + h
|
69 |
+
h = x.replace(self.norm2(x.feats))
|
70 |
+
h = self.mlp(h)
|
71 |
+
x = x + h
|
72 |
+
return x
|
73 |
+
|
74 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
75 |
+
if self.use_checkpoint:
|
76 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
|
77 |
+
else:
|
78 |
+
return self._forward(x)
|
79 |
+
|
80 |
+
|
81 |
+
class SparseTransformerCrossBlock(nn.Module):
|
82 |
+
"""
|
83 |
+
Sparse Transformer cross-attention block (MSA + MCA + FFN).
|
84 |
+
"""
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
channels: int,
|
88 |
+
ctx_channels: int,
|
89 |
+
num_heads: int,
|
90 |
+
mlp_ratio: float = 4.0,
|
91 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
92 |
+
window_size: Optional[int] = None,
|
93 |
+
shift_sequence: Optional[int] = None,
|
94 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
95 |
+
serialize_mode: Optional[SerializeMode] = None,
|
96 |
+
use_checkpoint: bool = False,
|
97 |
+
use_rope: bool = False,
|
98 |
+
qk_rms_norm: bool = False,
|
99 |
+
qk_rms_norm_cross: bool = False,
|
100 |
+
qkv_bias: bool = True,
|
101 |
+
ln_affine: bool = False,
|
102 |
+
):
|
103 |
+
super().__init__()
|
104 |
+
self.use_checkpoint = use_checkpoint
|
105 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
106 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
107 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
108 |
+
self.self_attn = SparseMultiHeadAttention(
|
109 |
+
channels,
|
110 |
+
num_heads=num_heads,
|
111 |
+
type="self",
|
112 |
+
attn_mode=attn_mode,
|
113 |
+
window_size=window_size,
|
114 |
+
shift_sequence=shift_sequence,
|
115 |
+
shift_window=shift_window,
|
116 |
+
serialize_mode=serialize_mode,
|
117 |
+
qkv_bias=qkv_bias,
|
118 |
+
use_rope=use_rope,
|
119 |
+
qk_rms_norm=qk_rms_norm,
|
120 |
+
)
|
121 |
+
self.cross_attn = SparseMultiHeadAttention(
|
122 |
+
channels,
|
123 |
+
ctx_channels=ctx_channels,
|
124 |
+
num_heads=num_heads,
|
125 |
+
type="cross",
|
126 |
+
attn_mode="full",
|
127 |
+
qkv_bias=qkv_bias,
|
128 |
+
qk_rms_norm=qk_rms_norm_cross,
|
129 |
+
)
|
130 |
+
self.mlp = SparseFeedForwardNet(
|
131 |
+
channels,
|
132 |
+
mlp_ratio=mlp_ratio,
|
133 |
+
)
|
134 |
+
|
135 |
+
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor):
|
136 |
+
h = x.replace(self.norm1(x.feats))
|
137 |
+
h = self.self_attn(h)
|
138 |
+
x = x + h
|
139 |
+
h = x.replace(self.norm2(x.feats))
|
140 |
+
h = self.cross_attn(h, context)
|
141 |
+
x = x + h
|
142 |
+
h = x.replace(self.norm3(x.feats))
|
143 |
+
h = self.mlp(h)
|
144 |
+
x = x + h
|
145 |
+
return x
|
146 |
+
|
147 |
+
def forward(self, x: SparseTensor, context: torch.Tensor):
|
148 |
+
if self.use_checkpoint:
|
149 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
|
150 |
+
else:
|
151 |
+
return self._forward(x, context)
|
thirdparty/TRELLIS/trellis/modules/sparse/transformer/modulated.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ..basic import SparseTensor
|
5 |
+
from ..attention import SparseMultiHeadAttention, SerializeMode
|
6 |
+
from ...norm import LayerNorm32
|
7 |
+
from .blocks import SparseFeedForwardNet
|
8 |
+
|
9 |
+
|
10 |
+
class ModulatedSparseTransformerBlock(nn.Module):
|
11 |
+
"""
|
12 |
+
Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
13 |
+
"""
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
channels: int,
|
17 |
+
num_heads: int,
|
18 |
+
mlp_ratio: float = 4.0,
|
19 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
20 |
+
window_size: Optional[int] = None,
|
21 |
+
shift_sequence: Optional[int] = None,
|
22 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
23 |
+
serialize_mode: Optional[SerializeMode] = None,
|
24 |
+
use_checkpoint: bool = False,
|
25 |
+
use_rope: bool = False,
|
26 |
+
qk_rms_norm: bool = False,
|
27 |
+
qkv_bias: bool = True,
|
28 |
+
share_mod: bool = False,
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
self.use_checkpoint = use_checkpoint
|
32 |
+
self.share_mod = share_mod
|
33 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
34 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
35 |
+
self.attn = SparseMultiHeadAttention(
|
36 |
+
channels,
|
37 |
+
num_heads=num_heads,
|
38 |
+
attn_mode=attn_mode,
|
39 |
+
window_size=window_size,
|
40 |
+
shift_sequence=shift_sequence,
|
41 |
+
shift_window=shift_window,
|
42 |
+
serialize_mode=serialize_mode,
|
43 |
+
qkv_bias=qkv_bias,
|
44 |
+
use_rope=use_rope,
|
45 |
+
qk_rms_norm=qk_rms_norm,
|
46 |
+
)
|
47 |
+
self.mlp = SparseFeedForwardNet(
|
48 |
+
channels,
|
49 |
+
mlp_ratio=mlp_ratio,
|
50 |
+
)
|
51 |
+
if not share_mod:
|
52 |
+
self.adaLN_modulation = nn.Sequential(
|
53 |
+
nn.SiLU(),
|
54 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
55 |
+
)
|
56 |
+
|
57 |
+
def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
58 |
+
if self.share_mod:
|
59 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
60 |
+
else:
|
61 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
62 |
+
h = x.replace(self.norm1(x.feats))
|
63 |
+
h = h * (1 + scale_msa) + shift_msa
|
64 |
+
h = self.attn(h)
|
65 |
+
h = h * gate_msa
|
66 |
+
x = x + h
|
67 |
+
h = x.replace(self.norm2(x.feats))
|
68 |
+
h = h * (1 + scale_mlp) + shift_mlp
|
69 |
+
h = self.mlp(h)
|
70 |
+
h = h * gate_mlp
|
71 |
+
x = x + h
|
72 |
+
return x
|
73 |
+
|
74 |
+
def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
75 |
+
if self.use_checkpoint:
|
76 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
|
77 |
+
else:
|
78 |
+
return self._forward(x, mod)
|
79 |
+
|
80 |
+
|
81 |
+
class ModulatedSparseTransformerCrossBlock(nn.Module):
|
82 |
+
"""
|
83 |
+
Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
84 |
+
"""
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
channels: int,
|
88 |
+
ctx_channels: int,
|
89 |
+
num_heads: int,
|
90 |
+
mlp_ratio: float = 4.0,
|
91 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
92 |
+
window_size: Optional[int] = None,
|
93 |
+
shift_sequence: Optional[int] = None,
|
94 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
95 |
+
serialize_mode: Optional[SerializeMode] = None,
|
96 |
+
use_checkpoint: bool = False,
|
97 |
+
use_rope: bool = False,
|
98 |
+
qk_rms_norm: bool = False,
|
99 |
+
qk_rms_norm_cross: bool = False,
|
100 |
+
qkv_bias: bool = True,
|
101 |
+
share_mod: bool = False,
|
102 |
+
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.share_mod = share_mod
|
107 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
108 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
109 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
110 |
+
self.self_attn = SparseMultiHeadAttention(
|
111 |
+
channels,
|
112 |
+
num_heads=num_heads,
|
113 |
+
type="self",
|
114 |
+
attn_mode=attn_mode,
|
115 |
+
window_size=window_size,
|
116 |
+
shift_sequence=shift_sequence,
|
117 |
+
shift_window=shift_window,
|
118 |
+
serialize_mode=serialize_mode,
|
119 |
+
qkv_bias=qkv_bias,
|
120 |
+
use_rope=use_rope,
|
121 |
+
qk_rms_norm=qk_rms_norm,
|
122 |
+
)
|
123 |
+
self.cross_attn = SparseMultiHeadAttention(
|
124 |
+
channels,
|
125 |
+
ctx_channels=ctx_channels,
|
126 |
+
num_heads=num_heads,
|
127 |
+
type="cross",
|
128 |
+
attn_mode="full",
|
129 |
+
qkv_bias=qkv_bias,
|
130 |
+
qk_rms_norm=qk_rms_norm_cross,
|
131 |
+
)
|
132 |
+
self.mlp = SparseFeedForwardNet(
|
133 |
+
channels,
|
134 |
+
mlp_ratio=mlp_ratio,
|
135 |
+
)
|
136 |
+
if not share_mod:
|
137 |
+
self.adaLN_modulation = nn.Sequential(
|
138 |
+
nn.SiLU(),
|
139 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
140 |
+
)
|
141 |
+
|
142 |
+
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
|
143 |
+
if self.share_mod:
|
144 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
145 |
+
else:
|
146 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
147 |
+
h = x.replace(self.norm1(x.feats))
|
148 |
+
h = h * (1 + scale_msa) + shift_msa
|
149 |
+
h = self.self_attn(h)
|
150 |
+
h = h * gate_msa
|
151 |
+
x = x + h
|
152 |
+
h = x.replace(self.norm2(x.feats))
|
153 |
+
h = self.cross_attn(h, context)
|
154 |
+
x = x + h
|
155 |
+
h = x.replace(self.norm3(x.feats))
|
156 |
+
h = h * (1 + scale_mlp) + shift_mlp
|
157 |
+
h = self.mlp(h)
|
158 |
+
h = h * gate_mlp
|
159 |
+
x = x + h
|
160 |
+
return x
|
161 |
+
|
162 |
+
def forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
|
163 |
+
if self.use_checkpoint:
|
164 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
|
165 |
+
else:
|
166 |
+
return self._forward(x, mod, context)
|
thirdparty/TRELLIS/trellis/modules/spatial.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
|
5 |
+
"""
|
6 |
+
3D pixel shuffle.
|
7 |
+
"""
|
8 |
+
B, C, H, W, D = x.shape
|
9 |
+
C_ = C // scale_factor**3
|
10 |
+
x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
|
11 |
+
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
|
12 |
+
x = x.reshape(B, C_, H*scale_factor, W*scale_factor, D*scale_factor)
|
13 |
+
return x
|
14 |
+
|
15 |
+
|
16 |
+
def patchify(x: torch.Tensor, patch_size: int):
|
17 |
+
"""
|
18 |
+
Patchify a tensor.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
x (torch.Tensor): (N, C, *spatial) tensor
|
22 |
+
patch_size (int): Patch size
|
23 |
+
"""
|
24 |
+
DIM = x.dim() - 2
|
25 |
+
for d in range(2, DIM + 2):
|
26 |
+
assert x.shape[d] % patch_size == 0, f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"
|
27 |
+
|
28 |
+
x = x.reshape(*x.shape[:2], *sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []))
|
29 |
+
x = x.permute(0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)]))
|
30 |
+
x = x.reshape(x.shape[0], x.shape[1] * (patch_size ** DIM), *(x.shape[-DIM:]))
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
def unpatchify(x: torch.Tensor, patch_size: int):
|
35 |
+
"""
|
36 |
+
Unpatchify a tensor.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
x (torch.Tensor): (N, C, *spatial) tensor
|
40 |
+
patch_size (int): Patch size
|
41 |
+
"""
|
42 |
+
DIM = x.dim() - 2
|
43 |
+
assert x.shape[1] % (patch_size ** DIM) == 0, f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"
|
44 |
+
|
45 |
+
x = x.reshape(x.shape[0], x.shape[1] // (patch_size ** DIM), *([patch_size] * DIM), *(x.shape[-DIM:]))
|
46 |
+
x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
|
47 |
+
x = x.reshape(x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)])
|
48 |
+
return x
|
thirdparty/TRELLIS/trellis/modules/transformer/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .blocks import *
|
2 |
+
from .modulated import *
|
thirdparty/TRELLIS/trellis/modules/transformer/blocks.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ..attention import MultiHeadAttention
|
5 |
+
from ..norm import LayerNorm32
|
6 |
+
|
7 |
+
|
8 |
+
class AbsolutePositionEmbedder(nn.Module):
|
9 |
+
"""
|
10 |
+
Embeds spatial positions into vector representations.
|
11 |
+
"""
|
12 |
+
def __init__(self, channels: int, in_channels: int = 3):
|
13 |
+
super().__init__()
|
14 |
+
self.channels = channels
|
15 |
+
self.in_channels = in_channels
|
16 |
+
self.freq_dim = channels // in_channels // 2
|
17 |
+
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
18 |
+
self.freqs = 1.0 / (10000 ** self.freqs)
|
19 |
+
|
20 |
+
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
+
"""
|
22 |
+
Create sinusoidal position embeddings.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
x: a 1-D Tensor of N indices
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
an (N, D) Tensor of positional embeddings.
|
29 |
+
"""
|
30 |
+
self.freqs = self.freqs.to(x.device)
|
31 |
+
out = torch.outer(x, self.freqs)
|
32 |
+
out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1)
|
33 |
+
return out
|
34 |
+
|
35 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
36 |
+
"""
|
37 |
+
Args:
|
38 |
+
x (torch.Tensor): (N, D) tensor of spatial positions
|
39 |
+
"""
|
40 |
+
N, D = x.shape
|
41 |
+
assert D == self.in_channels, "Input dimension must match number of input channels"
|
42 |
+
embed = self._sin_cos_embedding(x.reshape(-1))
|
43 |
+
embed = embed.reshape(N, -1)
|
44 |
+
if embed.shape[1] < self.channels:
|
45 |
+
embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1)
|
46 |
+
return embed
|
47 |
+
|
48 |
+
|
49 |
+
class FeedForwardNet(nn.Module):
|
50 |
+
def __init__(self, channels: int, mlp_ratio: float = 4.0):
|
51 |
+
super().__init__()
|
52 |
+
self.mlp = nn.Sequential(
|
53 |
+
nn.Linear(channels, int(channels * mlp_ratio)),
|
54 |
+
nn.GELU(approximate="tanh"),
|
55 |
+
nn.Linear(int(channels * mlp_ratio), channels),
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
+
return self.mlp(x)
|
60 |
+
|
61 |
+
|
62 |
+
class TransformerBlock(nn.Module):
|
63 |
+
"""
|
64 |
+
Transformer block (MSA + FFN).
|
65 |
+
"""
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
channels: int,
|
69 |
+
num_heads: int,
|
70 |
+
mlp_ratio: float = 4.0,
|
71 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
72 |
+
window_size: Optional[int] = None,
|
73 |
+
shift_window: Optional[int] = None,
|
74 |
+
use_checkpoint: bool = False,
|
75 |
+
use_rope: bool = False,
|
76 |
+
qk_rms_norm: bool = False,
|
77 |
+
qkv_bias: bool = True,
|
78 |
+
ln_affine: bool = False,
|
79 |
+
):
|
80 |
+
super().__init__()
|
81 |
+
self.use_checkpoint = use_checkpoint
|
82 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
83 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
84 |
+
self.attn = MultiHeadAttention(
|
85 |
+
channels,
|
86 |
+
num_heads=num_heads,
|
87 |
+
attn_mode=attn_mode,
|
88 |
+
window_size=window_size,
|
89 |
+
shift_window=shift_window,
|
90 |
+
qkv_bias=qkv_bias,
|
91 |
+
use_rope=use_rope,
|
92 |
+
qk_rms_norm=qk_rms_norm,
|
93 |
+
)
|
94 |
+
self.mlp = FeedForwardNet(
|
95 |
+
channels,
|
96 |
+
mlp_ratio=mlp_ratio,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _forward(self, x: torch.Tensor) -> torch.Tensor:
|
100 |
+
h = self.norm1(x)
|
101 |
+
h = self.attn(h)
|
102 |
+
x = x + h
|
103 |
+
h = self.norm2(x)
|
104 |
+
h = self.mlp(h)
|
105 |
+
x = x + h
|
106 |
+
return x
|
107 |
+
|
108 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
109 |
+
if self.use_checkpoint:
|
110 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
|
111 |
+
else:
|
112 |
+
return self._forward(x)
|
113 |
+
|
114 |
+
|
115 |
+
class TransformerCrossBlock(nn.Module):
|
116 |
+
"""
|
117 |
+
Transformer cross-attention block (MSA + MCA + FFN).
|
118 |
+
"""
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
channels: int,
|
122 |
+
ctx_channels: int,
|
123 |
+
num_heads: int,
|
124 |
+
mlp_ratio: float = 4.0,
|
125 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
126 |
+
window_size: Optional[int] = None,
|
127 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
128 |
+
use_checkpoint: bool = False,
|
129 |
+
use_rope: bool = False,
|
130 |
+
qk_rms_norm: bool = False,
|
131 |
+
qk_rms_norm_cross: bool = False,
|
132 |
+
qkv_bias: bool = True,
|
133 |
+
ln_affine: bool = False,
|
134 |
+
):
|
135 |
+
super().__init__()
|
136 |
+
self.use_checkpoint = use_checkpoint
|
137 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
138 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
139 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
140 |
+
self.self_attn = MultiHeadAttention(
|
141 |
+
channels,
|
142 |
+
num_heads=num_heads,
|
143 |
+
type="self",
|
144 |
+
attn_mode=attn_mode,
|
145 |
+
window_size=window_size,
|
146 |
+
shift_window=shift_window,
|
147 |
+
qkv_bias=qkv_bias,
|
148 |
+
use_rope=use_rope,
|
149 |
+
qk_rms_norm=qk_rms_norm,
|
150 |
+
)
|
151 |
+
self.cross_attn = MultiHeadAttention(
|
152 |
+
channels,
|
153 |
+
ctx_channels=ctx_channels,
|
154 |
+
num_heads=num_heads,
|
155 |
+
type="cross",
|
156 |
+
attn_mode="full",
|
157 |
+
qkv_bias=qkv_bias,
|
158 |
+
qk_rms_norm=qk_rms_norm_cross,
|
159 |
+
)
|
160 |
+
self.mlp = FeedForwardNet(
|
161 |
+
channels,
|
162 |
+
mlp_ratio=mlp_ratio,
|
163 |
+
)
|
164 |
+
|
165 |
+
def _forward(self, x: torch.Tensor, context: torch.Tensor):
|
166 |
+
h = self.norm1(x)
|
167 |
+
h = self.self_attn(h)
|
168 |
+
x = x + h
|
169 |
+
h = self.norm2(x)
|
170 |
+
h = self.cross_attn(h, context)
|
171 |
+
x = x + h
|
172 |
+
h = self.norm3(x)
|
173 |
+
h = self.mlp(h)
|
174 |
+
x = x + h
|
175 |
+
return x
|
176 |
+
|
177 |
+
def forward(self, x: torch.Tensor, context: torch.Tensor):
|
178 |
+
if self.use_checkpoint:
|
179 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
|
180 |
+
else:
|
181 |
+
return self._forward(x, context)
|
182 |
+
|
thirdparty/TRELLIS/trellis/modules/transformer/modulated.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ..attention import MultiHeadAttention
|
5 |
+
from ..norm import LayerNorm32
|
6 |
+
from .blocks import FeedForwardNet
|
7 |
+
|
8 |
+
|
9 |
+
class ModulatedTransformerBlock(nn.Module):
|
10 |
+
"""
|
11 |
+
Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
12 |
+
"""
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
channels: int,
|
16 |
+
num_heads: int,
|
17 |
+
mlp_ratio: float = 4.0,
|
18 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
19 |
+
window_size: Optional[int] = None,
|
20 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
21 |
+
use_checkpoint: bool = False,
|
22 |
+
use_rope: bool = False,
|
23 |
+
qk_rms_norm: bool = False,
|
24 |
+
qkv_bias: bool = True,
|
25 |
+
share_mod: bool = False,
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.use_checkpoint = use_checkpoint
|
29 |
+
self.share_mod = share_mod
|
30 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
31 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
32 |
+
self.attn = MultiHeadAttention(
|
33 |
+
channels,
|
34 |
+
num_heads=num_heads,
|
35 |
+
attn_mode=attn_mode,
|
36 |
+
window_size=window_size,
|
37 |
+
shift_window=shift_window,
|
38 |
+
qkv_bias=qkv_bias,
|
39 |
+
use_rope=use_rope,
|
40 |
+
qk_rms_norm=qk_rms_norm,
|
41 |
+
)
|
42 |
+
self.mlp = FeedForwardNet(
|
43 |
+
channels,
|
44 |
+
mlp_ratio=mlp_ratio,
|
45 |
+
)
|
46 |
+
if not share_mod:
|
47 |
+
self.adaLN_modulation = nn.Sequential(
|
48 |
+
nn.SiLU(),
|
49 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
50 |
+
)
|
51 |
+
|
52 |
+
def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
53 |
+
if self.share_mod:
|
54 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
55 |
+
else:
|
56 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
57 |
+
h = self.norm1(x)
|
58 |
+
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
59 |
+
h = self.attn(h)
|
60 |
+
h = h * gate_msa.unsqueeze(1)
|
61 |
+
x = x + h
|
62 |
+
h = self.norm2(x)
|
63 |
+
h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
64 |
+
h = self.mlp(h)
|
65 |
+
h = h * gate_mlp.unsqueeze(1)
|
66 |
+
x = x + h
|
67 |
+
return x
|
68 |
+
|
69 |
+
def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
70 |
+
if self.use_checkpoint:
|
71 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
|
72 |
+
else:
|
73 |
+
return self._forward(x, mod)
|
74 |
+
|
75 |
+
|
76 |
+
class ModulatedTransformerCrossBlock(nn.Module):
|
77 |
+
"""
|
78 |
+
Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
79 |
+
"""
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
channels: int,
|
83 |
+
ctx_channels: int,
|
84 |
+
num_heads: int,
|
85 |
+
mlp_ratio: float = 4.0,
|
86 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
87 |
+
window_size: Optional[int] = None,
|
88 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
89 |
+
use_checkpoint: bool = False,
|
90 |
+
use_rope: bool = False,
|
91 |
+
qk_rms_norm: bool = False,
|
92 |
+
qk_rms_norm_cross: bool = False,
|
93 |
+
qkv_bias: bool = True,
|
94 |
+
share_mod: bool = False,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.use_checkpoint = use_checkpoint
|
98 |
+
self.share_mod = share_mod
|
99 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
100 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
101 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
102 |
+
self.self_attn = MultiHeadAttention(
|
103 |
+
channels,
|
104 |
+
num_heads=num_heads,
|
105 |
+
type="self",
|
106 |
+
attn_mode=attn_mode,
|
107 |
+
window_size=window_size,
|
108 |
+
shift_window=shift_window,
|
109 |
+
qkv_bias=qkv_bias,
|
110 |
+
use_rope=use_rope,
|
111 |
+
qk_rms_norm=qk_rms_norm,
|
112 |
+
)
|
113 |
+
self.cross_attn = MultiHeadAttention(
|
114 |
+
channels,
|
115 |
+
ctx_channels=ctx_channels,
|
116 |
+
num_heads=num_heads,
|
117 |
+
type="cross",
|
118 |
+
attn_mode="full",
|
119 |
+
qkv_bias=qkv_bias,
|
120 |
+
qk_rms_norm=qk_rms_norm_cross,
|
121 |
+
)
|
122 |
+
self.mlp = FeedForwardNet(
|
123 |
+
channels,
|
124 |
+
mlp_ratio=mlp_ratio,
|
125 |
+
)
|
126 |
+
if not share_mod:
|
127 |
+
self.adaLN_modulation = nn.Sequential(
|
128 |
+
nn.SiLU(),
|
129 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
130 |
+
)
|
131 |
+
|
132 |
+
def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
133 |
+
if self.share_mod:
|
134 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
135 |
+
else:
|
136 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
137 |
+
h = self.norm1(x)
|
138 |
+
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
139 |
+
h = self.self_attn(h)
|
140 |
+
h = h * gate_msa.unsqueeze(1)
|
141 |
+
x = x + h
|
142 |
+
h = self.norm2(x)
|
143 |
+
h = self.cross_attn(h, context)
|
144 |
+
x = x + h
|
145 |
+
h = self.norm3(x)
|
146 |
+
h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
147 |
+
h = self.mlp(h)
|
148 |
+
h = h * gate_mlp.unsqueeze(1)
|
149 |
+
x = x + h
|
150 |
+
return x
|
151 |
+
|
152 |
+
def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
153 |
+
if self.use_checkpoint:
|
154 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
|
155 |
+
else:
|
156 |
+
return self._forward(x, mod, context)
|
157 |
+
|
thirdparty/TRELLIS/trellis/modules/utils.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from ..modules import sparse as sp
|
3 |
+
|
4 |
+
FP16_MODULES = (
|
5 |
+
nn.Conv1d,
|
6 |
+
nn.Conv2d,
|
7 |
+
nn.Conv3d,
|
8 |
+
nn.ConvTranspose1d,
|
9 |
+
nn.ConvTranspose2d,
|
10 |
+
nn.ConvTranspose3d,
|
11 |
+
nn.Linear,
|
12 |
+
sp.SparseConv3d,
|
13 |
+
sp.SparseInverseConv3d,
|
14 |
+
sp.SparseLinear,
|
15 |
+
)
|
16 |
+
|
17 |
+
def convert_module_to_f16(l):
|
18 |
+
"""
|
19 |
+
Convert primitive modules to float16.
|
20 |
+
"""
|
21 |
+
if isinstance(l, FP16_MODULES):
|
22 |
+
for p in l.parameters():
|
23 |
+
p.data = p.data.half()
|
24 |
+
|
25 |
+
|
26 |
+
def convert_module_to_f32(l):
|
27 |
+
"""
|
28 |
+
Convert primitive modules to float32, undoing convert_module_to_f16().
|
29 |
+
"""
|
30 |
+
if isinstance(l, FP16_MODULES):
|
31 |
+
for p in l.parameters():
|
32 |
+
p.data = p.data.float()
|
33 |
+
|
34 |
+
|
35 |
+
def zero_module(module):
|
36 |
+
"""
|
37 |
+
Zero out the parameters of a module and return it.
|
38 |
+
"""
|
39 |
+
for p in module.parameters():
|
40 |
+
p.detach().zero_()
|
41 |
+
return module
|
42 |
+
|
43 |
+
|
44 |
+
def scale_module(module, scale):
|
45 |
+
"""
|
46 |
+
Scale the parameters of a module and return it.
|
47 |
+
"""
|
48 |
+
for p in module.parameters():
|
49 |
+
p.detach().mul_(scale)
|
50 |
+
return module
|
51 |
+
|
52 |
+
|
53 |
+
def modulate(x, shift, scale):
|
54 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
thirdparty/TRELLIS/trellis/pipelines/__init__.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import samplers
|
2 |
+
from .trellis_image_to_3d import TrellisImageTo3DPipeline
|
3 |
+
|
4 |
+
|
5 |
+
def from_pretrained(path: str):
|
6 |
+
"""
|
7 |
+
Load a pipeline from a model folder or a Hugging Face model hub.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
path: The path to the model. Can be either local path or a Hugging Face model name.
|
11 |
+
"""
|
12 |
+
import os
|
13 |
+
import json
|
14 |
+
is_local = os.path.exists(f"{path}/pipeline.json")
|
15 |
+
|
16 |
+
if is_local:
|
17 |
+
config_file = f"{path}/pipeline.json"
|
18 |
+
else:
|
19 |
+
from huggingface_hub import hf_hub_download
|
20 |
+
config_file = hf_hub_download(path, "pipeline.json")
|
21 |
+
|
22 |
+
with open(config_file, 'r') as f:
|
23 |
+
config = json.load(f)
|
24 |
+
return globals()[config['name']].from_pretrained(path)
|
thirdparty/TRELLIS/trellis/pipelines/base.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from .. import models
|
5 |
+
|
6 |
+
|
7 |
+
class Pipeline:
|
8 |
+
"""
|
9 |
+
A base class for pipelines.
|
10 |
+
"""
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
models: dict[str, nn.Module] = None,
|
14 |
+
):
|
15 |
+
if models is None:
|
16 |
+
return
|
17 |
+
self.models = models
|
18 |
+
for model in self.models.values():
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def from_pretrained(path: str) -> "Pipeline":
|
23 |
+
"""
|
24 |
+
Load a pretrained model.
|
25 |
+
"""
|
26 |
+
import os
|
27 |
+
import json
|
28 |
+
is_local = os.path.exists(f"{path}/pipeline.json")
|
29 |
+
|
30 |
+
if is_local:
|
31 |
+
config_file = f"{path}/pipeline.json"
|
32 |
+
else:
|
33 |
+
from huggingface_hub import hf_hub_download
|
34 |
+
config_file = hf_hub_download(path, "pipeline.json")
|
35 |
+
|
36 |
+
with open(config_file, 'r') as f:
|
37 |
+
args = json.load(f)['args']
|
38 |
+
|
39 |
+
_models = {
|
40 |
+
k: models.from_pretrained(f"{path}/{v}")
|
41 |
+
for k, v in args['models'].items()
|
42 |
+
}
|
43 |
+
|
44 |
+
new_pipeline = Pipeline(_models)
|
45 |
+
new_pipeline._pretrained_args = args
|
46 |
+
return new_pipeline
|
47 |
+
|
48 |
+
@property
|
49 |
+
def device(self) -> torch.device:
|
50 |
+
for model in self.models.values():
|
51 |
+
if hasattr(model, 'device'):
|
52 |
+
return model.device
|
53 |
+
for model in self.models.values():
|
54 |
+
if hasattr(model, 'parameters'):
|
55 |
+
return next(model.parameters()).device
|
56 |
+
raise RuntimeError("No device found.")
|
57 |
+
|
58 |
+
def to(self, device: torch.device) -> None:
|
59 |
+
for model in self.models.values():
|
60 |
+
model.to(device)
|
61 |
+
|
62 |
+
def cuda(self) -> None:
|
63 |
+
self.to(torch.device("cuda"))
|
64 |
+
|
65 |
+
def cpu(self) -> None:
|
66 |
+
self.to(torch.device("cpu"))
|
thirdparty/TRELLIS/trellis/pipelines/samplers/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .base import Sampler
|
2 |
+
from .flow_euler import FlowEulerSampler, FlowEulerCfgSampler, FlowEulerGuidanceIntervalSampler
|
thirdparty/TRELLIS/trellis/pipelines/samplers/base.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
|
4 |
+
|
5 |
+
class Sampler(ABC):
|
6 |
+
"""
|
7 |
+
A base class for samplers.
|
8 |
+
"""
|
9 |
+
|
10 |
+
@abstractmethod
|
11 |
+
def sample(
|
12 |
+
self,
|
13 |
+
model,
|
14 |
+
**kwargs
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
Sample from a model.
|
18 |
+
"""
|
19 |
+
pass
|
20 |
+
|
thirdparty/TRELLIS/trellis/pipelines/samplers/classifier_free_guidance_mixin.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
|
4 |
+
class ClassifierFreeGuidanceSamplerMixin:
|
5 |
+
"""
|
6 |
+
A mixin class for samplers that apply classifier-free guidance.
|
7 |
+
"""
|
8 |
+
|
9 |
+
def _inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, **kwargs):
|
10 |
+
pred = super()._inference_model(model, x_t, t, cond, **kwargs)
|
11 |
+
neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
|
12 |
+
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
thirdparty/TRELLIS/trellis/pipelines/samplers/flow_euler.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from easydict import EasyDict as edict
|
6 |
+
from .base import Sampler
|
7 |
+
from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
|
8 |
+
from .guidance_interval_mixin import GuidanceIntervalSamplerMixin
|
9 |
+
|
10 |
+
|
11 |
+
class FlowEulerSampler(Sampler):
|
12 |
+
"""
|
13 |
+
Generate samples from a flow-matching model using Euler sampling.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
sigma_min: The minimum scale of noise in flow.
|
17 |
+
"""
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
sigma_min: float,
|
21 |
+
):
|
22 |
+
self.sigma_min = sigma_min
|
23 |
+
|
24 |
+
def _eps_to_xstart(self, x_t, t, eps):
|
25 |
+
assert x_t.shape == eps.shape
|
26 |
+
return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)
|
27 |
+
|
28 |
+
def _xstart_to_eps(self, x_t, t, x_0):
|
29 |
+
assert x_t.shape == x_0.shape
|
30 |
+
return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)
|
31 |
+
|
32 |
+
def _v_to_xstart_eps(self, x_t, t, v):
|
33 |
+
assert x_t.shape == v.shape
|
34 |
+
eps = (1 - t) * v + x_t
|
35 |
+
x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
|
36 |
+
return x_0, eps
|
37 |
+
|
38 |
+
def _inference_model(self, model, x_t, t, cond=None, **kwargs):
|
39 |
+
t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
|
40 |
+
return model(x_t, t, cond, **kwargs)
|
41 |
+
|
42 |
+
def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
|
43 |
+
pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
|
44 |
+
pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
|
45 |
+
return pred_x_0, pred_eps, pred_v
|
46 |
+
|
47 |
+
@torch.no_grad()
|
48 |
+
def sample_once(
|
49 |
+
self,
|
50 |
+
model,
|
51 |
+
x_t,
|
52 |
+
t: float,
|
53 |
+
t_prev: float,
|
54 |
+
cond: Optional[Any] = None,
|
55 |
+
**kwargs
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
Sample x_{t-1} from the model using Euler method.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
model: The model to sample from.
|
62 |
+
x_t: The [N x C x ...] tensor of noisy inputs at time t.
|
63 |
+
t: The current timestep.
|
64 |
+
t_prev: The previous timestep.
|
65 |
+
cond: conditional information.
|
66 |
+
**kwargs: Additional arguments for model inference.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
a dict containing the following
|
70 |
+
- 'pred_x_prev': x_{t-1}.
|
71 |
+
- 'pred_x_0': a prediction of x_0.
|
72 |
+
"""
|
73 |
+
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
|
74 |
+
pred_x_prev = x_t - (t - t_prev) * pred_v
|
75 |
+
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def sample(
|
79 |
+
self,
|
80 |
+
model,
|
81 |
+
noise,
|
82 |
+
cond: Optional[Any] = None,
|
83 |
+
steps: int = 50,
|
84 |
+
rescale_t: float = 1.0,
|
85 |
+
verbose: bool = True,
|
86 |
+
**kwargs
|
87 |
+
):
|
88 |
+
"""
|
89 |
+
Generate samples from the model using Euler method.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
model: The model to sample from.
|
93 |
+
noise: The initial noise tensor.
|
94 |
+
cond: conditional information.
|
95 |
+
steps: The number of steps to sample.
|
96 |
+
rescale_t: The rescale factor for t.
|
97 |
+
verbose: If True, show a progress bar.
|
98 |
+
**kwargs: Additional arguments for model_inference.
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
a dict containing the following
|
102 |
+
- 'samples': the model samples.
|
103 |
+
- 'pred_x_t': a list of prediction of x_t.
|
104 |
+
- 'pred_x_0': a list of prediction of x_0.
|
105 |
+
"""
|
106 |
+
sample = noise
|
107 |
+
t_seq = np.linspace(1, 0, steps + 1)
|
108 |
+
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
|
109 |
+
t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
|
110 |
+
ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
|
111 |
+
for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
|
112 |
+
out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
|
113 |
+
sample = out.pred_x_prev
|
114 |
+
ret.pred_x_t.append(out.pred_x_prev)
|
115 |
+
ret.pred_x_0.append(out.pred_x_0)
|
116 |
+
ret.samples = sample
|
117 |
+
return ret
|
118 |
+
|
119 |
+
|
120 |
+
class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
|
121 |
+
"""
|
122 |
+
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
|
123 |
+
"""
|
124 |
+
@torch.no_grad()
|
125 |
+
def sample(
|
126 |
+
self,
|
127 |
+
model,
|
128 |
+
noise,
|
129 |
+
cond,
|
130 |
+
neg_cond,
|
131 |
+
steps: int = 50,
|
132 |
+
rescale_t: float = 1.0,
|
133 |
+
cfg_strength: float = 3.0,
|
134 |
+
verbose: bool = True,
|
135 |
+
**kwargs
|
136 |
+
):
|
137 |
+
"""
|
138 |
+
Generate samples from the model using Euler method.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
model: The model to sample from.
|
142 |
+
noise: The initial noise tensor.
|
143 |
+
cond: conditional information.
|
144 |
+
neg_cond: negative conditional information.
|
145 |
+
steps: The number of steps to sample.
|
146 |
+
rescale_t: The rescale factor for t.
|
147 |
+
cfg_strength: The strength of classifier-free guidance.
|
148 |
+
verbose: If True, show a progress bar.
|
149 |
+
**kwargs: Additional arguments for model_inference.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
a dict containing the following
|
153 |
+
- 'samples': the model samples.
|
154 |
+
- 'pred_x_t': a list of prediction of x_t.
|
155 |
+
- 'pred_x_0': a list of prediction of x_0.
|
156 |
+
"""
|
157 |
+
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)
|
158 |
+
|
159 |
+
|
160 |
+
class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
|
161 |
+
"""
|
162 |
+
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
|
163 |
+
"""
|
164 |
+
@torch.no_grad()
|
165 |
+
def sample(
|
166 |
+
self,
|
167 |
+
model,
|
168 |
+
noise,
|
169 |
+
cond,
|
170 |
+
neg_cond,
|
171 |
+
steps: int = 50,
|
172 |
+
rescale_t: float = 1.0,
|
173 |
+
cfg_strength: float = 3.0,
|
174 |
+
cfg_interval: Tuple[float, float] = (0.0, 1.0),
|
175 |
+
verbose: bool = True,
|
176 |
+
**kwargs
|
177 |
+
):
|
178 |
+
"""
|
179 |
+
Generate samples from the model using Euler method.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
model: The model to sample from.
|
183 |
+
noise: The initial noise tensor.
|
184 |
+
cond: conditional information.
|
185 |
+
neg_cond: negative conditional information.
|
186 |
+
steps: The number of steps to sample.
|
187 |
+
rescale_t: The rescale factor for t.
|
188 |
+
cfg_strength: The strength of classifier-free guidance.
|
189 |
+
cfg_interval: The interval for classifier-free guidance.
|
190 |
+
verbose: If True, show a progress bar.
|
191 |
+
**kwargs: Additional arguments for model_inference.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
a dict containing the following
|
195 |
+
- 'samples': the model samples.
|
196 |
+
- 'pred_x_t': a list of prediction of x_t.
|
197 |
+
- 'pred_x_0': a list of prediction of x_0.
|
198 |
+
"""
|
199 |
+
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
|
thirdparty/TRELLIS/trellis/pipelines/samplers/guidance_interval_mixin.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
|
4 |
+
class GuidanceIntervalSamplerMixin:
|
5 |
+
"""
|
6 |
+
A mixin class for samplers that apply classifier-free guidance with interval.
|
7 |
+
"""
|
8 |
+
|
9 |
+
def _inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
|
10 |
+
if cfg_interval[0] <= t <= cfg_interval[1]:
|
11 |
+
pred = super()._inference_model(model, x_t, t, cond, **kwargs)
|
12 |
+
neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
|
13 |
+
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
14 |
+
else:
|
15 |
+
return super()._inference_model(model, x_t, t, cond, **kwargs)
|
thirdparty/TRELLIS/trellis/pipelines/trellis_image_to_3d.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
from contextlib import contextmanager
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
from easydict import EasyDict as edict
|
9 |
+
from torchvision import transforms
|
10 |
+
from PIL import Image
|
11 |
+
import rembg
|
12 |
+
from .base import Pipeline
|
13 |
+
from . import samplers
|
14 |
+
from ..modules import sparse as sp
|
15 |
+
from ..representations import Gaussian, Strivec, MeshExtractResult
|
16 |
+
|
17 |
+
|
18 |
+
class TrellisImageTo3DPipeline(Pipeline):
|
19 |
+
"""
|
20 |
+
Pipeline for inferring Trellis image-to-3D models.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
models (dict[str, nn.Module]): The models to use in the pipeline.
|
24 |
+
sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure.
|
25 |
+
slat_sampler (samplers.Sampler): The sampler for the structured latent.
|
26 |
+
slat_normalization (dict): The normalization parameters for the structured latent.
|
27 |
+
image_cond_model (str): The name of the image conditioning model.
|
28 |
+
"""
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
models: dict[str, nn.Module] = None,
|
32 |
+
sparse_structure_sampler: samplers.Sampler = None,
|
33 |
+
slat_sampler: samplers.Sampler = None,
|
34 |
+
slat_normalization: dict = None,
|
35 |
+
image_cond_model: str = None,
|
36 |
+
):
|
37 |
+
if models is None:
|
38 |
+
return
|
39 |
+
super().__init__(models)
|
40 |
+
self.sparse_structure_sampler = sparse_structure_sampler
|
41 |
+
self.slat_sampler = slat_sampler
|
42 |
+
self.sparse_structure_sampler_params = {}
|
43 |
+
self.slat_sampler_params = {}
|
44 |
+
self.slat_normalization = slat_normalization
|
45 |
+
self.rembg_session = None
|
46 |
+
self._init_image_cond_model(image_cond_model)
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def from_pretrained(path: str) -> "TrellisImageTo3DPipeline":
|
50 |
+
"""
|
51 |
+
Load a pretrained model.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
path (str): The path to the model. Can be either local path or a Hugging Face repository.
|
55 |
+
"""
|
56 |
+
pipeline = super(TrellisImageTo3DPipeline, TrellisImageTo3DPipeline).from_pretrained(path)
|
57 |
+
new_pipeline = TrellisImageTo3DPipeline()
|
58 |
+
new_pipeline.__dict__ = pipeline.__dict__
|
59 |
+
args = pipeline._pretrained_args
|
60 |
+
|
61 |
+
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
|
62 |
+
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
|
63 |
+
|
64 |
+
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
|
65 |
+
new_pipeline.slat_sampler_params = args['slat_sampler']['params']
|
66 |
+
|
67 |
+
new_pipeline.slat_normalization = args['slat_normalization']
|
68 |
+
|
69 |
+
new_pipeline._init_image_cond_model(args['image_cond_model'])
|
70 |
+
|
71 |
+
return new_pipeline
|
72 |
+
|
73 |
+
def _init_image_cond_model(self, name: str):
|
74 |
+
"""
|
75 |
+
Initialize the image conditioning model.
|
76 |
+
"""
|
77 |
+
dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True)
|
78 |
+
dinov2_model.eval()
|
79 |
+
self.models['image_cond_model'] = dinov2_model
|
80 |
+
transform = transforms.Compose([
|
81 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
82 |
+
])
|
83 |
+
self.image_cond_model_transform = transform
|
84 |
+
|
85 |
+
def preprocess_image(self, input: Image.Image) -> Image.Image:
|
86 |
+
"""
|
87 |
+
Preprocess the input image.
|
88 |
+
"""
|
89 |
+
# if has alpha channel, use it directly; otherwise, remove background
|
90 |
+
has_alpha = False
|
91 |
+
if input.mode == 'RGBA':
|
92 |
+
alpha = np.array(input)[:, :, 3]
|
93 |
+
if not np.all(alpha == 255):
|
94 |
+
has_alpha = True
|
95 |
+
if has_alpha:
|
96 |
+
output = input
|
97 |
+
else:
|
98 |
+
input = input.convert('RGB')
|
99 |
+
max_size = max(input.size)
|
100 |
+
scale = min(1, 1024 / max_size)
|
101 |
+
if scale < 1:
|
102 |
+
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
|
103 |
+
if getattr(self, 'rembg_session', None) is None:
|
104 |
+
self.rembg_session = rembg.new_session('u2net')
|
105 |
+
output = rembg.remove(input, session=self.rembg_session)
|
106 |
+
output_np = np.array(output)
|
107 |
+
alpha = output_np[:, :, 3]
|
108 |
+
bbox = np.argwhere(alpha > 0.8 * 255)
|
109 |
+
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
|
110 |
+
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
111 |
+
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
|
112 |
+
size = int(size * 1.2)
|
113 |
+
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
|
114 |
+
output = output.crop(bbox) # type: ignore
|
115 |
+
output = output.resize((518, 518), Image.Resampling.LANCZOS)
|
116 |
+
output = np.array(output).astype(np.float32) / 255
|
117 |
+
output = output[:, :, :3] * output[:, :, 3:4]
|
118 |
+
output = Image.fromarray((output * 255).astype(np.uint8))
|
119 |
+
return output
|
120 |
+
|
121 |
+
@torch.no_grad()
|
122 |
+
def encode_image(self, image: Union[torch.Tensor, list[Image.Image]]) -> torch.Tensor:
|
123 |
+
"""
|
124 |
+
Encode the image.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
image (Union[torch.Tensor, list[Image.Image]]): The image to encode
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
torch.Tensor: The encoded features.
|
131 |
+
"""
|
132 |
+
if isinstance(image, torch.Tensor):
|
133 |
+
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
|
134 |
+
elif isinstance(image, list):
|
135 |
+
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
|
136 |
+
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
|
137 |
+
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
|
138 |
+
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
|
139 |
+
image = torch.stack(image).to(self.device)
|
140 |
+
else:
|
141 |
+
raise ValueError(f"Unsupported type of image: {type(image)}")
|
142 |
+
|
143 |
+
image = self.image_cond_model_transform(image).to(self.device)
|
144 |
+
features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
|
145 |
+
patchtokens = F.layer_norm(features, features.shape[-1:])
|
146 |
+
return patchtokens
|
147 |
+
|
148 |
+
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
|
149 |
+
"""
|
150 |
+
Get the conditioning information for the model.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
image (Union[torch.Tensor, list[Image.Image]]): The image prompts.
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
dict: The conditioning information
|
157 |
+
"""
|
158 |
+
cond = self.encode_image(image)
|
159 |
+
neg_cond = torch.zeros_like(cond)
|
160 |
+
return {
|
161 |
+
'cond': cond,
|
162 |
+
'neg_cond': neg_cond,
|
163 |
+
}
|
164 |
+
|
165 |
+
def sample_sparse_structure(
|
166 |
+
self,
|
167 |
+
cond: dict,
|
168 |
+
num_samples: int = 1,
|
169 |
+
sampler_params: dict = {},
|
170 |
+
) -> torch.Tensor:
|
171 |
+
"""
|
172 |
+
Sample sparse structures with the given conditioning.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
cond (dict): The conditioning information.
|
176 |
+
num_samples (int): The number of samples to generate.
|
177 |
+
sampler_params (dict): Additional parameters for the sampler.
|
178 |
+
"""
|
179 |
+
# Sample occupancy latent
|
180 |
+
flow_model = self.models['sparse_structure_flow_model']
|
181 |
+
reso = flow_model.resolution
|
182 |
+
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
|
183 |
+
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
|
184 |
+
z_s = self.sparse_structure_sampler.sample(
|
185 |
+
flow_model,
|
186 |
+
noise,
|
187 |
+
**cond,
|
188 |
+
**sampler_params,
|
189 |
+
verbose=True
|
190 |
+
).samples
|
191 |
+
|
192 |
+
# Decode occupancy latent
|
193 |
+
decoder = self.models['sparse_structure_decoder']
|
194 |
+
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
|
195 |
+
|
196 |
+
return coords
|
197 |
+
|
198 |
+
def decode_slat(
|
199 |
+
self,
|
200 |
+
slat: sp.SparseTensor,
|
201 |
+
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
|
202 |
+
) -> dict:
|
203 |
+
"""
|
204 |
+
Decode the structured latent.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
slat (sp.SparseTensor): The structured latent.
|
208 |
+
formats (List[str]): The formats to decode the structured latent to.
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
dict: The decoded structured latent.
|
212 |
+
"""
|
213 |
+
ret = {}
|
214 |
+
if 'mesh' in formats:
|
215 |
+
ret['mesh'] = self.models['slat_decoder_mesh'](slat)
|
216 |
+
if 'gaussian' in formats:
|
217 |
+
ret['gaussian'] = self.models['slat_decoder_gs'](slat)
|
218 |
+
if 'radiance_field' in formats:
|
219 |
+
ret['radiance_field'] = self.models['slat_decoder_rf'](slat)
|
220 |
+
return ret
|
221 |
+
|
222 |
+
def sample_slat(
|
223 |
+
self,
|
224 |
+
cond: dict,
|
225 |
+
coords: torch.Tensor,
|
226 |
+
sampler_params: dict = {},
|
227 |
+
) -> sp.SparseTensor:
|
228 |
+
"""
|
229 |
+
Sample structured latent with the given conditioning.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
cond (dict): The conditioning information.
|
233 |
+
coords (torch.Tensor): The coordinates of the sparse structure.
|
234 |
+
sampler_params (dict): Additional parameters for the sampler.
|
235 |
+
"""
|
236 |
+
# Sample structured latent
|
237 |
+
flow_model = self.models['slat_flow_model']
|
238 |
+
noise = sp.SparseTensor(
|
239 |
+
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
240 |
+
coords=coords,
|
241 |
+
)
|
242 |
+
sampler_params = {**self.slat_sampler_params, **sampler_params}
|
243 |
+
slat = self.slat_sampler.sample(
|
244 |
+
flow_model,
|
245 |
+
noise,
|
246 |
+
**cond,
|
247 |
+
**sampler_params,
|
248 |
+
verbose=True
|
249 |
+
).samples
|
250 |
+
|
251 |
+
std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
|
252 |
+
mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
|
253 |
+
slat = slat * std + mean
|
254 |
+
|
255 |
+
return slat
|
256 |
+
|
257 |
+
@torch.no_grad()
|
258 |
+
def run(
|
259 |
+
self,
|
260 |
+
image: Image.Image,
|
261 |
+
num_samples: int = 1,
|
262 |
+
seed: int = 42,
|
263 |
+
sparse_structure_sampler_params: dict = {},
|
264 |
+
slat_sampler_params: dict = {},
|
265 |
+
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
|
266 |
+
preprocess_image: bool = True,
|
267 |
+
) -> dict:
|
268 |
+
"""
|
269 |
+
Run the pipeline.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
image (Image.Image): The image prompt.
|
273 |
+
num_samples (int): The number of samples to generate.
|
274 |
+
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
|
275 |
+
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
|
276 |
+
preprocess_image (bool): Whether to preprocess the image.
|
277 |
+
"""
|
278 |
+
if preprocess_image:
|
279 |
+
image = self.preprocess_image(image)
|
280 |
+
cond = self.get_cond([image])
|
281 |
+
torch.manual_seed(seed)
|
282 |
+
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
283 |
+
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
284 |
+
return self.decode_slat(slat, formats)
|
285 |
+
|
286 |
+
@contextmanager
|
287 |
+
def inject_sampler_multi_image(
|
288 |
+
self,
|
289 |
+
sampler_name: str,
|
290 |
+
num_images: int,
|
291 |
+
num_steps: int,
|
292 |
+
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
|
293 |
+
):
|
294 |
+
"""
|
295 |
+
Inject a sampler with multiple images as condition.
|
296 |
+
|
297 |
+
Args:
|
298 |
+
sampler_name (str): The name of the sampler to inject.
|
299 |
+
num_images (int): The number of images to condition on.
|
300 |
+
num_steps (int): The number of steps to run the sampler for.
|
301 |
+
"""
|
302 |
+
sampler = getattr(self, sampler_name)
|
303 |
+
setattr(sampler, f'_old_inference_model', sampler._inference_model)
|
304 |
+
|
305 |
+
if mode == 'stochastic':
|
306 |
+
if num_images > num_steps:
|
307 |
+
print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
|
308 |
+
"This may lead to performance degradation.\033[0m")
|
309 |
+
|
310 |
+
cond_indices = (np.arange(num_steps) % num_images).tolist()
|
311 |
+
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
|
312 |
+
cond_idx = cond_indices.pop(0)
|
313 |
+
cond_i = cond[cond_idx:cond_idx+1]
|
314 |
+
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
|
315 |
+
|
316 |
+
elif mode =='multidiffusion':
|
317 |
+
from .samplers import FlowEulerSampler
|
318 |
+
def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
|
319 |
+
if cfg_interval[0] <= t <= cfg_interval[1]:
|
320 |
+
preds = []
|
321 |
+
for i in range(len(cond)):
|
322 |
+
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
|
323 |
+
pred = sum(preds) / len(preds)
|
324 |
+
neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
|
325 |
+
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
326 |
+
else:
|
327 |
+
preds = []
|
328 |
+
for i in range(len(cond)):
|
329 |
+
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
|
330 |
+
pred = sum(preds) / len(preds)
|
331 |
+
return pred
|
332 |
+
|
333 |
+
else:
|
334 |
+
raise ValueError(f"Unsupported mode: {mode}")
|
335 |
+
|
336 |
+
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
|
337 |
+
|
338 |
+
yield
|
339 |
+
|
340 |
+
sampler._inference_model = sampler._old_inference_model
|
341 |
+
delattr(sampler, f'_old_inference_model')
|
342 |
+
|
343 |
+
@torch.no_grad()
|
344 |
+
def run_multi_image(
|
345 |
+
self,
|
346 |
+
images: List[Image.Image],
|
347 |
+
num_samples: int = 1,
|
348 |
+
seed: int = 42,
|
349 |
+
sparse_structure_sampler_params: dict = {},
|
350 |
+
slat_sampler_params: dict = {},
|
351 |
+
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
|
352 |
+
preprocess_image: bool = True,
|
353 |
+
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
|
354 |
+
) -> dict:
|
355 |
+
"""
|
356 |
+
Run the pipeline with multiple images as condition
|
357 |
+
|
358 |
+
Args:
|
359 |
+
images (List[Image.Image]): The multi-view images of the assets
|
360 |
+
num_samples (int): The number of samples to generate.
|
361 |
+
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
|
362 |
+
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
|
363 |
+
preprocess_image (bool): Whether to preprocess the image.
|
364 |
+
"""
|
365 |
+
if preprocess_image:
|
366 |
+
images = [self.preprocess_image(image) for image in images]
|
367 |
+
cond = self.get_cond(images)
|
368 |
+
cond['neg_cond'] = cond['neg_cond'][:1]
|
369 |
+
torch.manual_seed(seed)
|
370 |
+
ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
|
371 |
+
with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
|
372 |
+
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
|
373 |
+
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
|
374 |
+
with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
|
375 |
+
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
376 |
+
return self.decode_slat(slat, formats)
|