Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,053 Bytes
9b53de6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import numpy as np
import copy
import math
from ipywidgets import interactive, HBox, VBox, FloatLogSlider, IntSlider
import torch
import nvdiffrast.torch as dr
import kaolin as kal
import util
###############################################################################
# Functions adapted from https://github.com/NVlabs/nvdiffrec
###############################################################################
def get_random_camera_batch(batch_size, fovy = np.deg2rad(45), iter_res=[512,512], cam_near_far=[0.1, 1000.0], cam_radius=3.0, device="cuda", use_kaolin=True):
if use_kaolin:
camera_pos = torch.stack(kal.ops.coords.spherical2cartesian(
*kal.ops.random.sample_spherical_coords((batch_size,), azimuth_low=0., azimuth_high=math.pi * 2,
elevation_low=-math.pi / 2., elevation_high=math.pi / 2., device='cuda'),
cam_radius
), dim=-1)
return kal.render.camera.Camera.from_args(
eye=camera_pos + torch.rand((batch_size, 1), device='cuda') * 0.5 - 0.25,
at=torch.zeros(batch_size, 3),
up=torch.tensor([[0., 1., 0.]]),
fov=fovy,
near=cam_near_far[0], far=cam_near_far[1],
height=iter_res[0], width=iter_res[1],
device='cuda'
)
else:
def get_random_camera():
proj_mtx = util.perspective(fovy, iter_res[1] / iter_res[0], cam_near_far[0], cam_near_far[1])
mv = util.translate(0, 0, -cam_radius) @ util.random_rotation_translation(0.25)
mvp = proj_mtx @ mv
return mv, mvp
mv_batch = []
mvp_batch = []
for i in range(batch_size):
mv, mvp = get_random_camera()
mv_batch.append(mv)
mvp_batch.append(mvp)
return torch.stack(mv_batch).to(device), torch.stack(mvp_batch).to(device)
def get_rotate_camera(itr, fovy = np.deg2rad(45), iter_res=[512,512], cam_near_far=[0.1, 1000.0], cam_radius=3.0, device="cuda", use_kaolin=True):
if use_kaolin:
ang = (itr / 10) * np.pi * 2
camera_pos = torch.stack(kal.ops.coords.spherical2cartesian(torch.tensor(ang), torch.tensor(0.4), -torch.tensor(cam_radius)))
return kal.render.camera.Camera.from_args(
eye=camera_pos,
at=torch.zeros(3),
up=torch.tensor([0., 1., 0.]),
fov=fovy,
near=cam_near_far[0], far=cam_near_far[1],
height=iter_res[0], width=iter_res[1],
device='cuda'
)
else:
proj_mtx = util.perspective(fovy, iter_res[1] / iter_res[0], cam_near_far[0], cam_near_far[1])
# Smooth rotation for display.
ang = (itr / 10) * np.pi * 2
mv = util.translate(0, 0, -cam_radius) @ (util.rotate_x(-0.4) @ util.rotate_y(ang))
mvp = proj_mtx @ mv
return mv.to(device), mvp.to(device)
glctx = dr.RasterizeGLContext()
def render_mesh(mesh, camera, iter_res, return_types = ["mask", "depth"], white_bg=False, wireframe_thickness=0.4):
vertices_camera = camera.extrinsics.transform(mesh.vertices)
face_vertices_camera = kal.ops.mesh.index_vertices_by_faces(
vertices_camera, mesh.faces
)
# Projection: nvdiffrast take clip coordinates as input to apply barycentric perspective correction.
# Using `camera.intrinsics.transform(vertices_camera) would return the normalized device coordinates.
proj = camera.projection_matrix().unsqueeze(1)
proj[:, :, 1, 1] = -proj[:, :, 1, 1]
homogeneous_vecs = kal.render.camera.up_to_homogeneous(
vertices_camera
)
vertices_clip = (proj @ homogeneous_vecs.unsqueeze(-1)).squeeze(-1)
faces_int = mesh.faces.int()
rast, _ = dr.rasterize(
glctx, vertices_clip, faces_int, iter_res)
out_dict = {}
for type in return_types:
if type == "mask" :
img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int)
elif type == "depth":
img = dr.interpolate(homogeneous_vecs, rast, faces_int)[0]
elif type == "wireframe":
img = torch.logical_or(
torch.logical_or(rast[..., 0] < wireframe_thickness, rast[..., 1] < wireframe_thickness),
(rast[..., 0] + rast[..., 1]) > (1. - wireframe_thickness)
).unsqueeze(-1)
elif type == "normals" :
img = dr.interpolate(
mesh.face_normals.reshape(len(mesh), -1, 3), rast,
torch.arange(mesh.faces.shape[0] * 3, device='cuda', dtype=torch.int).reshape(-1, 3)
)[0]
if white_bg:
bg = torch.ones_like(img)
alpha = (rast[..., -1:] > 0).float()
img = torch.lerp(bg, img, alpha)
out_dict[type] = img
return out_dict
def render_mesh_paper(mesh, mv, mvp, iter_res, return_types = ["mask", "depth"], white_bg=False):
'''
The rendering function used to produce the results in the paper.
'''
v_pos_clip = util.xfm_points(mesh.vertices.unsqueeze(0), mvp) # Rotate it to camera coordinates
rast, db = dr.rasterize(
dr.RasterizeGLContext(), v_pos_clip, mesh.faces.int(), iter_res)
out_dict = {}
for type in return_types:
if type == "mask" :
img = dr.antialias((rast[..., -1:] > 0).float(), rast, v_pos_clip, mesh.faces.int())
elif type == "depth":
v_pos_cam = util.xfm_points(mesh.vertices.unsqueeze(0), mv)
img, _ = util.interpolate(v_pos_cam, rast, mesh.faces.int())
elif type == "normal" :
normal_indices = (torch.arange(0, mesh.nrm.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
img, _ = util.interpolate(mesh.nrm.unsqueeze(0).contiguous(), rast, normal_indices.int())
elif type == "vertex_normal":
img, _ = util.interpolate(mesh.v_nrm.unsqueeze(0).contiguous(), rast, mesh.faces.int())
img = dr.antialias((img + 1) * 0.5, rast, v_pos_clip, mesh.faces.int())
if white_bg:
bg = torch.ones_like(img)
alpha = (rast[..., -1:] > 0).float()
img = torch.lerp(bg, img, alpha)
out_dict[type] = img
return out_dict
class SplitVisualizer():
def __init__(self, lh_mesh, rh_mesh, height, width):
self.lh_mesh = lh_mesh
self.rh_mesh = rh_mesh
self.height = height
self.width = width
self.wireframe_thickness = 0.4
def render(self, camera):
lh_outputs = render_mesh(
self.lh_mesh, camera, (self.height, self.width),
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness
)
rh_outputs = render_mesh(
self.rh_mesh, camera, (self.height, self.width),
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness
)
outputs = {
k: torch.cat(
[lh_outputs[k][0].permute(1, 0, 2), rh_outputs[k][0].permute(1, 0, 2)],
dim=0
).permute(1, 0, 2) for k in ["normals", "wireframe"]
}
return {
'img': (outputs['wireframe'] * ((outputs['normals'] + 1.) / 2.) * 255).to(torch.uint8),
'normals': outputs['normals']
}
def show(self, init_camera):
visualizer = kal.visualize.IpyTurntableVisualizer(
self.height, self.width * 2, copy.deepcopy(init_camera), self.render,
max_fps=24, world_up_axis=1)
def slider_callback(new_wireframe_thickness):
"""ipywidgets sliders callback"""
with visualizer.out: # This is in case of bug
self.wireframe_thickness = new_wireframe_thickness
# this is how we request a new update
visualizer.render_update()
wireframe_thickness_slider = FloatLogSlider(
value=self.wireframe_thickness,
base=10,
min=-3,
max=-0.4,
step=0.1,
description='wireframe_thickness',
continuous_update=True,
readout=True,
readout_format='.3f',
)
interactive_slider = interactive(
slider_callback,
new_wireframe_thickness=wireframe_thickness_slider,
)
full_output = VBox([visualizer.canvas, interactive_slider])
display(full_output, visualizer.out)
class TimelineVisualizer():
def __init__(self, meshes, height, width):
self.meshes = meshes
self.height = height
self.width = width
self.wireframe_thickness = 0.4
self.idx = len(meshes) - 1
def render(self, camera):
outputs = render_mesh(
self.meshes[self.idx], camera, (self.height, self.width),
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness
)
return {
'img': (outputs['wireframe'] * ((outputs['normals'] + 1.) / 2.) * 255).to(torch.uint8)[0],
'normals': outputs['normals'][0]
}
def show(self, init_camera):
visualizer = kal.visualize.IpyTurntableVisualizer(
self.height, self.width, copy.deepcopy(init_camera), self.render,
max_fps=24, world_up_axis=1)
def slider_callback(new_wireframe_thickness, new_idx):
"""ipywidgets sliders callback"""
with visualizer.out: # This is in case of bug
self.wireframe_thickness = new_wireframe_thickness
self.idx = new_idx
# this is how we request a new update
visualizer.render_update()
wireframe_thickness_slider = FloatLogSlider(
value=self.wireframe_thickness,
base=10,
min=-3,
max=-0.4,
step=0.1,
description='wireframe_thickness',
continuous_update=True,
readout=True,
readout_format='.3f',
)
idx_slider = IntSlider(
value=self.idx,
min=0,
max=len(self.meshes) - 1,
description='idx',
continuous_update=True,
readout=True
)
interactive_slider = interactive(
slider_callback,
new_wireframe_thickness=wireframe_thickness_slider,
new_idx=idx_slider
)
full_output = HBox([visualizer.canvas, interactive_slider])
display(full_output, visualizer.out)
|