File size: 18,216 Bytes
2e90551
 
 
 
 
 
9b53de6
2e90551
 
 
9b53de6
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b53de6
 
 
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e9969
2e90551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import gc
import logging
import os
import sys
from glob import glob
from typing import Union

import cv2
import gradio as gr
import numpy as np
import spaces
import torch
import trimesh
from easydict import EasyDict as edict
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
    StableDiffusionXLPipeline,
)
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import (  # noqa
    StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
)
from PIL import Image
from tqdm import tqdm
from asset3d_gen.data.backproject_v2 import entrypoint as backproject_api
from asset3d_gen.models.delight import DelightingModel
from asset3d_gen.models.gs_model import GaussianOperator
from asset3d_gen.models.segment import (
    RembgRemover,
    SAMPredictor,
    trellis_preprocess,
)
from asset3d_gen.models.super_resolution import ImageRealESRGAN, ImageStableSR
from asset3d_gen.scripts.render_gs import entrypoint as render_gs_api
from asset3d_gen.scripts.text2image import text2img_gen
from asset3d_gen.utils.process_media import (
    filter_image_small_connected_components,
    merge_images_video,
    render_asset3d,
)
from asset3d_gen.utils.tags import VERSION
from asset3d_gen.validators.quality_checkers import (
    BaseChecker,
    ImageAestheticChecker,
    ImageSegChecker,
    MeshGeoChecker,
)
from asset3d_gen.validators.urdf_convertor import URDFGenerator, zip_files

current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_dir, "../.."))
from thirdparty.TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer
from thirdparty.TRELLIS.trellis.representations import (
    Gaussian,
    MeshExtractResult,
)
from thirdparty.TRELLIS.trellis.utils import postprocessing_utils
from thirdparty.TRELLIS.trellis.utils.render_utils import (
    render_frames,
    yaw_pitch_r_fov_to_extrinsics_intrinsics,
)

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


MAX_SEED = 100000
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"


@spaces.GPU
def render_mesh(sample, extrinsics, intrinsics, options={}, **kwargs):
    renderer = MeshRenderer()
    renderer.rendering_options.resolution = options.get("resolution", 512)
    renderer.rendering_options.near = options.get("near", 1)
    renderer.rendering_options.far = options.get("far", 100)
    renderer.rendering_options.ssaa = options.get("ssaa", 4)
    rets = {}
    for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"):
        res = renderer.render(sample, extr, intr)
        if "normal" not in rets:
            rets["normal"] = []
        normal = torch.lerp(
            torch.zeros_like(res["normal"]), res["normal"], res["mask"]
        )
        normal = np.clip(
            normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
        ).astype(np.uint8)
        rets["normal"].append(normal)

    return rets


@spaces.GPU
def render_video(
    sample,
    resolution=512,
    bg_color=(0, 0, 0),
    num_frames=300,
    r=2,
    fov=40,
    **kwargs,
):
    yaws = torch.linspace(0, 2 * 3.1415, num_frames)
    yaws = yaws.tolist()
    pitch = [0.5] * num_frames
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(
        yaws, pitch, r, fov
    )
    render_fn = (
        render_mesh if isinstance(sample, MeshExtractResult) else render_frames
    )
    result = render_fn(
        sample,
        extrinsics,
        intrinsics,
        {"resolution": resolution, "bg_color": bg_color},
        **kwargs,
    )

    return result


@spaces.GPU
def preprocess_image_fn(
    image: str | np.ndarray | Image.Image,
    model: DelightingModel | RembgRemover,
    buffer: dict = None,
) -> Image.Image:
    if isinstance(image, str):
        image = Image.open(image)
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    if buffer is not None:
        buffer["raw_image"] = image

    if isinstance(model, DelightingModel):
        image = model(image, preprocess=True, target_wh=(512, 512))
    elif isinstance(model, RembgRemover):
        image = model(image)
    image = trellis_preprocess(image)

    return image


@spaces.GPU
def preprocess_sam_image_fn(
    image: Image.Image, buffer: dict, model: SAMPredictor
) -> Image.Image:
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    buffer["raw_image"] = image
    sam_image = model.preprocess_image(image)
    model.predictor.set_image(sam_image)

    return sam_image


def active_btn_by_content(content: gr.Image) -> gr.Button:
    interactive = True if content is not None else False

    return gr.Button(interactive=interactive)


def active_btn_by_text_content(content: gr.Textbox) -> gr.Button:
    if content is not None and len(content) > 0:
        interactive = True
    else:
        interactive = False

    return gr.Button(interactive=interactive)


def get_selected_image(
    choice: str, sample1: str, sample2: str, sample3: str
) -> str:
    if choice == "sample1":
        return sample1
    elif choice == "sample2":
        return sample2
    elif choice == "sample3":
        return sample3
    else:
        raise ValueError(f"Invalid choice: {choice}")


@spaces.GPU
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        "gaussian": {
            **gs.init_params,
            "_xyz": gs._xyz.cpu().numpy(),
            "_features_dc": gs._features_dc.cpu().numpy(),
            "_scaling": gs._scaling.cpu().numpy(),
            "_rotation": gs._rotation.cpu().numpy(),
            "_opacity": gs._opacity.cpu().numpy(),
        },
        "mesh": {
            "vertices": mesh.vertices.cpu().numpy(),
            "faces": mesh.faces.cpu().numpy(),
        },
    }


@spaces.GPU
def unpack_state(state: dict) -> tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state["gaussian"]["aabb"],
        sh_degree=state["gaussian"]["sh_degree"],
        mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
        scaling_bias=state["gaussian"]["scaling_bias"],
        opacity_bias=state["gaussian"]["opacity_bias"],
        scaling_activation=state["gaussian"]["scaling_activation"],
    )
    gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
    gs._features_dc = torch.tensor(
        state["gaussian"]["_features_dc"], device="cuda"
    )
    gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
    gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
    gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")

    mesh = edict(
        vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
        faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
    )

    return gs, mesh


def get_seed(randomize_seed: bool, seed: int, max_seed: int = MAX_SEED) -> int:
    return np.random.randint(0, max_seed) if randomize_seed else seed


@spaces.GPU
def select_point(
    image: np.ndarray,
    sel_pix: list,
    point_type: str,
    model: SAMPredictor,
    evt: gr.SelectData,
):
    if point_type == "foreground_point":
        sel_pix.append((evt.index, 1))  # append the foreground_point
    elif point_type == "background_point":
        sel_pix.append((evt.index, 0))  # append the background_point
    else:
        sel_pix.append((evt.index, 1))  # default foreground_point

    masks = model.generate_masks(image, sel_pix)
    seg_image = model.get_segmented_image(image, masks)

    for point, label in sel_pix:
        color = (255, 0, 0) if label == 0 else (0, 255, 0)
        marker_type = 1 if label == 0 else 5
        cv2.drawMarker(
            image,
            point,
            color,
            markerType=marker_type,
            markerSize=15,
            thickness=10,
        )

    torch.cuda.empty_cache()

    return (image, masks), seg_image


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    buffer: dict,
    pipeline: TrellisImageTo3DPipeline,
    output_root: str,
    sam_image: Image.Image = None,
    is_sam_image: bool = False,
    req: gr.Request = None,
) -> tuple[dict, str]:
    if is_sam_image:
        seg_image = filter_image_small_connected_components(sam_image)
        seg_image = Image.fromarray(seg_image, mode="RGBA")
        seg_image = trellis_preprocess(seg_image)
        # seg_image.save(f"{TMP_DIR}/seg_image_sam.png")
    else:
        seg_image = image

    if isinstance(seg_image, np.ndarray):
        seg_image = Image.fromarray(seg_image)
    buffer["seg_image"] = seg_image

    pipeline.cuda()
    outputs = pipeline.run(
        seg_image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    # Set to cpu for memory saving.
    pipeline.cpu()

    gs_model = outputs["gaussian"][0]
    mesh_model = outputs["mesh"][0]
    color_images = render_video(gs_model)["color"]
    normal_images = render_video(mesh_model)["normal"]
    if req is not None:
        output_root = os.path.join(output_root, str(req.session_hash))
    video_path = os.path.join(output_root, "gs_mesh.mp4")
    merge_images_video(color_images, normal_images, video_path)
    state = pack_state(gs_model, mesh_model)

    gc.collect()
    torch.cuda.empty_cache()

    return state, video_path


@spaces.GPU
def extract_3d_representations(
    state: dict, enable_delight: bool, output_root: str, req: gr.Request
):
    user_dir = os.path.join(output_root, str(req.session_hash))
    gs_model, mesh_model = unpack_state(state)

    mesh = postprocessing_utils.to_glb(
        gs_model,
        mesh_model,
        simplify=0.9,
        texture_size=1024,
        verbose=True,
    )
    filename = "sample"
    gs_path = os.path.join(user_dir, f"{filename}_gs.ply")
    gs_model.save_ply(gs_path)

    # Rotate mesh and GS by 90 degrees around Z-axis.
    rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
    # Addtional rotation for GS to align mesh.
    gs_rot = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) @ np.array(
        rot_matrix
    )
    pose = GaussianOperator.trans_to_quatpose(gs_rot)
    aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
    GaussianOperator.resave_ply(
        in_ply=gs_path,
        out_ply=aligned_gs_path,
        instance_pose=pose,
    )

    mesh.vertices = mesh.vertices @ np.array(rot_matrix)
    mesh_obj_path = os.path.join(user_dir, f"{filename}.obj")
    mesh.export(mesh_obj_path)
    mesh_glb_path = os.path.join(user_dir, f"{filename}.glb")
    mesh.export(mesh_glb_path)

    torch.cuda.empty_cache()

    return mesh_glb_path, gs_path, mesh_obj_path, aligned_gs_path


@spaces.GPU
def extract_3d_representations_v2(
    state: dict,
    enable_delight: bool,
    output_root: str,
    delight_model: DelightingModel,
    sr_model: Union[ImageRealESRGAN, ImageStableSR],
    req: gr.Request,
):
    user_dir = os.path.join(output_root, str(req.session_hash))
    gs_model, mesh_model = unpack_state(state)

    filename = "sample"
    gs_path = os.path.join(user_dir, f"{filename}_gs.ply")
    gs_model.save_ply(gs_path)

    # Rotate mesh and GS by 90 degrees around Z-axis.
    rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
    gs_add_rot = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
    mesh_add_rot = [[1, 0, 0], [0, 0, -1], [0, 1, 0]]

    # Addtional rotation for GS to align mesh.
    gs_rot = np.array(gs_add_rot) @ np.array(rot_matrix)
    pose = GaussianOperator.trans_to_quatpose(gs_rot)
    aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
    GaussianOperator.resave_ply(
        in_ply=gs_path,
        out_ply=aligned_gs_path,
        instance_pose=pose,
    )
    color_path = os.path.join(user_dir, "color.png")
    render_gs_api(aligned_gs_path, color_path)

    mesh = trimesh.Trimesh(
        vertices=mesh_model.vertices.cpu().numpy(),
        faces=mesh_model.faces.cpu().numpy(),
    )
    mesh.vertices = mesh.vertices @ np.array(mesh_add_rot)
    mesh.vertices = mesh.vertices @ np.array(rot_matrix)

    mesh_obj_path = os.path.join(user_dir, f"{filename}.obj")
    mesh.export(mesh_obj_path)

    mesh = backproject_api(
        delight_model=delight_model,
        imagesr_model=sr_model,
        color_path=color_path,
        mesh_path=mesh_obj_path,
        output_path=mesh_obj_path,
        skip_fix_mesh=False,
        delight=enable_delight,
    )

    mesh_glb_path = os.path.join(user_dir, f"{filename}.glb")
    mesh.export(mesh_glb_path)

    torch.cuda.empty_cache()

    return mesh_glb_path, gs_path, mesh_obj_path, aligned_gs_path


@spaces.GPU
def extract_urdf(
    gs_path: str,
    mesh_obj_path: str,
    asset_cat_text: str,
    height_range_text: str,
    mass_range_text: str,
    asset_version_text: str,
    output_root: str,
    urdf_convertor: URDFGenerator,
    buffer: dict,
    checkers: list[BaseChecker],
    req: gr.Request = None,
):
    if req is not None:
        output_root = os.path.join(output_root, str(req.session_hash))
    # Convert to URDF and recover attrs by gpt4o
    filename = "sample"
    asset_attrs = {
        "version": VERSION,
        "gs_model": f"{urdf_convertor.output_mesh_dir}/{filename}_gs.ply",
    }
    if asset_version_text:
        asset_attrs["version"] = asset_version_text
    if asset_cat_text:
        asset_attrs["category"] = asset_cat_text.lower()
    if height_range_text:
        try:
            min_height, max_height = map(float, height_range_text.split("-"))
            asset_attrs["min_height"] = min_height
            asset_attrs["max_height"] = max_height
        except ValueError:
            return "Invalid height input format. Use the format: min-max."
    if mass_range_text:
        try:
            min_mass, max_mass = map(float, mass_range_text.split("-"))
            asset_attrs["min_mass"] = min_mass
            asset_attrs["max_mass"] = max_mass
        except ValueError:
            return "Invalid mass input format. Use the format: min-max."

    urdf_path = urdf_convertor(
        mesh_path=mesh_obj_path,
        output_root=f"{output_root}/URDF_{filename}",
        **asset_attrs,
    )

    # Rescale GS and save to URDF/mesh folder.
    real_height = urdf_convertor.get_attr_from_urdf(
        urdf_path, attr_name="real_height"
    )
    out_gs = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}_gs.ply"  # noqa
    GaussianOperator.resave_ply(
        in_ply=gs_path,
        out_ply=out_gs,
        real_height=real_height,
    )

    # Quality check and update .urdf file.
    mesh_out = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}.obj"  # noqa
    trimesh.load(mesh_out).export(mesh_out.replace(".obj", ".glb"))
    # image_paths = render_asset3d(
    #     mesh_path=mesh_out,
    #     output_root=f"{output_root}/URDF_{filename}",
    #     output_subdir="qa_renders",
    #     num_images=8,
    #     elevation=(30, -30),
    #     distance=5.5,
    # )

    image_dir = f"{output_root}/URDF_{filename}/{urdf_convertor.output_render_dir}/image_color"  # noqa
    image_paths = glob(f"{image_dir}/*.png")
    images_list = []
    for checker in checkers:
        images = image_paths
        if isinstance(checker, ImageSegChecker):
            images = [buffer["raw_image"], buffer["seg_image"]]
        images_list.append(images)

    results = BaseChecker.validate(checkers, images_list)
    urdf_convertor.add_quality_tag(urdf_path, results)

    # Zip urdf files
    urdf_zip = zip_files(
        input_paths=[
            f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}",
            f"{output_root}/URDF_{filename}/{filename}.urdf",
        ],
        output_zip=f"{output_root}/urdf_{filename}.zip",
    )

    torch.cuda.empty_cache()

    estimated_type = urdf_convertor.estimated_attrs["category"]
    estimated_height = urdf_convertor.estimated_attrs["height"]
    estimated_mass = urdf_convertor.estimated_attrs["mass"]
    estimated_mu = urdf_convertor.estimated_attrs["mu"]

    return (
        urdf_zip,
        estimated_type,
        estimated_height,
        estimated_mass,
        estimated_mu,
    )


@spaces.GPU
def text2image_fn(
    prompt: str,
    output_root: str,
    guidance_scale: float,
    model_ip: StableDiffusionXLPipelineIP,
    model_img: StableDiffusionXLPipeline,
    bg_model: RembgRemover,
    infer_step: int = 50,
    ip_image: Image.Image | str = None,
    ip_adapt_scale: float = 0.3,
    image_wh: int | tuple[int, int] = [1024, 1024],
    n_sample: int = 3,
    postprocess: bool = True,
    req: gr.Request = None,
):
    if isinstance(image_wh, int):
        image_wh = (image_wh, image_wh)
    if req is not None:
        output_root = os.path.join(output_root, str(req.session_hash))
        os.makedirs(output_root, exist_ok=True)

    pipeline = model_img if ip_image is None else model_ip
    if ip_image is not None:
        pipeline.set_ip_adapter_scale([ip_adapt_scale])

    images = text2img_gen(
        prompt=prompt,
        n_sample=n_sample,
        guidance_scale=guidance_scale,
        pipeline=pipeline,
        ip_image=ip_image,
        image_wh=image_wh,
        infer_step=infer_step,
    )
    if postprocess:
        for idx in range(len(images)):
            image = images[idx]
            images[idx] = preprocess_image_fn(image, bg_model)

    save_paths = []
    for idx, image in enumerate(images):
        save_path = f"{output_root}/sample_{idx}.png"
        image.save(save_path)
        save_paths.append(save_path)

    logger.info(f"Images saved to {output_root}")

    gc.collect()
    torch.cuda.empty_cache()

    return save_paths + save_paths