Spaces:
Running
on
Zero
Running
on
Zero
xinjie.wang
commited on
Commit
·
2e90551
1
Parent(s):
d2536d4
test
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +490 -15
- asset3d_gen/data/backproject.py +503 -0
- asset3d_gen/data/backproject_v2.py +613 -0
- asset3d_gen/data/backup/backproject_v2 copy.py +650 -0
- asset3d_gen/data/backup/backproject_v2.py +700 -0
- asset3d_gen/data/backup/backproject_v3.py +866 -0
- asset3d_gen/data/backup/backprojectv2.py +835 -0
- asset3d_gen/data/backup/gpt_qwen.py +70 -0
- asset3d_gen/data/backup/quat.py +49 -0
- asset3d_gen/data/datasets.py +239 -0
- asset3d_gen/data/differentiable_render.py +520 -0
- asset3d_gen/data/mesh_operator.py +425 -0
- asset3d_gen/data/utils.py +943 -0
- asset3d_gen/models/delight.py +165 -0
- asset3d_gen/models/gs_model.py +540 -0
- asset3d_gen/models/segment.py +376 -0
- asset3d_gen/models/super_resolution.py +118 -0
- asset3d_gen/models/text_model.py +143 -0
- asset3d_gen/models/texture_model.py +91 -0
- asset3d_gen/scripts/render_gs.py +156 -0
- asset3d_gen/scripts/render_mv.py +185 -0
- asset3d_gen/scripts/text2image.py +145 -0
- asset3d_gen/utils/gpt_clients.py +190 -0
- asset3d_gen/utils/process_media.py +194 -0
- asset3d_gen/utils/tags.py +1 -0
- asset3d_gen/validators/aesthetic_predictor.py +136 -0
- asset3d_gen/validators/quality_checkers.py +195 -0
- asset3d_gen/validators/urdf_convertor.py +423 -0
- common.py +597 -0
- requirements.txt +7 -6
- thirdparty/TRELLIS/trellis/trellis/__init__.py +6 -0
- thirdparty/TRELLIS/trellis/trellis/models/__init__.py +70 -0
- thirdparty/TRELLIS/trellis/trellis/models/sparse_structure_flow.py +200 -0
- thirdparty/TRELLIS/trellis/trellis/models/sparse_structure_vae.py +306 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_flow.py +262 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/__init__.py +4 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/base.py +117 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/decoder_gs.py +122 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/decoder_mesh.py +167 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/decoder_rf.py +104 -0
- thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/encoder.py +72 -0
- thirdparty/TRELLIS/trellis/trellis/modules/attention/__init__.py +36 -0
- thirdparty/TRELLIS/trellis/trellis/modules/attention/full_attn.py +140 -0
- thirdparty/TRELLIS/trellis/trellis/modules/attention/modules.py +146 -0
- thirdparty/TRELLIS/trellis/trellis/modules/norm.py +25 -0
- thirdparty/TRELLIS/trellis/trellis/modules/sparse/__init__.py +102 -0
- thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/__init__.py +4 -0
- thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/full_attn.py +215 -0
- thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/modules.py +139 -0
- thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/serialized_attn.py +193 -0
app.py
CHANGED
@@ -1,21 +1,496 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
from common import (
|
7 |
+
MAX_SEED,
|
8 |
+
VERSION,
|
9 |
+
TrellisImageTo3DPipeline,
|
10 |
+
active_btn_by_content,
|
11 |
+
extract_3d_representations_v2,
|
12 |
+
extract_urdf,
|
13 |
+
get_seed,
|
14 |
+
image_to_3d,
|
15 |
+
preprocess_image_fn,
|
16 |
+
preprocess_sam_image_fn,
|
17 |
+
select_point,
|
18 |
+
)
|
19 |
+
from gradio.themes import Default
|
20 |
+
from gradio.themes.utils.colors import slate
|
21 |
+
from gradio_litmodel3d import LitModel3D
|
22 |
+
from asset3d_gen.models.delight import DelightingModel
|
23 |
+
from asset3d_gen.models.segment import RembgRemover, SAMPredictor
|
24 |
+
from asset3d_gen.models.super_resolution import ImageRealESRGAN
|
25 |
+
from asset3d_gen.utils.gpt_clients import GPT_CLIENT
|
26 |
+
from asset3d_gen.validators.quality_checkers import (
|
27 |
+
ImageAestheticChecker,
|
28 |
+
ImageSegChecker,
|
29 |
+
MeshGeoChecker,
|
30 |
+
)
|
31 |
+
from asset3d_gen.validators.urdf_convertor import URDFGenerator
|
32 |
+
|
33 |
+
TMP_DIR = os.path.join(
|
34 |
+
os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d"
|
35 |
+
)
|
36 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
37 |
+
|
38 |
+
RBG_REMOVER = RembgRemover()
|
39 |
+
SAM_PREDICTOR = SAMPredictor(model_type="vit_h")
|
40 |
+
DELIGHT = DelightingModel()
|
41 |
+
IMAGESR_MODEL = ImageRealESRGAN(outscale=4)
|
42 |
+
PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
|
43 |
+
"JeffreyXiang/TRELLIS-image-large"
|
44 |
+
)
|
45 |
+
# PIPELINE.cuda()
|
46 |
+
|
47 |
+
IMAGE_BUFFER = {}
|
48 |
+
SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
|
49 |
+
GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
|
50 |
+
AESTHETIC_CHECKER = ImageAestheticChecker()
|
51 |
+
CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER]
|
52 |
+
URDF_CONVERTOR = URDFGenerator(GPT_CLIENT, render_view_num=4)
|
53 |
+
|
54 |
+
|
55 |
+
def start_session(req: gr.Request) -> None:
|
56 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
57 |
+
os.makedirs(user_dir, exist_ok=True)
|
58 |
+
|
59 |
+
|
60 |
+
def end_session(req: gr.Request) -> None:
|
61 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
62 |
+
if os.path.exists(user_dir):
|
63 |
+
shutil.rmtree(user_dir)
|
64 |
+
|
65 |
+
|
66 |
+
with gr.Blocks(
|
67 |
+
delete_cache=(43200, 43200), theme=Default(primary_hue=slate)
|
68 |
+
) as demo:
|
69 |
+
gr.Markdown(
|
70 |
+
f"""
|
71 |
+
## Image to 3D Asset Pipeline \n
|
72 |
+
version: {VERSION} \n
|
73 |
+
The service is temporarily deployed on `dev015-10.34.8.82: CUDA 4`.
|
74 |
+
"""
|
75 |
+
)
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column(scale=2):
|
78 |
+
with gr.Tabs() as input_tabs:
|
79 |
+
with gr.Tab(
|
80 |
+
label="Image(auto seg)", id=0
|
81 |
+
) as single_image_input_tab:
|
82 |
+
image_prompt = gr.Image(
|
83 |
+
label="Input Image",
|
84 |
+
format="png",
|
85 |
+
image_mode="RGBA",
|
86 |
+
type="pil",
|
87 |
+
height=300,
|
88 |
+
)
|
89 |
+
gr.Markdown(
|
90 |
+
"""
|
91 |
+
If you are not satisfied with the auto segmentation
|
92 |
+
result, please switch to the `Image(SAM seg)` tab."""
|
93 |
+
)
|
94 |
+
with gr.Tab(
|
95 |
+
label="Image(SAM seg)", id=1
|
96 |
+
) as samimage_input_tab:
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column(scale=1):
|
99 |
+
image_prompt_sam = gr.Image(
|
100 |
+
label="Input Image", type="numpy", height=400
|
101 |
+
)
|
102 |
+
image_seg_sam = gr.Image(
|
103 |
+
label="SAM Seg Image",
|
104 |
+
image_mode="RGBA",
|
105 |
+
type="pil",
|
106 |
+
height=400,
|
107 |
+
visible=False,
|
108 |
+
)
|
109 |
+
with gr.Column(scale=1):
|
110 |
+
image_mask_sam = gr.AnnotatedImage()
|
111 |
+
|
112 |
+
fg_bg_radio = gr.Radio(
|
113 |
+
["foreground_point", "background_point"],
|
114 |
+
label="Select foreground(green) or background(red) points, by default foreground", # noqa
|
115 |
+
value="foreground_point",
|
116 |
+
)
|
117 |
+
gr.Markdown(
|
118 |
+
""" Click the `Input Image` to select SAM points,
|
119 |
+
after get the satisified segmentation, click `Generate`
|
120 |
+
button to generate the 3D asset. \n
|
121 |
+
Note: If the segmented foreground is too small relative
|
122 |
+
to the entire image area, the generation will fail.
|
123 |
+
"""
|
124 |
+
)
|
125 |
+
|
126 |
+
with gr.Accordion(label="Generation Settings", open=False):
|
127 |
+
with gr.Row():
|
128 |
+
seed = gr.Slider(
|
129 |
+
0, MAX_SEED, label="Seed", value=0, step=1
|
130 |
+
)
|
131 |
+
with gr.Row():
|
132 |
+
randomize_seed = gr.Checkbox(
|
133 |
+
label="Randomize Seed", value=False
|
134 |
+
)
|
135 |
+
project_delight = gr.Checkbox(
|
136 |
+
label="Backproject delighting",
|
137 |
+
value=True,
|
138 |
+
)
|
139 |
+
gr.Markdown("Geo Structure Generation")
|
140 |
+
with gr.Row():
|
141 |
+
ss_guidance_strength = gr.Slider(
|
142 |
+
0.0,
|
143 |
+
10.0,
|
144 |
+
label="Guidance Strength",
|
145 |
+
value=7.5,
|
146 |
+
step=0.1,
|
147 |
+
)
|
148 |
+
ss_sampling_steps = gr.Slider(
|
149 |
+
1, 50, label="Sampling Steps", value=12, step=1
|
150 |
+
)
|
151 |
+
gr.Markdown("Visual Appearance Generation")
|
152 |
+
with gr.Row():
|
153 |
+
slat_guidance_strength = gr.Slider(
|
154 |
+
0.0,
|
155 |
+
10.0,
|
156 |
+
label="Guidance Strength",
|
157 |
+
value=3.0,
|
158 |
+
step=0.1,
|
159 |
+
)
|
160 |
+
slat_sampling_steps = gr.Slider(
|
161 |
+
1, 50, label="Sampling Steps", value=12, step=1
|
162 |
+
)
|
163 |
+
|
164 |
+
generate_btn = gr.Button(
|
165 |
+
"Generate(~0.5 mins)", variant="primary", interactive=False
|
166 |
+
)
|
167 |
+
model_output_obj = gr.Textbox(label="raw mesh .obj", visible=False)
|
168 |
+
with gr.Row():
|
169 |
+
extract_rep3d_btn = gr.Button(
|
170 |
+
"Extract 3D Representation(~2 mins)",
|
171 |
+
variant="primary",
|
172 |
+
interactive=False,
|
173 |
+
)
|
174 |
+
with gr.Accordion(
|
175 |
+
label="Enter Asset Attributes(optional)", open=False
|
176 |
+
):
|
177 |
+
asset_cat_text = gr.Textbox(
|
178 |
+
label="Enter Asset Category (e.g., chair)"
|
179 |
+
)
|
180 |
+
height_range_text = gr.Textbox(
|
181 |
+
label="Enter Height Range in meter (e.g., 0.5-0.6)"
|
182 |
+
)
|
183 |
+
mass_range_text = gr.Textbox(
|
184 |
+
label="Enter Mass Range in kg (e.g., 1.1-1.2)"
|
185 |
+
)
|
186 |
+
asset_version_text = gr.Textbox(
|
187 |
+
label=f"Enter version (e.g., {VERSION})"
|
188 |
+
)
|
189 |
+
with gr.Row():
|
190 |
+
extract_urdf_btn = gr.Button(
|
191 |
+
"Extract URDF(~1 mins)",
|
192 |
+
variant="primary",
|
193 |
+
interactive=False,
|
194 |
+
)
|
195 |
+
with gr.Row():
|
196 |
+
gr.Markdown(
|
197 |
+
"#### Estimated Asset 3D Attributes(No input required)"
|
198 |
+
)
|
199 |
+
with gr.Row():
|
200 |
+
est_type_text = gr.Textbox(
|
201 |
+
label="Asset category", interactive=False
|
202 |
+
)
|
203 |
+
est_height_text = gr.Textbox(
|
204 |
+
label="Real height(.m)", interactive=False
|
205 |
+
)
|
206 |
+
est_mass_text = gr.Textbox(
|
207 |
+
label="Mass(.kg)", interactive=False
|
208 |
+
)
|
209 |
+
est_mu_text = gr.Textbox(
|
210 |
+
label="Friction coefficient", interactive=False
|
211 |
+
)
|
212 |
+
with gr.Row():
|
213 |
+
download_urdf = gr.DownloadButton(
|
214 |
+
label="Download URDF", variant="primary", interactive=False
|
215 |
+
)
|
216 |
+
|
217 |
+
gr.Markdown(
|
218 |
+
""" NOTE: If `Asset Attributes` are provided, the provided
|
219 |
+
properties will be used; otherwise, the GPT-preset properties
|
220 |
+
will be applied. \n
|
221 |
+
The `Download URDF` file is restored to the real scale and
|
222 |
+
has quality inspection, open with an editor to view details.
|
223 |
+
"""
|
224 |
+
)
|
225 |
+
|
226 |
+
with gr.Row() as single_image_example:
|
227 |
+
examples = gr.Examples(
|
228 |
+
label="Image Gallery",
|
229 |
+
examples=[
|
230 |
+
[f"scripts/apps/assets/example_image/{image}"]
|
231 |
+
for image in os.listdir(
|
232 |
+
"scripts/apps/assets/example_image"
|
233 |
+
)
|
234 |
+
],
|
235 |
+
inputs=[image_prompt],
|
236 |
+
fn=partial(
|
237 |
+
preprocess_image_fn,
|
238 |
+
model=RBG_REMOVER,
|
239 |
+
buffer=IMAGE_BUFFER,
|
240 |
+
),
|
241 |
+
outputs=[image_prompt],
|
242 |
+
run_on_click=True,
|
243 |
+
examples_per_page=32,
|
244 |
+
)
|
245 |
+
|
246 |
+
with gr.Row(visible=False) as single_sam_image_example:
|
247 |
+
examples = gr.Examples(
|
248 |
+
label="Image Gallery",
|
249 |
+
examples=[
|
250 |
+
f"scripts/apps/assets/example_image/{image}"
|
251 |
+
for image in os.listdir(
|
252 |
+
"scripts/apps/assets/example_image"
|
253 |
+
)
|
254 |
+
],
|
255 |
+
inputs=[image_prompt_sam],
|
256 |
+
fn=partial(
|
257 |
+
preprocess_sam_image_fn,
|
258 |
+
buffer=IMAGE_BUFFER,
|
259 |
+
model=SAM_PREDICTOR,
|
260 |
+
),
|
261 |
+
outputs=[image_prompt_sam],
|
262 |
+
run_on_click=True,
|
263 |
+
examples_per_page=32,
|
264 |
+
)
|
265 |
+
with gr.Column(scale=1):
|
266 |
+
video_output = gr.Video(
|
267 |
+
label="Generated 3D Asset",
|
268 |
+
autoplay=True,
|
269 |
+
loop=True,
|
270 |
+
height=300,
|
271 |
+
)
|
272 |
+
model_output_gs = LitModel3D(
|
273 |
+
label="Gaussian Representation", height=300, interactive=False
|
274 |
+
)
|
275 |
+
aligned_gs = gr.Textbox(visible=False)
|
276 |
+
with gr.Row():
|
277 |
+
model_output_mesh = LitModel3D(
|
278 |
+
label="Mesh Representation",
|
279 |
+
exposure=10.0,
|
280 |
+
height=300,
|
281 |
+
interactive=False,
|
282 |
+
)
|
283 |
+
gr.Markdown(
|
284 |
+
""" The rendering of `Gaussian Representation` takes additional 10s. """ # noqa
|
285 |
+
)
|
286 |
+
|
287 |
+
is_samimage = gr.State(False)
|
288 |
+
output_buf = gr.State()
|
289 |
+
selected_points = gr.State(value=[])
|
290 |
+
|
291 |
+
demo.load(start_session)
|
292 |
+
demo.unload(end_session)
|
293 |
+
|
294 |
+
single_image_input_tab.select(
|
295 |
+
lambda: tuple(
|
296 |
+
[False, gr.Row.update(visible=True), gr.Row.update(visible=False)]
|
297 |
+
),
|
298 |
+
outputs=[is_samimage, single_image_example, single_sam_image_example],
|
299 |
+
)
|
300 |
+
samimage_input_tab.select(
|
301 |
+
lambda: tuple(
|
302 |
+
[True, gr.Row.update(visible=True), gr.Row.update(visible=False)]
|
303 |
+
),
|
304 |
+
outputs=[is_samimage, single_sam_image_example, single_image_example],
|
305 |
+
)
|
306 |
+
|
307 |
+
image_prompt.upload(
|
308 |
+
partial(preprocess_image_fn, model=RBG_REMOVER, buffer=IMAGE_BUFFER),
|
309 |
+
inputs=[image_prompt],
|
310 |
+
outputs=[image_prompt],
|
311 |
+
)
|
312 |
+
image_prompt.change(
|
313 |
+
lambda: tuple(
|
314 |
+
[
|
315 |
+
gr.Button(interactive=False),
|
316 |
+
gr.Button(interactive=False),
|
317 |
+
gr.Button(interactive=False),
|
318 |
+
None,
|
319 |
+
"",
|
320 |
+
None,
|
321 |
+
None,
|
322 |
+
"",
|
323 |
+
"",
|
324 |
+
"",
|
325 |
+
"",
|
326 |
+
"",
|
327 |
+
"",
|
328 |
+
"",
|
329 |
+
"",
|
330 |
+
]
|
331 |
+
),
|
332 |
+
outputs=[
|
333 |
+
extract_rep3d_btn,
|
334 |
+
extract_urdf_btn,
|
335 |
+
download_urdf,
|
336 |
+
model_output_gs,
|
337 |
+
aligned_gs,
|
338 |
+
model_output_mesh,
|
339 |
+
video_output,
|
340 |
+
asset_cat_text,
|
341 |
+
height_range_text,
|
342 |
+
mass_range_text,
|
343 |
+
asset_version_text,
|
344 |
+
est_type_text,
|
345 |
+
est_height_text,
|
346 |
+
est_mass_text,
|
347 |
+
est_mu_text,
|
348 |
+
],
|
349 |
+
)
|
350 |
+
image_prompt.change(
|
351 |
+
active_btn_by_content,
|
352 |
+
inputs=image_prompt,
|
353 |
+
outputs=generate_btn,
|
354 |
+
)
|
355 |
+
|
356 |
+
image_prompt_sam.upload(
|
357 |
+
partial(
|
358 |
+
preprocess_sam_image_fn, buffer=IMAGE_BUFFER, model=SAM_PREDICTOR
|
359 |
+
),
|
360 |
+
inputs=[image_prompt_sam],
|
361 |
+
outputs=[image_prompt_sam],
|
362 |
+
)
|
363 |
+
image_prompt_sam.change(
|
364 |
+
lambda: tuple(
|
365 |
+
[
|
366 |
+
gr.Button(interactive=False),
|
367 |
+
gr.Button(interactive=False),
|
368 |
+
gr.Button(interactive=False),
|
369 |
+
None,
|
370 |
+
None,
|
371 |
+
None,
|
372 |
+
"",
|
373 |
+
"",
|
374 |
+
"",
|
375 |
+
"",
|
376 |
+
"",
|
377 |
+
"",
|
378 |
+
"",
|
379 |
+
"",
|
380 |
+
None,
|
381 |
+
[],
|
382 |
+
]
|
383 |
+
),
|
384 |
+
outputs=[
|
385 |
+
extract_rep3d_btn,
|
386 |
+
extract_urdf_btn,
|
387 |
+
download_urdf,
|
388 |
+
model_output_gs,
|
389 |
+
model_output_mesh,
|
390 |
+
video_output,
|
391 |
+
asset_cat_text,
|
392 |
+
height_range_text,
|
393 |
+
mass_range_text,
|
394 |
+
asset_version_text,
|
395 |
+
est_type_text,
|
396 |
+
est_height_text,
|
397 |
+
est_mass_text,
|
398 |
+
est_mu_text,
|
399 |
+
image_mask_sam,
|
400 |
+
selected_points,
|
401 |
+
],
|
402 |
+
)
|
403 |
+
|
404 |
+
image_prompt_sam.select(
|
405 |
+
select_point,
|
406 |
+
[
|
407 |
+
image_prompt_sam,
|
408 |
+
selected_points,
|
409 |
+
fg_bg_radio,
|
410 |
+
gr.State(lambda: SAM_PREDICTOR),
|
411 |
+
],
|
412 |
+
[image_mask_sam, image_seg_sam],
|
413 |
+
)
|
414 |
+
image_seg_sam.change(
|
415 |
+
active_btn_by_content,
|
416 |
+
inputs=image_seg_sam,
|
417 |
+
outputs=generate_btn,
|
418 |
+
)
|
419 |
|
420 |
+
generate_btn.click(
|
421 |
+
get_seed,
|
422 |
+
inputs=[randomize_seed, seed],
|
423 |
+
outputs=[seed],
|
424 |
+
).success(
|
425 |
+
image_to_3d,
|
426 |
+
inputs=[
|
427 |
+
image_prompt,
|
428 |
+
seed,
|
429 |
+
ss_guidance_strength,
|
430 |
+
ss_sampling_steps,
|
431 |
+
slat_guidance_strength,
|
432 |
+
slat_sampling_steps,
|
433 |
+
gr.State(lambda: IMAGE_BUFFER),
|
434 |
+
gr.State(lambda: PIPELINE),
|
435 |
+
gr.State(lambda: TMP_DIR),
|
436 |
+
image_seg_sam,
|
437 |
+
is_samimage,
|
438 |
+
],
|
439 |
+
outputs=[output_buf, video_output],
|
440 |
+
).success(
|
441 |
+
lambda: gr.Button(interactive=True),
|
442 |
+
outputs=[extract_rep3d_btn],
|
443 |
+
)
|
444 |
|
445 |
+
extract_rep3d_btn.click(
|
446 |
+
extract_3d_representations_v2,
|
447 |
+
inputs=[
|
448 |
+
output_buf,
|
449 |
+
project_delight,
|
450 |
+
gr.State(lambda: TMP_DIR),
|
451 |
+
gr.State(lambda: DELIGHT),
|
452 |
+
gr.State(lambda: IMAGESR_MODEL),
|
453 |
+
],
|
454 |
+
outputs=[
|
455 |
+
model_output_mesh,
|
456 |
+
model_output_gs,
|
457 |
+
model_output_obj,
|
458 |
+
aligned_gs,
|
459 |
+
],
|
460 |
+
).success(
|
461 |
+
lambda: gr.Button(interactive=True),
|
462 |
+
outputs=[extract_urdf_btn],
|
463 |
+
)
|
464 |
|
465 |
+
extract_urdf_btn.click(
|
466 |
+
extract_urdf,
|
467 |
+
inputs=[
|
468 |
+
aligned_gs,
|
469 |
+
model_output_obj,
|
470 |
+
asset_cat_text,
|
471 |
+
height_range_text,
|
472 |
+
mass_range_text,
|
473 |
+
asset_version_text,
|
474 |
+
gr.State(lambda: TMP_DIR),
|
475 |
+
gr.State(lambda: URDF_CONVERTOR),
|
476 |
+
gr.State(lambda: IMAGE_BUFFER),
|
477 |
+
gr.State(lambda: CHECKERS),
|
478 |
+
],
|
479 |
+
outputs=[
|
480 |
+
download_urdf,
|
481 |
+
est_type_text,
|
482 |
+
est_height_text,
|
483 |
+
est_mass_text,
|
484 |
+
est_mu_text,
|
485 |
+
],
|
486 |
+
queue=True,
|
487 |
+
show_progress="full",
|
488 |
+
).success(
|
489 |
+
lambda: gr.Button(interactive=True),
|
490 |
+
outputs=[download_urdf],
|
491 |
+
)
|
492 |
|
493 |
|
494 |
+
if __name__ == "__main__":
|
495 |
+
demo.queue()
|
496 |
+
demo.launch(server_name="10.34.8.82", server_port=8084)
|
asset3d_gen/data/backproject.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from typing import List, Literal, Tuple, Union
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import nvdiffrast.torch as dr
|
10 |
+
import torch
|
11 |
+
import trimesh
|
12 |
+
import utils3d
|
13 |
+
import xatlas
|
14 |
+
from tqdm import tqdm
|
15 |
+
from asset3d_gen.data.mesh_operator import MeshFixer
|
16 |
+
from asset3d_gen.data.utils import (
|
17 |
+
CameraSetting,
|
18 |
+
get_images_from_grid,
|
19 |
+
init_kal_camera,
|
20 |
+
normalize_vertices_array,
|
21 |
+
post_process_texture,
|
22 |
+
save_mesh_with_mtl,
|
23 |
+
)
|
24 |
+
from asset3d_gen.models.delight import DelightingModel
|
25 |
+
|
26 |
+
logging.basicConfig(
|
27 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
28 |
+
)
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class TextureBaker(object):
|
33 |
+
"""Baking textures onto a mesh from multiple observations.
|
34 |
+
|
35 |
+
This class take 3D mesh data, camera settings and texture baking parameters
|
36 |
+
to generate texture map by projecting images to the mesh from diff views.
|
37 |
+
It supports both a fast texture baking approach and a more optimized method
|
38 |
+
with total variation regularization.
|
39 |
+
|
40 |
+
Attributes:
|
41 |
+
vertices (torch.Tensor): The vertices of the mesh.
|
42 |
+
faces (torch.Tensor): The faces of the mesh, defined by vertex indices.
|
43 |
+
uvs (torch.Tensor): The UV coordinates of the mesh.
|
44 |
+
camera_params (CameraSetting): Camera setting (intrinsics, extrinsics).
|
45 |
+
device (str): The device to run computations on ("cpu" or "cuda").
|
46 |
+
w2cs (torch.Tensor): World-to-camera transformation matrices.
|
47 |
+
projections (torch.Tensor): Camera projection matrices.
|
48 |
+
|
49 |
+
Example:
|
50 |
+
>>> vertices, faces, uvs = TextureBaker.parametrize_mesh(vertices, faces) # noqa
|
51 |
+
>>> texture_backer = TextureBaker(vertices, faces, uvs, camera_params)
|
52 |
+
>>> images = get_images_from_grid(args.input_image, image_size)
|
53 |
+
>>> texture = texture_backer.bake_texture(
|
54 |
+
... images, texture_size=args.texture_size, mode=args.baker_mode
|
55 |
+
... )
|
56 |
+
>>> texture = post_process_texture(texture)
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vertices: np.ndarray,
|
62 |
+
faces: np.ndarray,
|
63 |
+
uvs: np.ndarray,
|
64 |
+
camera_params: CameraSetting,
|
65 |
+
device: str = "cuda",
|
66 |
+
) -> None:
|
67 |
+
self.vertices = (
|
68 |
+
torch.tensor(vertices, device=device)
|
69 |
+
if isinstance(vertices, np.ndarray)
|
70 |
+
else vertices.to(device)
|
71 |
+
)
|
72 |
+
self.faces = (
|
73 |
+
torch.tensor(faces.astype(np.int32), device=device)
|
74 |
+
if isinstance(faces, np.ndarray)
|
75 |
+
else faces.to(device)
|
76 |
+
)
|
77 |
+
self.uvs = (
|
78 |
+
torch.tensor(uvs, device=device)
|
79 |
+
if isinstance(uvs, np.ndarray)
|
80 |
+
else uvs.to(device)
|
81 |
+
)
|
82 |
+
self.camera_params = camera_params
|
83 |
+
self.device = device
|
84 |
+
|
85 |
+
camera = init_kal_camera(camera_params)
|
86 |
+
matrix_mv = camera.view_matrix() # (n_cam 4 4) world2cam
|
87 |
+
matrix_mv = kaolin_to_opencv_view(matrix_mv)
|
88 |
+
matrix_p = (
|
89 |
+
camera.intrinsics.projection_matrix()
|
90 |
+
) # (n_cam 4 4) cam2pixel
|
91 |
+
self.w2cs = matrix_mv.to(self.device)
|
92 |
+
self.projections = matrix_p.to(self.device)
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def parametrize_mesh(
|
96 |
+
vertices: np.array, faces: np.array
|
97 |
+
) -> Union[np.array, np.array, np.array]:
|
98 |
+
vmapping, indices, uvs = xatlas.parametrize(vertices, faces)
|
99 |
+
|
100 |
+
vertices = vertices[vmapping]
|
101 |
+
faces = indices
|
102 |
+
|
103 |
+
return vertices, faces, uvs
|
104 |
+
|
105 |
+
def _bake_fast(self, observations, w2cs, projections, texture_size, masks):
|
106 |
+
texture = torch.zeros(
|
107 |
+
(texture_size * texture_size, 3), dtype=torch.float32
|
108 |
+
).cuda()
|
109 |
+
texture_weights = torch.zeros(
|
110 |
+
(texture_size * texture_size), dtype=torch.float32
|
111 |
+
).cuda()
|
112 |
+
rastctx = utils3d.torch.RastContext(backend="cuda")
|
113 |
+
for observation, w2c, projection in tqdm(
|
114 |
+
zip(observations, w2cs, projections),
|
115 |
+
total=len(observations),
|
116 |
+
desc="Texture baking (fast)",
|
117 |
+
):
|
118 |
+
with torch.no_grad():
|
119 |
+
rast = utils3d.torch.rasterize_triangle_faces(
|
120 |
+
rastctx,
|
121 |
+
self.vertices[None],
|
122 |
+
self.faces,
|
123 |
+
observation.shape[1],
|
124 |
+
observation.shape[0],
|
125 |
+
uv=self.uvs[None],
|
126 |
+
view=w2c,
|
127 |
+
projection=projection,
|
128 |
+
)
|
129 |
+
uv_map = rast["uv"][0].detach().flip(0)
|
130 |
+
mask = rast["mask"][0].detach().bool() & masks[0]
|
131 |
+
|
132 |
+
# nearest neighbor interpolation
|
133 |
+
uv_map = (uv_map * texture_size).floor().long()
|
134 |
+
obs = observation[mask]
|
135 |
+
uv_map = uv_map[mask]
|
136 |
+
idx = (
|
137 |
+
uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size
|
138 |
+
)
|
139 |
+
texture = texture.scatter_add(
|
140 |
+
0, idx.view(-1, 1).expand(-1, 3), obs
|
141 |
+
)
|
142 |
+
texture_weights = texture_weights.scatter_add(
|
143 |
+
0,
|
144 |
+
idx,
|
145 |
+
torch.ones(
|
146 |
+
(obs.shape[0]), dtype=torch.float32, device=texture.device
|
147 |
+
),
|
148 |
+
)
|
149 |
+
|
150 |
+
mask = texture_weights > 0
|
151 |
+
texture[mask] /= texture_weights[mask][:, None]
|
152 |
+
texture = np.clip(
|
153 |
+
texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255,
|
154 |
+
0,
|
155 |
+
255,
|
156 |
+
).astype(np.uint8)
|
157 |
+
|
158 |
+
# inpaint
|
159 |
+
mask = (
|
160 |
+
(texture_weights == 0)
|
161 |
+
.cpu()
|
162 |
+
.numpy()
|
163 |
+
.astype(np.uint8)
|
164 |
+
.reshape(texture_size, texture_size)
|
165 |
+
)
|
166 |
+
texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
|
167 |
+
|
168 |
+
return texture
|
169 |
+
|
170 |
+
def _bake_opt(
|
171 |
+
self,
|
172 |
+
observations,
|
173 |
+
w2cs,
|
174 |
+
projections,
|
175 |
+
texture_size,
|
176 |
+
lambda_tv,
|
177 |
+
masks,
|
178 |
+
total_steps,
|
179 |
+
):
|
180 |
+
rastctx = utils3d.torch.RastContext(backend="cuda")
|
181 |
+
observations = [observations.flip(0) for observations in observations]
|
182 |
+
masks = [m.flip(0) for m in masks]
|
183 |
+
_uv = []
|
184 |
+
_uv_dr = []
|
185 |
+
for observation, w2c, projection in tqdm(
|
186 |
+
zip(observations, w2cs, projections),
|
187 |
+
total=len(w2cs),
|
188 |
+
):
|
189 |
+
with torch.no_grad():
|
190 |
+
rast = utils3d.torch.rasterize_triangle_faces(
|
191 |
+
rastctx,
|
192 |
+
self.vertices[None],
|
193 |
+
self.faces,
|
194 |
+
observation.shape[1],
|
195 |
+
observation.shape[0],
|
196 |
+
uv=self.uvs[None],
|
197 |
+
view=w2c,
|
198 |
+
projection=projection,
|
199 |
+
)
|
200 |
+
_uv.append(rast["uv"].detach())
|
201 |
+
_uv_dr.append(rast["uv_dr"].detach())
|
202 |
+
|
203 |
+
texture = torch.nn.Parameter(
|
204 |
+
torch.zeros(
|
205 |
+
(1, texture_size, texture_size, 3), dtype=torch.float32
|
206 |
+
).cuda()
|
207 |
+
)
|
208 |
+
optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2)
|
209 |
+
|
210 |
+
def cosine_anealing(step, total_steps, start_lr, end_lr):
|
211 |
+
return end_lr + 0.5 * (start_lr - end_lr) * (
|
212 |
+
1 + np.cos(np.pi * step / total_steps)
|
213 |
+
)
|
214 |
+
|
215 |
+
def tv_loss(texture):
|
216 |
+
return torch.nn.functional.l1_loss(
|
217 |
+
texture[:, :-1, :, :], texture[:, 1:, :, :]
|
218 |
+
) + torch.nn.functional.l1_loss(
|
219 |
+
texture[:, :, :-1, :], texture[:, :, 1:, :]
|
220 |
+
)
|
221 |
+
|
222 |
+
with tqdm(total=total_steps, desc="Texture baking") as pbar:
|
223 |
+
for step in range(total_steps):
|
224 |
+
optimizer.zero_grad()
|
225 |
+
selected = np.random.randint(0, len(w2cs))
|
226 |
+
uv, uv_dr, observation, mask = (
|
227 |
+
_uv[selected],
|
228 |
+
_uv_dr[selected],
|
229 |
+
observations[selected],
|
230 |
+
masks[selected],
|
231 |
+
)
|
232 |
+
render = dr.texture(texture, uv, uv_dr)[0]
|
233 |
+
loss = torch.nn.functional.l1_loss(
|
234 |
+
render[mask], observation[mask]
|
235 |
+
)
|
236 |
+
if lambda_tv > 0:
|
237 |
+
loss += lambda_tv * tv_loss(texture)
|
238 |
+
loss.backward()
|
239 |
+
optimizer.step()
|
240 |
+
|
241 |
+
optimizer.param_groups[0]["lr"] = cosine_anealing(
|
242 |
+
step, total_steps, 1e-2, 1e-5
|
243 |
+
)
|
244 |
+
pbar.set_postfix({"loss": loss.item()})
|
245 |
+
pbar.update()
|
246 |
+
texture = np.clip(
|
247 |
+
texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255
|
248 |
+
).astype(np.uint8)
|
249 |
+
mask = 1 - utils3d.torch.rasterize_triangle_faces(
|
250 |
+
rastctx,
|
251 |
+
(self.uvs * 2 - 1)[None],
|
252 |
+
self.faces,
|
253 |
+
texture_size,
|
254 |
+
texture_size,
|
255 |
+
)["mask"][0].detach().cpu().numpy().astype(np.uint8)
|
256 |
+
texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
|
257 |
+
|
258 |
+
return texture
|
259 |
+
|
260 |
+
def bake_texture(
|
261 |
+
self,
|
262 |
+
images: List[np.array],
|
263 |
+
texture_size: int = 1024,
|
264 |
+
mode: Literal["fast", "opt"] = "opt",
|
265 |
+
lambda_tv: float = 1e-2,
|
266 |
+
opt_step: int = 2000,
|
267 |
+
):
|
268 |
+
masks = [np.any(img > 0, axis=-1) for img in images]
|
269 |
+
masks = [torch.tensor(m > 0).bool().to(self.device) for m in masks]
|
270 |
+
images = [
|
271 |
+
torch.tensor(obs / 255.0).float().to(self.device) for obs in images
|
272 |
+
]
|
273 |
+
|
274 |
+
if mode == "fast":
|
275 |
+
return self._bake_fast(
|
276 |
+
images, self.w2cs, self.projections, texture_size, masks
|
277 |
+
)
|
278 |
+
elif mode == "opt":
|
279 |
+
return self._bake_opt(
|
280 |
+
images,
|
281 |
+
self.w2cs,
|
282 |
+
self.projections,
|
283 |
+
texture_size,
|
284 |
+
lambda_tv,
|
285 |
+
masks,
|
286 |
+
opt_step,
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
raise ValueError(f"Unknown mode: {mode}")
|
290 |
+
|
291 |
+
|
292 |
+
def kaolin_to_opencv_view(raw_matrix):
|
293 |
+
R_orig = raw_matrix[:, :3, :3]
|
294 |
+
t_orig = raw_matrix[:, :3, 3]
|
295 |
+
|
296 |
+
R_target = torch.zeros_like(R_orig)
|
297 |
+
R_target[:, :, 0] = R_orig[:, :, 2]
|
298 |
+
R_target[:, :, 1] = R_orig[:, :, 0]
|
299 |
+
R_target[:, :, 2] = R_orig[:, :, 1]
|
300 |
+
|
301 |
+
t_target = t_orig
|
302 |
+
|
303 |
+
target_matrix = (
|
304 |
+
torch.eye(4, device=raw_matrix.device)
|
305 |
+
.unsqueeze(0)
|
306 |
+
.repeat(raw_matrix.size(0), 1, 1)
|
307 |
+
)
|
308 |
+
target_matrix[:, :3, :3] = R_target
|
309 |
+
target_matrix[:, :3, 3] = t_target
|
310 |
+
|
311 |
+
return target_matrix
|
312 |
+
|
313 |
+
|
314 |
+
def parse_args():
|
315 |
+
parser = argparse.ArgumentParser(description="Render settings")
|
316 |
+
|
317 |
+
parser.add_argument(
|
318 |
+
"--mesh_path",
|
319 |
+
type=str,
|
320 |
+
nargs="+",
|
321 |
+
required=True,
|
322 |
+
help="Paths to the mesh files for rendering.",
|
323 |
+
)
|
324 |
+
parser.add_argument(
|
325 |
+
"--input_image",
|
326 |
+
type=str,
|
327 |
+
nargs="+",
|
328 |
+
required=True,
|
329 |
+
help="Paths to the mesh files for rendering.",
|
330 |
+
)
|
331 |
+
parser.add_argument(
|
332 |
+
"--output_root",
|
333 |
+
type=str,
|
334 |
+
default="./outputs",
|
335 |
+
help="Root directory for output",
|
336 |
+
)
|
337 |
+
parser.add_argument(
|
338 |
+
"--uuid",
|
339 |
+
type=str,
|
340 |
+
nargs="+",
|
341 |
+
default=None,
|
342 |
+
help="uuid for rendering saving.",
|
343 |
+
)
|
344 |
+
parser.add_argument(
|
345 |
+
"--num_images", type=int, default=6, help="Number of images to render."
|
346 |
+
)
|
347 |
+
parser.add_argument(
|
348 |
+
"--elevation",
|
349 |
+
type=float,
|
350 |
+
nargs="+",
|
351 |
+
default=[20.0, -10.0],
|
352 |
+
help="Elevation angles for the camera (default: [20.0, -10.0])",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--distance",
|
356 |
+
type=float,
|
357 |
+
default=5,
|
358 |
+
help="Camera distance (default: 5)",
|
359 |
+
)
|
360 |
+
parser.add_argument(
|
361 |
+
"--resolution_hw",
|
362 |
+
type=int,
|
363 |
+
nargs=2,
|
364 |
+
default=(512, 512),
|
365 |
+
help="Resolution of the output images (default: (512, 512))",
|
366 |
+
)
|
367 |
+
parser.add_argument(
|
368 |
+
"--fov",
|
369 |
+
type=float,
|
370 |
+
default=30,
|
371 |
+
help="Field of view in degrees (default: 30)",
|
372 |
+
)
|
373 |
+
parser.add_argument(
|
374 |
+
"--device",
|
375 |
+
type=str,
|
376 |
+
choices=["cpu", "cuda"],
|
377 |
+
default="cuda",
|
378 |
+
help="Device to run on (default: `cuda`)",
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"--texture_size",
|
382 |
+
type=int,
|
383 |
+
default=1024,
|
384 |
+
help="Texture size for texture baking (default: 1024)",
|
385 |
+
)
|
386 |
+
parser.add_argument(
|
387 |
+
"--baker_mode",
|
388 |
+
type=str,
|
389 |
+
default="opt",
|
390 |
+
help="Texture baking mode, `fast` or `opt` (default: opt)",
|
391 |
+
)
|
392 |
+
parser.add_argument(
|
393 |
+
"--opt_step",
|
394 |
+
type=int,
|
395 |
+
default=2500,
|
396 |
+
help="Optimization steps for texture baking (default: 2500)",
|
397 |
+
)
|
398 |
+
parser.add_argument(
|
399 |
+
"--mesh_sipmlify_ratio",
|
400 |
+
type=float,
|
401 |
+
default=0.9,
|
402 |
+
help="Mesh simplification ratio (default: 0.9)",
|
403 |
+
)
|
404 |
+
parser.add_argument(
|
405 |
+
"--no_coor_trans",
|
406 |
+
action="store_true",
|
407 |
+
help="Do not transform the asset coordinate system.",
|
408 |
+
)
|
409 |
+
parser.add_argument(
|
410 |
+
"--delight", action="store_true", help="Use delighting model."
|
411 |
+
)
|
412 |
+
parser.add_argument(
|
413 |
+
"--skip_fix_mesh", action="store_true", help="Fix mesh geometry."
|
414 |
+
)
|
415 |
+
|
416 |
+
args = parser.parse_args()
|
417 |
+
|
418 |
+
if args.uuid is None:
|
419 |
+
args.uuid = []
|
420 |
+
for path in args.mesh_path:
|
421 |
+
uuid = os.path.basename(path).split(".")[0]
|
422 |
+
args.uuid.append(uuid)
|
423 |
+
|
424 |
+
return args
|
425 |
+
|
426 |
+
|
427 |
+
def entrypoint() -> None:
|
428 |
+
args = parse_args()
|
429 |
+
camera_params = CameraSetting(
|
430 |
+
num_images=args.num_images,
|
431 |
+
elevation=args.elevation,
|
432 |
+
distance=args.distance,
|
433 |
+
resolution_hw=args.resolution_hw,
|
434 |
+
fov=math.radians(args.fov),
|
435 |
+
device=args.device,
|
436 |
+
)
|
437 |
+
|
438 |
+
for mesh_path, uuid, img_path in zip(
|
439 |
+
args.mesh_path, args.uuid, args.input_image
|
440 |
+
):
|
441 |
+
mesh = trimesh.load(mesh_path)
|
442 |
+
if isinstance(mesh, trimesh.Scene):
|
443 |
+
mesh = mesh.dump(concatenate=True)
|
444 |
+
vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
445 |
+
|
446 |
+
if not args.no_coor_trans:
|
447 |
+
x_rot = torch.Tensor([[1, 0, 0], [0, 0, 1], [0, -1, 0]])
|
448 |
+
z_rot = torch.Tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
|
449 |
+
vertices = vertices @ x_rot
|
450 |
+
vertices = vertices @ z_rot
|
451 |
+
|
452 |
+
faces = mesh.faces.cpu().numpy().astype(np.int32)
|
453 |
+
vertices = vertices.cpu().numpy().astype(np.float32)
|
454 |
+
|
455 |
+
if not args.skip_fix_mesh:
|
456 |
+
mesh_fixer = MeshFixer(vertices, faces, args.device)
|
457 |
+
vertices, faces = mesh_fixer(
|
458 |
+
filter_ratio=args.mesh_sipmlify_ratio,
|
459 |
+
max_hole_size=0.04,
|
460 |
+
resolution=1024,
|
461 |
+
num_views=1000,
|
462 |
+
norm_mesh_ratio=0.5,
|
463 |
+
)
|
464 |
+
|
465 |
+
vertices, faces, uvs = TextureBaker.parametrize_mesh(vertices, faces)
|
466 |
+
texture_backer = TextureBaker(
|
467 |
+
vertices,
|
468 |
+
faces,
|
469 |
+
uvs,
|
470 |
+
camera_params,
|
471 |
+
)
|
472 |
+
images = get_images_from_grid(
|
473 |
+
img_path, img_size=camera_params.resolution_hw[0]
|
474 |
+
)
|
475 |
+
if args.delight:
|
476 |
+
delight_model = DelightingModel(
|
477 |
+
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa
|
478 |
+
)
|
479 |
+
delight_images = [delight_model(img) for img in images]
|
480 |
+
images = [np.array(img) for img in delight_images]
|
481 |
+
|
482 |
+
texture = texture_backer.bake_texture(
|
483 |
+
images=[img[..., :3] for img in images],
|
484 |
+
texture_size=args.texture_size,
|
485 |
+
mode=args.baker_mode,
|
486 |
+
opt_step=args.opt_step,
|
487 |
+
)
|
488 |
+
texture = post_process_texture(texture)
|
489 |
+
|
490 |
+
if not args.no_coor_trans:
|
491 |
+
vertices = vertices @ np.linalg.inv(z_rot)
|
492 |
+
vertices = vertices @ np.linalg.inv(x_rot)
|
493 |
+
vertices = vertices / scale
|
494 |
+
vertices = vertices + center
|
495 |
+
|
496 |
+
output_path = os.path.join(args.output_root, f"{uuid}.obj")
|
497 |
+
mesh = save_mesh_with_mtl(vertices, faces, uvs, texture, output_path)
|
498 |
+
|
499 |
+
return
|
500 |
+
|
501 |
+
|
502 |
+
if __name__ == "__main__":
|
503 |
+
entrypoint()
|
asset3d_gen/data/backproject_v2.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import nvdiffrast.torch as dr
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import trimesh
|
12 |
+
import xatlas
|
13 |
+
from PIL import Image
|
14 |
+
from asset3d_gen.data.mesh_operator import MeshFixer
|
15 |
+
from asset3d_gen.data.utils import (
|
16 |
+
CameraSetting,
|
17 |
+
DiffrastRender,
|
18 |
+
get_images_from_grid,
|
19 |
+
init_kal_camera,
|
20 |
+
normalize_vertices_array,
|
21 |
+
post_process_texture,
|
22 |
+
save_mesh_with_mtl,
|
23 |
+
)
|
24 |
+
from asset3d_gen.models.delight import DelightingModel
|
25 |
+
from asset3d_gen.models.super_resolution import ImageRealESRGAN
|
26 |
+
|
27 |
+
logging.basicConfig(
|
28 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
29 |
+
)
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
__all__ = [
|
34 |
+
"TextureBacker",
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
def transform_vertices(
|
39 |
+
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
|
40 |
+
) -> torch.Tensor:
|
41 |
+
"""Transform 3D vertices using a projection matrix."""
|
42 |
+
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
|
43 |
+
if pos.size(-1) == 3:
|
44 |
+
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
|
45 |
+
|
46 |
+
result = pos @ t_mtx.T
|
47 |
+
|
48 |
+
return result if keepdim else result.unsqueeze(0)
|
49 |
+
|
50 |
+
|
51 |
+
def _bilinear_interpolation_scattering(
|
52 |
+
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
|
53 |
+
) -> torch.Tensor:
|
54 |
+
"""Bilinear interpolation scattering for grid-based value accumulation."""
|
55 |
+
device = values.device
|
56 |
+
dtype = values.dtype
|
57 |
+
C = values.shape[-1]
|
58 |
+
|
59 |
+
indices = coords * torch.tensor(
|
60 |
+
[image_h - 1, image_w - 1], dtype=dtype, device=device
|
61 |
+
)
|
62 |
+
i, j = indices.unbind(-1)
|
63 |
+
|
64 |
+
i0, j0 = (
|
65 |
+
indices.floor()
|
66 |
+
.long()
|
67 |
+
.clamp(0, image_h - 2)
|
68 |
+
.clamp(0, image_w - 2)
|
69 |
+
.unbind(-1)
|
70 |
+
)
|
71 |
+
i1, j1 = i0 + 1, j0 + 1
|
72 |
+
|
73 |
+
w_i = i - i0.float()
|
74 |
+
w_j = j - j0.float()
|
75 |
+
weights = torch.stack(
|
76 |
+
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
|
77 |
+
dim=1,
|
78 |
+
)
|
79 |
+
|
80 |
+
indices_comb = torch.stack(
|
81 |
+
[
|
82 |
+
torch.stack([i0, j0], dim=1),
|
83 |
+
torch.stack([i0, j1], dim=1),
|
84 |
+
torch.stack([i1, j0], dim=1),
|
85 |
+
torch.stack([i1, j1], dim=1),
|
86 |
+
],
|
87 |
+
dim=1,
|
88 |
+
)
|
89 |
+
|
90 |
+
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
|
91 |
+
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)
|
92 |
+
|
93 |
+
for k in range(4):
|
94 |
+
idx = indices_comb[:, k]
|
95 |
+
w = weights[:, k].unsqueeze(-1)
|
96 |
+
|
97 |
+
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
|
98 |
+
flat_idx = (idx * stride).sum(-1)
|
99 |
+
|
100 |
+
grid.view(-1, C).scatter_add_(
|
101 |
+
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
|
102 |
+
)
|
103 |
+
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)
|
104 |
+
|
105 |
+
mask = cnt.squeeze(-1) > 0
|
106 |
+
grid[mask] = grid[mask] / cnt[mask].repeat(1, C)
|
107 |
+
|
108 |
+
return grid
|
109 |
+
|
110 |
+
|
111 |
+
def _texture_inpaint_smooth(
|
112 |
+
texture: np.ndarray,
|
113 |
+
mask: np.ndarray,
|
114 |
+
vertices: np.ndarray,
|
115 |
+
faces: np.ndarray,
|
116 |
+
uv_map: np.ndarray,
|
117 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
118 |
+
"""Perform texture inpainting using vertex-based color propagation."""
|
119 |
+
image_h, image_w, C = texture.shape
|
120 |
+
N = vertices.shape[0]
|
121 |
+
|
122 |
+
# Initialize vertex data structures
|
123 |
+
vtx_mask = np.zeros(N, dtype=np.float32)
|
124 |
+
vtx_colors = np.zeros((N, C), dtype=np.float32)
|
125 |
+
unprocessed = []
|
126 |
+
adjacency = [[] for _ in range(N)]
|
127 |
+
|
128 |
+
# Build adjacency graph and initial color assignment
|
129 |
+
for face_idx in range(faces.shape[0]):
|
130 |
+
for k in range(3):
|
131 |
+
uv_idx_k = faces[face_idx, k]
|
132 |
+
v_idx = faces[face_idx, k]
|
133 |
+
|
134 |
+
# Convert UV to pixel coordinates with boundary clamping
|
135 |
+
u = np.clip(
|
136 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
137 |
+
)
|
138 |
+
v = np.clip(
|
139 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
140 |
+
0,
|
141 |
+
image_h - 1,
|
142 |
+
)
|
143 |
+
|
144 |
+
if mask[v, u]:
|
145 |
+
vtx_mask[v_idx] = 1.0
|
146 |
+
vtx_colors[v_idx] = texture[v, u]
|
147 |
+
elif v_idx not in unprocessed:
|
148 |
+
unprocessed.append(v_idx)
|
149 |
+
|
150 |
+
# Build undirected adjacency graph
|
151 |
+
neighbor = faces[face_idx, (k + 1) % 3]
|
152 |
+
if neighbor not in adjacency[v_idx]:
|
153 |
+
adjacency[v_idx].append(neighbor)
|
154 |
+
if v_idx not in adjacency[neighbor]:
|
155 |
+
adjacency[neighbor].append(v_idx)
|
156 |
+
|
157 |
+
# Color propagation with dynamic stopping
|
158 |
+
remaining_iters, prev_count = 2, 0
|
159 |
+
while remaining_iters > 0:
|
160 |
+
current_unprocessed = []
|
161 |
+
|
162 |
+
for v_idx in unprocessed:
|
163 |
+
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
|
164 |
+
if not valid_neighbors:
|
165 |
+
current_unprocessed.append(v_idx)
|
166 |
+
continue
|
167 |
+
|
168 |
+
# Calculate inverse square distance weights
|
169 |
+
neighbors_pos = vertices[valid_neighbors]
|
170 |
+
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
|
171 |
+
weights = 1 / np.maximum(dist_sq, 1e-8)
|
172 |
+
|
173 |
+
vtx_colors[v_idx] = np.average(
|
174 |
+
vtx_colors[valid_neighbors], weights=weights, axis=0
|
175 |
+
)
|
176 |
+
vtx_mask[v_idx] = 1.0
|
177 |
+
|
178 |
+
# Update iteration control
|
179 |
+
if len(current_unprocessed) == prev_count:
|
180 |
+
remaining_iters -= 1
|
181 |
+
else:
|
182 |
+
remaining_iters = min(remaining_iters + 1, 2)
|
183 |
+
prev_count = len(current_unprocessed)
|
184 |
+
unprocessed = current_unprocessed
|
185 |
+
|
186 |
+
# Generate output texture
|
187 |
+
inpainted_texture, updated_mask = texture.copy(), mask.copy()
|
188 |
+
for face_idx in range(faces.shape[0]):
|
189 |
+
for k in range(3):
|
190 |
+
v_idx = faces[face_idx, k]
|
191 |
+
if not vtx_mask[v_idx]:
|
192 |
+
continue
|
193 |
+
|
194 |
+
# UV coordinate conversion
|
195 |
+
uv_idx_k = faces[face_idx, k]
|
196 |
+
u = np.clip(
|
197 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
198 |
+
)
|
199 |
+
v = np.clip(
|
200 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
201 |
+
0,
|
202 |
+
image_h - 1,
|
203 |
+
)
|
204 |
+
|
205 |
+
inpainted_texture[v, u] = vtx_colors[v_idx]
|
206 |
+
updated_mask[v, u] = 255
|
207 |
+
|
208 |
+
return inpainted_texture, updated_mask
|
209 |
+
|
210 |
+
|
211 |
+
class TextureBacker:
|
212 |
+
"""Texture baking pipeline for multi-view projection and fusion."""
|
213 |
+
|
214 |
+
def __init__(
|
215 |
+
self,
|
216 |
+
camera_params: CameraSetting,
|
217 |
+
view_weights: list[float],
|
218 |
+
render_wh: tuple[int, int] = (2048, 2048),
|
219 |
+
texture_wh: tuple[int, int] = (2048, 2048),
|
220 |
+
bake_angle_thresh: int = 75,
|
221 |
+
mask_thresh: float = 0.5,
|
222 |
+
):
|
223 |
+
camera = init_kal_camera(camera_params)
|
224 |
+
mv = camera.view_matrix() # (n 4 4) world2cam
|
225 |
+
p = camera.intrinsics.projection_matrix()
|
226 |
+
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
|
227 |
+
p[:, 1, 1] = -p[:, 1, 1]
|
228 |
+
renderer = DiffrastRender(
|
229 |
+
p_matrix=p,
|
230 |
+
mv_matrix=mv,
|
231 |
+
resolution_hw=camera_params.resolution_hw,
|
232 |
+
context=dr.RasterizeCudaContext(),
|
233 |
+
mask_thresh=mask_thresh,
|
234 |
+
grad_db=False,
|
235 |
+
device=camera_params.device,
|
236 |
+
antialias_mask=True,
|
237 |
+
)
|
238 |
+
self.camera = camera
|
239 |
+
self.renderer = renderer
|
240 |
+
self.view_weights = view_weights
|
241 |
+
self.device = camera_params.device
|
242 |
+
self.render_wh = render_wh
|
243 |
+
self.texture_wh = texture_wh
|
244 |
+
|
245 |
+
self.bake_angle_thresh = bake_angle_thresh
|
246 |
+
self.bake_unreliable_kernel_size = int(
|
247 |
+
(2 / 512) * max(self.render_wh[0], self.render_wh[1])
|
248 |
+
)
|
249 |
+
|
250 |
+
def load_mesh(self, mesh: trimesh.Trimesh) -> None:
|
251 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
252 |
+
self.scale, self.center = scale, center
|
253 |
+
|
254 |
+
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
|
255 |
+
uvs[:, 1] = 1 - uvs[:, 1]
|
256 |
+
mesh.vertices = mesh.vertices[vmapping]
|
257 |
+
mesh.faces = indices
|
258 |
+
mesh.visual.uv = uvs
|
259 |
+
|
260 |
+
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
|
261 |
+
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
|
262 |
+
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
|
263 |
+
|
264 |
+
def get_mesh_np_attrs(
|
265 |
+
self,
|
266 |
+
scale: float = None,
|
267 |
+
center: np.ndarray = None,
|
268 |
+
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
269 |
+
vertices = self.vertices.cpu().numpy()
|
270 |
+
faces = self.faces.cpu().numpy()
|
271 |
+
uv_map = self.uv_map.cpu().numpy()
|
272 |
+
uv_map[:, 1] = 1.0 - uv_map[:, 1]
|
273 |
+
|
274 |
+
if scale is not None:
|
275 |
+
vertices = vertices / scale
|
276 |
+
if center is not None:
|
277 |
+
vertices = vertices + center
|
278 |
+
|
279 |
+
return vertices, faces, uv_map
|
280 |
+
|
281 |
+
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
|
282 |
+
depth_image_np = depth_image.cpu().numpy()
|
283 |
+
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
284 |
+
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
285 |
+
sketch_image = (
|
286 |
+
torch.from_numpy(depth_edges).to(depth_image.device).float() / 255
|
287 |
+
)
|
288 |
+
sketch_image = sketch_image.unsqueeze(-1)
|
289 |
+
|
290 |
+
return sketch_image
|
291 |
+
|
292 |
+
def compute_enhanced_viewnormal(
|
293 |
+
self, mv_mtx: torch.Tensor, vertices: torch.Tensor, faces: torch.Tensor
|
294 |
+
) -> torch.Tensor:
|
295 |
+
rast, _ = self.renderer.compute_dr_raster(vertices, faces)
|
296 |
+
rendered_view_normals = []
|
297 |
+
for idx in range(len(mv_mtx)):
|
298 |
+
pos_cam = transform_vertices(mv_mtx[idx], vertices, keepdim=True)
|
299 |
+
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
|
300 |
+
v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3))
|
301 |
+
face_norm = F.normalize(
|
302 |
+
torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1
|
303 |
+
)
|
304 |
+
vertex_norm = (
|
305 |
+
torch.from_numpy(
|
306 |
+
trimesh.geometry.mean_vertex_normals(
|
307 |
+
len(pos_cam), faces.cpu(), face_norm.cpu()
|
308 |
+
)
|
309 |
+
)
|
310 |
+
.to(vertices.device)
|
311 |
+
.contiguous()
|
312 |
+
)
|
313 |
+
im_base_normals, _ = dr.interpolate(
|
314 |
+
vertex_norm[None, ...].float(),
|
315 |
+
rast[idx : idx + 1],
|
316 |
+
faces.to(torch.int32),
|
317 |
+
)
|
318 |
+
rendered_view_normals.append(im_base_normals)
|
319 |
+
|
320 |
+
rendered_view_normals = torch.cat(rendered_view_normals, dim=0)
|
321 |
+
|
322 |
+
return rendered_view_normals
|
323 |
+
|
324 |
+
def back_project(
|
325 |
+
self, image, vis_mask, depth, normal, uv
|
326 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
327 |
+
image = np.array(image)
|
328 |
+
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
|
329 |
+
if image.ndim == 2:
|
330 |
+
image = image.unsqueeze(-1)
|
331 |
+
image = image / 255
|
332 |
+
|
333 |
+
depth_inv = (1.0 - depth) * vis_mask
|
334 |
+
sketch_image = self._render_depth_edges(depth_inv)
|
335 |
+
|
336 |
+
cos = F.cosine_similarity(
|
337 |
+
torch.tensor([[0, 0, 1]], device=self.device),
|
338 |
+
normal.view(-1, 3),
|
339 |
+
).view_as(normal[..., :1])
|
340 |
+
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
|
341 |
+
|
342 |
+
k = self.bake_unreliable_kernel_size * 2 + 1
|
343 |
+
kernel = torch.ones((1, 1, k, k), device=self.device)
|
344 |
+
|
345 |
+
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
|
346 |
+
vis_mask = F.conv2d(
|
347 |
+
1.0 - vis_mask,
|
348 |
+
kernel,
|
349 |
+
padding=k // 2,
|
350 |
+
)
|
351 |
+
vis_mask = 1.0 - (vis_mask > 0).float()
|
352 |
+
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
|
353 |
+
|
354 |
+
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
355 |
+
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
|
356 |
+
sketch_image = (sketch_image > 0).float()
|
357 |
+
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
358 |
+
vis_mask = vis_mask * (sketch_image < 0.5)
|
359 |
+
|
360 |
+
cos[vis_mask == 0] = 0
|
361 |
+
valid_pixels = (vis_mask != 0).view(-1)
|
362 |
+
|
363 |
+
return (
|
364 |
+
self._scatter_texture(uv, image, valid_pixels),
|
365 |
+
self._scatter_texture(uv, cos, valid_pixels),
|
366 |
+
)
|
367 |
+
|
368 |
+
def _scatter_texture(self, uv, data, mask):
|
369 |
+
def __filter_data(data, mask):
|
370 |
+
return data.view(-1, data.shape[-1])[mask]
|
371 |
+
|
372 |
+
return _bilinear_interpolation_scattering(
|
373 |
+
self.texture_wh[1],
|
374 |
+
self.texture_wh[0],
|
375 |
+
__filter_data(uv, mask)[..., [1, 0]],
|
376 |
+
__filter_data(data, mask),
|
377 |
+
)
|
378 |
+
|
379 |
+
@torch.no_grad()
|
380 |
+
def fast_bake_texture(
|
381 |
+
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
|
382 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
383 |
+
channel = textures[0].shape[-1]
|
384 |
+
texture_merge = torch.zeros(self.texture_wh + [channel]).to(
|
385 |
+
self.device
|
386 |
+
)
|
387 |
+
trust_map_merge = torch.zeros(self.texture_wh + [1]).to(self.device)
|
388 |
+
for texture, cos_map in zip(textures, confidence_maps):
|
389 |
+
view_sum = (cos_map > 0).sum()
|
390 |
+
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
|
391 |
+
if painted_sum / view_sum > 0.99:
|
392 |
+
continue
|
393 |
+
texture_merge += texture * cos_map
|
394 |
+
trust_map_merge += cos_map
|
395 |
+
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
|
396 |
+
|
397 |
+
return texture_merge, trust_map_merge > 1e-8
|
398 |
+
|
399 |
+
def uv_inpaint(
|
400 |
+
self, texture: torch.Tensor, mask: torch.Tensor
|
401 |
+
) -> np.ndarray:
|
402 |
+
texture_np = texture.cpu().numpy()
|
403 |
+
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
|
404 |
+
vertices, faces, uv_map = self.get_mesh_np_attrs()
|
405 |
+
|
406 |
+
texture_np, mask_np = _texture_inpaint_smooth(
|
407 |
+
texture_np, mask_np, vertices, faces, uv_map
|
408 |
+
)
|
409 |
+
texture_np = texture_np.clip(0, 1)
|
410 |
+
texture_np = cv2.inpaint(
|
411 |
+
(texture_np * 255).astype(np.uint8),
|
412 |
+
255 - mask_np,
|
413 |
+
3,
|
414 |
+
cv2.INPAINT_NS,
|
415 |
+
)
|
416 |
+
|
417 |
+
return texture_np
|
418 |
+
|
419 |
+
def __call__(
|
420 |
+
self,
|
421 |
+
colors: list[Image.Image],
|
422 |
+
mesh: trimesh.Trimesh,
|
423 |
+
output_path: str,
|
424 |
+
) -> trimesh.Trimesh:
|
425 |
+
self.load_mesh(mesh)
|
426 |
+
rendered_depth, masks = self.renderer.render_depth(
|
427 |
+
self.vertices, self.faces
|
428 |
+
)
|
429 |
+
norm_deps = self.renderer.normalize_map_by_mask(rendered_depth, masks)
|
430 |
+
render_uvs, _ = self.renderer.render_uv(
|
431 |
+
self.vertices, self.faces, self.uv_map
|
432 |
+
)
|
433 |
+
view_normals = self.compute_enhanced_viewnormal(
|
434 |
+
self.renderer.mv_mtx, self.vertices, self.faces
|
435 |
+
)
|
436 |
+
|
437 |
+
textures, weighted_cos_maps = [], []
|
438 |
+
for color, mask, dep, normal, uv, weight in zip(
|
439 |
+
colors,
|
440 |
+
masks,
|
441 |
+
norm_deps,
|
442 |
+
view_normals,
|
443 |
+
render_uvs,
|
444 |
+
self.view_weights,
|
445 |
+
):
|
446 |
+
texture, cos_map = self.back_project(color, mask, dep, normal, uv)
|
447 |
+
textures.append(texture)
|
448 |
+
weighted_cos_maps.append(weight * (cos_map**4))
|
449 |
+
|
450 |
+
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
|
451 |
+
texture_np = self.uv_inpaint(texture, mask)
|
452 |
+
texture_np = post_process_texture(texture_np)
|
453 |
+
vertices, faces, uv_map = self.get_mesh_np_attrs(
|
454 |
+
self.scale, self.center
|
455 |
+
)
|
456 |
+
|
457 |
+
textured_mesh = save_mesh_with_mtl(
|
458 |
+
vertices, faces, uv_map, texture_np, output_path
|
459 |
+
)
|
460 |
+
|
461 |
+
return textured_mesh
|
462 |
+
|
463 |
+
|
464 |
+
def parse_args():
|
465 |
+
parser = argparse.ArgumentParser(description="Backproject texture")
|
466 |
+
parser.add_argument(
|
467 |
+
"--color_path",
|
468 |
+
type=str,
|
469 |
+
help="Multiview color image in 6x512x512 file path",
|
470 |
+
)
|
471 |
+
parser.add_argument(
|
472 |
+
"--mesh_path",
|
473 |
+
type=str,
|
474 |
+
help="Mesh path, .obj, .glb or .ply",
|
475 |
+
)
|
476 |
+
parser.add_argument(
|
477 |
+
"--output_path",
|
478 |
+
type=str,
|
479 |
+
help="Output mesh path with suffix",
|
480 |
+
)
|
481 |
+
parser.add_argument(
|
482 |
+
"--num_images", type=int, default=6, help="Number of images to render."
|
483 |
+
)
|
484 |
+
parser.add_argument(
|
485 |
+
"--elevation",
|
486 |
+
nargs=2,
|
487 |
+
type=float,
|
488 |
+
default=[20.0, -10.0],
|
489 |
+
help="Elevation angles for the camera (default: [20.0, -10.0])",
|
490 |
+
)
|
491 |
+
parser.add_argument(
|
492 |
+
"--distance",
|
493 |
+
type=float,
|
494 |
+
default=5,
|
495 |
+
help="Camera distance (default: 5)",
|
496 |
+
)
|
497 |
+
parser.add_argument(
|
498 |
+
"--resolution_hw",
|
499 |
+
type=int,
|
500 |
+
nargs=2,
|
501 |
+
default=(2048, 2048),
|
502 |
+
help="Resolution of the output images (default: (2048, 2048))",
|
503 |
+
)
|
504 |
+
parser.add_argument(
|
505 |
+
"--fov",
|
506 |
+
type=float,
|
507 |
+
default=30,
|
508 |
+
help="Field of view in degrees (default: 30)",
|
509 |
+
)
|
510 |
+
parser.add_argument(
|
511 |
+
"--device",
|
512 |
+
type=str,
|
513 |
+
choices=["cpu", "cuda"],
|
514 |
+
default="cuda",
|
515 |
+
help="Device to run on (default: `cuda`)",
|
516 |
+
)
|
517 |
+
parser.add_argument(
|
518 |
+
"--skip_fix_mesh", action="store_true", help="Fix mesh geometry."
|
519 |
+
)
|
520 |
+
parser.add_argument(
|
521 |
+
"--texture_wh",
|
522 |
+
nargs=2,
|
523 |
+
type=int,
|
524 |
+
default=[2048, 2048],
|
525 |
+
help="Texture resolution width and height",
|
526 |
+
)
|
527 |
+
parser.add_argument(
|
528 |
+
"--mesh_sipmlify_ratio",
|
529 |
+
type=float,
|
530 |
+
default=0.9,
|
531 |
+
help="Mesh simplification ratio (default: 0.9)",
|
532 |
+
)
|
533 |
+
parser.add_argument(
|
534 |
+
"--delight", action="store_true", help="Use delighting model."
|
535 |
+
)
|
536 |
+
args = parser.parse_args()
|
537 |
+
|
538 |
+
return args
|
539 |
+
|
540 |
+
|
541 |
+
def entrypoint(
|
542 |
+
delight_model: DelightingModel = None,
|
543 |
+
imagesr_model: ImageRealESRGAN = None,
|
544 |
+
**kwargs,
|
545 |
+
) -> trimesh.Trimesh:
|
546 |
+
args = parse_args()
|
547 |
+
for k, v in kwargs.items():
|
548 |
+
if hasattr(args, k) and v is not None:
|
549 |
+
setattr(args, k, v)
|
550 |
+
|
551 |
+
# Setup camera parameters.
|
552 |
+
camera_params = CameraSetting(
|
553 |
+
num_images=args.num_images,
|
554 |
+
elevation=args.elevation,
|
555 |
+
distance=args.distance,
|
556 |
+
resolution_hw=args.resolution_hw,
|
557 |
+
fov=math.radians(args.fov),
|
558 |
+
device=args.device,
|
559 |
+
)
|
560 |
+
view_weights = [1, 0.1, 0.02, 0.1, 1, 0.02]
|
561 |
+
|
562 |
+
color_grid = Image.open(args.color_path)
|
563 |
+
if args.delight:
|
564 |
+
if delight_model is None:
|
565 |
+
delight_model = DelightingModel(
|
566 |
+
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa
|
567 |
+
)
|
568 |
+
save_dir = os.path.dirname(args.output_path)
|
569 |
+
os.makedirs(save_dir, exist_ok=True)
|
570 |
+
color_grid.save(f"{save_dir}/color_grid.png")
|
571 |
+
color_grid = delight_model(color_grid)
|
572 |
+
color_grid.save(f"{save_dir}/color_grid_delight.png")
|
573 |
+
|
574 |
+
multiviews = get_images_from_grid(color_grid, img_size=512)
|
575 |
+
|
576 |
+
# Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
|
577 |
+
if imagesr_model is None:
|
578 |
+
imagesr_model = ImageRealESRGAN(outscale=4)
|
579 |
+
multiviews = [imagesr_model(img) for img in multiviews]
|
580 |
+
multiviews = [img.convert("RGB") for img in multiviews]
|
581 |
+
mesh = trimesh.load(args.mesh_path)
|
582 |
+
if isinstance(mesh, trimesh.Scene):
|
583 |
+
mesh = mesh.dump(concatenate=True)
|
584 |
+
|
585 |
+
if not args.skip_fix_mesh:
|
586 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
587 |
+
mesh_fixer = MeshFixer(mesh.vertices, mesh.faces, args.device)
|
588 |
+
mesh.vertices, mesh.faces = mesh_fixer(
|
589 |
+
filter_ratio=args.mesh_sipmlify_ratio,
|
590 |
+
max_hole_size=0.04,
|
591 |
+
resolution=1024,
|
592 |
+
num_views=1000,
|
593 |
+
norm_mesh_ratio=0.5,
|
594 |
+
)
|
595 |
+
# Restore scale.
|
596 |
+
mesh.vertices = mesh.vertices / scale
|
597 |
+
mesh.vertices = mesh.vertices + center
|
598 |
+
|
599 |
+
# Baking texture to mesh.
|
600 |
+
texture_backer = TextureBacker(
|
601 |
+
camera_params=camera_params,
|
602 |
+
view_weights=view_weights,
|
603 |
+
render_wh=camera_params.resolution_hw,
|
604 |
+
texture_wh=args.texture_wh,
|
605 |
+
)
|
606 |
+
|
607 |
+
textured_mesh = texture_backer(multiviews, mesh, args.output_path)
|
608 |
+
|
609 |
+
return textured_mesh
|
610 |
+
|
611 |
+
|
612 |
+
if __name__ == "__main__":
|
613 |
+
entrypoint()
|
asset3d_gen/data/backup/backproject_v2 copy.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import nvdiffrast.torch as dr
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torchvision.transforms import functional as tF
|
12 |
+
|
13 |
+
import trimesh
|
14 |
+
import xatlas
|
15 |
+
from PIL import Image
|
16 |
+
from asset3d_gen.data.mesh_operator import MeshFixer
|
17 |
+
from asset3d_gen.data.utils import (
|
18 |
+
CameraSetting,
|
19 |
+
DiffrastRender,
|
20 |
+
get_images_from_grid,
|
21 |
+
init_kal_camera,
|
22 |
+
normalize_vertices_array,
|
23 |
+
post_process_texture,
|
24 |
+
save_mesh_with_mtl,
|
25 |
+
)
|
26 |
+
from asset3d_gen.models.delight import DelightingModel
|
27 |
+
from asset3d_gen.models.super_resolution import ImageRealESRGAN
|
28 |
+
|
29 |
+
logging.basicConfig(
|
30 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
31 |
+
)
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
__all__ = [
|
36 |
+
"TextureBacker",
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
def transform_vertices(
|
41 |
+
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
|
42 |
+
) -> torch.Tensor:
|
43 |
+
"""Transform 3D vertices using a projection matrix."""
|
44 |
+
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
|
45 |
+
if pos.size(-1) == 3:
|
46 |
+
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
|
47 |
+
|
48 |
+
result = pos @ t_mtx.T
|
49 |
+
|
50 |
+
return result if keepdim else result.unsqueeze(0)
|
51 |
+
|
52 |
+
|
53 |
+
def _bilinear_interpolation_scattering(
|
54 |
+
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
|
55 |
+
) -> torch.Tensor:
|
56 |
+
"""Bilinear interpolation scattering for grid-based value accumulation."""
|
57 |
+
device = values.device
|
58 |
+
dtype = values.dtype
|
59 |
+
C = values.shape[-1]
|
60 |
+
|
61 |
+
indices = coords * torch.tensor(
|
62 |
+
[image_h - 1, image_w - 1], dtype=dtype, device=device
|
63 |
+
)
|
64 |
+
i, j = indices.unbind(-1)
|
65 |
+
|
66 |
+
i0, j0 = (
|
67 |
+
indices.floor()
|
68 |
+
.long()
|
69 |
+
.clamp(0, image_h - 2)
|
70 |
+
.clamp(0, image_w - 2)
|
71 |
+
.unbind(-1)
|
72 |
+
)
|
73 |
+
i1, j1 = i0 + 1, j0 + 1
|
74 |
+
|
75 |
+
w_i = i - i0.float()
|
76 |
+
w_j = j - j0.float()
|
77 |
+
weights = torch.stack(
|
78 |
+
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
|
79 |
+
dim=1,
|
80 |
+
)
|
81 |
+
|
82 |
+
indices_comb = torch.stack(
|
83 |
+
[
|
84 |
+
torch.stack([i0, j0], dim=1),
|
85 |
+
torch.stack([i0, j1], dim=1),
|
86 |
+
torch.stack([i1, j0], dim=1),
|
87 |
+
torch.stack([i1, j1], dim=1),
|
88 |
+
],
|
89 |
+
dim=1,
|
90 |
+
)
|
91 |
+
|
92 |
+
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
|
93 |
+
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)
|
94 |
+
|
95 |
+
for k in range(4):
|
96 |
+
idx = indices_comb[:, k]
|
97 |
+
w = weights[:, k].unsqueeze(-1)
|
98 |
+
|
99 |
+
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
|
100 |
+
flat_idx = (idx * stride).sum(-1)
|
101 |
+
|
102 |
+
grid.view(-1, C).scatter_add_(
|
103 |
+
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
|
104 |
+
)
|
105 |
+
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)
|
106 |
+
|
107 |
+
mask = cnt.squeeze(-1) > 0
|
108 |
+
grid[mask] = grid[mask] / cnt[mask].repeat(1, C)
|
109 |
+
|
110 |
+
return grid
|
111 |
+
|
112 |
+
|
113 |
+
def _texture_inpaint_smooth(
|
114 |
+
texture: np.ndarray,
|
115 |
+
mask: np.ndarray,
|
116 |
+
vertices: np.ndarray,
|
117 |
+
faces: np.ndarray,
|
118 |
+
uv_map: np.ndarray,
|
119 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
120 |
+
"""Perform texture inpainting using vertex-based color propagation."""
|
121 |
+
image_h, image_w, C = texture.shape
|
122 |
+
N = vertices.shape[0]
|
123 |
+
|
124 |
+
# Initialize vertex data structures
|
125 |
+
vtx_mask = np.zeros(N, dtype=np.float32)
|
126 |
+
vtx_colors = np.zeros((N, C), dtype=np.float32)
|
127 |
+
unprocessed = []
|
128 |
+
adjacency = [[] for _ in range(N)]
|
129 |
+
|
130 |
+
# Build adjacency graph and initial color assignment
|
131 |
+
for face_idx in range(faces.shape[0]):
|
132 |
+
for k in range(3):
|
133 |
+
uv_idx_k = faces[face_idx, k]
|
134 |
+
v_idx = faces[face_idx, k]
|
135 |
+
|
136 |
+
# Convert UV to pixel coordinates with boundary clamping
|
137 |
+
u = np.clip(
|
138 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
139 |
+
)
|
140 |
+
v = np.clip(
|
141 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
142 |
+
0,
|
143 |
+
image_h - 1,
|
144 |
+
)
|
145 |
+
|
146 |
+
if mask[v, u]:
|
147 |
+
vtx_mask[v_idx] = 1.0
|
148 |
+
vtx_colors[v_idx] = texture[v, u]
|
149 |
+
elif v_idx not in unprocessed:
|
150 |
+
unprocessed.append(v_idx)
|
151 |
+
|
152 |
+
# Build undirected adjacency graph
|
153 |
+
neighbor = faces[face_idx, (k + 1) % 3]
|
154 |
+
if neighbor not in adjacency[v_idx]:
|
155 |
+
adjacency[v_idx].append(neighbor)
|
156 |
+
if v_idx not in adjacency[neighbor]:
|
157 |
+
adjacency[neighbor].append(v_idx)
|
158 |
+
|
159 |
+
# Color propagation with dynamic stopping
|
160 |
+
remaining_iters, prev_count = 2, 0
|
161 |
+
while remaining_iters > 0:
|
162 |
+
current_unprocessed = []
|
163 |
+
|
164 |
+
for v_idx in unprocessed:
|
165 |
+
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
|
166 |
+
if not valid_neighbors:
|
167 |
+
current_unprocessed.append(v_idx)
|
168 |
+
continue
|
169 |
+
|
170 |
+
# Calculate inverse square distance weights
|
171 |
+
neighbors_pos = vertices[valid_neighbors]
|
172 |
+
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
|
173 |
+
weights = 1 / np.maximum(dist_sq, 1e-8)
|
174 |
+
|
175 |
+
vtx_colors[v_idx] = np.average(
|
176 |
+
vtx_colors[valid_neighbors], weights=weights, axis=0
|
177 |
+
)
|
178 |
+
vtx_mask[v_idx] = 1.0
|
179 |
+
|
180 |
+
# Update iteration control
|
181 |
+
if len(current_unprocessed) == prev_count:
|
182 |
+
remaining_iters -= 1
|
183 |
+
else:
|
184 |
+
remaining_iters = min(remaining_iters + 1, 2)
|
185 |
+
prev_count = len(current_unprocessed)
|
186 |
+
unprocessed = current_unprocessed
|
187 |
+
|
188 |
+
# Generate output texture
|
189 |
+
inpainted_texture, updated_mask = texture.copy(), mask.copy()
|
190 |
+
for face_idx in range(faces.shape[0]):
|
191 |
+
for k in range(3):
|
192 |
+
v_idx = faces[face_idx, k]
|
193 |
+
if not vtx_mask[v_idx]:
|
194 |
+
continue
|
195 |
+
|
196 |
+
# UV coordinate conversion
|
197 |
+
uv_idx_k = faces[face_idx, k]
|
198 |
+
u = np.clip(
|
199 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
200 |
+
)
|
201 |
+
v = np.clip(
|
202 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
203 |
+
0,
|
204 |
+
image_h - 1,
|
205 |
+
)
|
206 |
+
|
207 |
+
inpainted_texture[v, u] = vtx_colors[v_idx]
|
208 |
+
updated_mask[v, u] = 255
|
209 |
+
|
210 |
+
return inpainted_texture, updated_mask
|
211 |
+
|
212 |
+
|
213 |
+
def interp_tensers(tensors: list[torch.Tensor], target_wh: tuple[int, int]) -> list[torch.Tensor]:
|
214 |
+
for idx in range(len(tensors)):
|
215 |
+
tensor = tensors[idx].permute(2, 0, 1)
|
216 |
+
tensor = tF.resize(tensor, target_wh[::-1], antialias=True)
|
217 |
+
tensors[idx] = tensor.permute(1, 2, 0)
|
218 |
+
|
219 |
+
return tensors
|
220 |
+
|
221 |
+
|
222 |
+
class TextureBacker:
|
223 |
+
"""Texture baking pipeline for multi-view projection and fusion."""
|
224 |
+
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
camera_params: CameraSetting,
|
228 |
+
view_weights: list[float],
|
229 |
+
render_wh: tuple[int, int] = (2048, 2048),
|
230 |
+
texture_wh: tuple[int, int] = (2048, 2048),
|
231 |
+
bake_angle_thresh: int = 75,
|
232 |
+
mask_thresh: float = 0.5,
|
233 |
+
):
|
234 |
+
camera = init_kal_camera(camera_params)
|
235 |
+
mv = camera.view_matrix() # (n 4 4) world2cam
|
236 |
+
p = camera.intrinsics.projection_matrix()
|
237 |
+
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
|
238 |
+
p[:, 1, 1] = -p[:, 1, 1]
|
239 |
+
self.renderer = DiffrastRender(
|
240 |
+
p_matrix=p,
|
241 |
+
mv_matrix=mv,
|
242 |
+
resolution_hw=camera_params.resolution_hw,
|
243 |
+
context=dr.RasterizeCudaContext(),
|
244 |
+
mask_thresh=mask_thresh,
|
245 |
+
grad_db=False,
|
246 |
+
device=camera_params.device,
|
247 |
+
antialias_mask=True,
|
248 |
+
)
|
249 |
+
self.camera = camera
|
250 |
+
self.view_weights = view_weights
|
251 |
+
self.device = camera_params.device
|
252 |
+
self.render_wh = render_wh
|
253 |
+
self.texture_wh = texture_wh
|
254 |
+
|
255 |
+
self.bake_angle_thresh = bake_angle_thresh
|
256 |
+
self.bake_unreliable_kernel_size = int(
|
257 |
+
(2 / 512) * max(self.render_wh[0], self.render_wh[1])
|
258 |
+
)
|
259 |
+
|
260 |
+
def load_mesh(self, mesh: trimesh.Trimesh) -> None:
|
261 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
262 |
+
self.scale, self.center = scale, center
|
263 |
+
|
264 |
+
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
|
265 |
+
uvs[:, 1] = 1 - uvs[:, 1]
|
266 |
+
mesh.vertices = mesh.vertices[vmapping]
|
267 |
+
mesh.faces = indices
|
268 |
+
mesh.visual.uv = uvs
|
269 |
+
|
270 |
+
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
|
271 |
+
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
|
272 |
+
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
|
273 |
+
|
274 |
+
def get_mesh_np_attrs(
|
275 |
+
self,
|
276 |
+
scale: float = None,
|
277 |
+
center: np.ndarray = None,
|
278 |
+
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
279 |
+
vertices = self.vertices.cpu().numpy()
|
280 |
+
faces = self.faces.cpu().numpy()
|
281 |
+
uv_map = self.uv_map.cpu().numpy()
|
282 |
+
uv_map[:, 1] = 1.0 - uv_map[:, 1]
|
283 |
+
|
284 |
+
if scale is not None:
|
285 |
+
vertices = vertices / scale
|
286 |
+
if center is not None:
|
287 |
+
vertices = vertices + center
|
288 |
+
|
289 |
+
return vertices, faces, uv_map
|
290 |
+
|
291 |
+
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
|
292 |
+
depth_image_np = depth_image.cpu().numpy()
|
293 |
+
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
294 |
+
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
295 |
+
sketch_image = (
|
296 |
+
torch.from_numpy(depth_edges).to(depth_image.device).float() / 255
|
297 |
+
)
|
298 |
+
sketch_image = sketch_image.unsqueeze(-1)
|
299 |
+
|
300 |
+
return sketch_image
|
301 |
+
|
302 |
+
def compute_enhanced_viewnormal(
|
303 |
+
self, mv_mtx: torch.Tensor, vertices: torch.Tensor, faces: torch.Tensor
|
304 |
+
) -> torch.Tensor:
|
305 |
+
rast, _ = self.renderer.compute_dr_raster(vertices, faces)
|
306 |
+
rendered_view_normals = []
|
307 |
+
for idx in range(len(mv_mtx)):
|
308 |
+
pos_cam = transform_vertices(mv_mtx[idx], vertices, keepdim=True)
|
309 |
+
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
|
310 |
+
v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3))
|
311 |
+
face_norm = F.normalize(
|
312 |
+
torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1
|
313 |
+
)
|
314 |
+
vertex_norm = (
|
315 |
+
torch.from_numpy(
|
316 |
+
trimesh.geometry.mean_vertex_normals(
|
317 |
+
len(pos_cam), faces.cpu(), face_norm.cpu()
|
318 |
+
)
|
319 |
+
)
|
320 |
+
.to(vertices.device)
|
321 |
+
.contiguous()
|
322 |
+
)
|
323 |
+
im_base_normals, _ = dr.interpolate(
|
324 |
+
vertex_norm[None, ...].float(),
|
325 |
+
rast[idx : idx + 1],
|
326 |
+
faces.to(torch.int32),
|
327 |
+
)
|
328 |
+
rendered_view_normals.append(im_base_normals)
|
329 |
+
|
330 |
+
rendered_view_normals = torch.cat(rendered_view_normals, dim=0)
|
331 |
+
|
332 |
+
return rendered_view_normals
|
333 |
+
|
334 |
+
def back_project(
|
335 |
+
self, image, vis_mask, depth, normal, uv
|
336 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
337 |
+
image = np.array(image)
|
338 |
+
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
|
339 |
+
if image.ndim == 2:
|
340 |
+
image = image.unsqueeze(-1)
|
341 |
+
image = image / 255
|
342 |
+
|
343 |
+
depth_inv = (1.0 - depth) * vis_mask
|
344 |
+
sketch_image = self._render_depth_edges(depth_inv)
|
345 |
+
|
346 |
+
cos = F.cosine_similarity(
|
347 |
+
torch.tensor([[0, 0, 1]], device=self.device),
|
348 |
+
normal.view(-1, 3),
|
349 |
+
).view_as(normal[..., :1])
|
350 |
+
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
|
351 |
+
|
352 |
+
k = self.bake_unreliable_kernel_size * 2 + 1
|
353 |
+
kernel = torch.ones((1, 1, k, k), device=self.device)
|
354 |
+
|
355 |
+
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
|
356 |
+
vis_mask = F.conv2d(
|
357 |
+
1.0 - vis_mask,
|
358 |
+
kernel,
|
359 |
+
padding=k // 2,
|
360 |
+
)
|
361 |
+
vis_mask = 1.0 - (vis_mask > 0).float()
|
362 |
+
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
|
363 |
+
|
364 |
+
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
365 |
+
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
|
366 |
+
sketch_image = (sketch_image > 0).float()
|
367 |
+
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
368 |
+
vis_mask = vis_mask * (sketch_image < 0.5)
|
369 |
+
|
370 |
+
cos[vis_mask == 0] = 0
|
371 |
+
valid_pixels = (vis_mask != 0).view(-1)
|
372 |
+
|
373 |
+
return (
|
374 |
+
self._scatter_texture(uv, image, valid_pixels),
|
375 |
+
self._scatter_texture(uv, cos, valid_pixels),
|
376 |
+
)
|
377 |
+
|
378 |
+
def _scatter_texture(self, uv, data, mask):
|
379 |
+
def __filter_data(data, mask):
|
380 |
+
return data.view(-1, data.shape[-1])[mask]
|
381 |
+
|
382 |
+
return _bilinear_interpolation_scattering(
|
383 |
+
self.texture_wh[1],
|
384 |
+
self.texture_wh[0],
|
385 |
+
__filter_data(uv, mask)[..., [1, 0]],
|
386 |
+
__filter_data(data, mask),
|
387 |
+
)
|
388 |
+
|
389 |
+
@torch.no_grad()
|
390 |
+
def fast_bake_texture(
|
391 |
+
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
|
392 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
393 |
+
channel = textures[0].shape[-1]
|
394 |
+
texture_merge = torch.zeros(self.texture_wh + [channel]).to(
|
395 |
+
self.device
|
396 |
+
)
|
397 |
+
trust_map_merge = torch.zeros(self.texture_wh + [1]).to(self.device)
|
398 |
+
for texture, cos_map in zip(textures, confidence_maps):
|
399 |
+
view_sum = (cos_map > 0).sum()
|
400 |
+
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
|
401 |
+
if painted_sum / view_sum > 0.99:
|
402 |
+
continue
|
403 |
+
texture_merge += texture * cos_map
|
404 |
+
trust_map_merge += cos_map
|
405 |
+
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
|
406 |
+
|
407 |
+
return texture_merge, trust_map_merge > 1e-8
|
408 |
+
|
409 |
+
def uv_inpaint(
|
410 |
+
self, texture: torch.Tensor, mask: torch.Tensor
|
411 |
+
) -> np.ndarray:
|
412 |
+
texture_np = texture.cpu().numpy()
|
413 |
+
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
|
414 |
+
vertices, faces, uv_map = self.get_mesh_np_attrs()
|
415 |
+
|
416 |
+
texture_np, mask_np = _texture_inpaint_smooth(
|
417 |
+
texture_np, mask_np, vertices, faces, uv_map
|
418 |
+
)
|
419 |
+
texture_np = texture_np.clip(0, 1)
|
420 |
+
texture_np = cv2.inpaint(
|
421 |
+
(texture_np * 255).astype(np.uint8),
|
422 |
+
255 - mask_np,
|
423 |
+
3,
|
424 |
+
cv2.INPAINT_NS,
|
425 |
+
)
|
426 |
+
|
427 |
+
return texture_np
|
428 |
+
|
429 |
+
def __call__(
|
430 |
+
self,
|
431 |
+
colors: list[Image.Image],
|
432 |
+
mesh: trimesh.Trimesh,
|
433 |
+
output_path: str,
|
434 |
+
) -> trimesh.Trimesh:
|
435 |
+
import time
|
436 |
+
start = time.time()
|
437 |
+
self.load_mesh(mesh)
|
438 |
+
print("load_mesh", time.time() - start)
|
439 |
+
|
440 |
+
start = time.time()
|
441 |
+
rendered_depth, masks = self.renderer.render_depth(
|
442 |
+
self.vertices, self.faces
|
443 |
+
)
|
444 |
+
norm_deps = self.renderer.normalize_map_by_mask(rendered_depth, masks)
|
445 |
+
render_uvs, _ = self.renderer.render_uv(
|
446 |
+
self.vertices, self.faces, self.uv_map
|
447 |
+
)
|
448 |
+
view_normals = self.compute_enhanced_viewnormal(
|
449 |
+
self.renderer.mv_mtx, self.vertices, self.faces
|
450 |
+
)
|
451 |
+
print("0", time.time() - start)
|
452 |
+
|
453 |
+
textures, weighted_cos_maps = [], []
|
454 |
+
|
455 |
+
start = time.time()
|
456 |
+
for color, mask, dep, normal, uv, weight in zip(
|
457 |
+
colors,
|
458 |
+
masks,
|
459 |
+
norm_deps,
|
460 |
+
view_normals,
|
461 |
+
render_uvs,
|
462 |
+
self.view_weights,
|
463 |
+
):
|
464 |
+
mask, dep, normal, uv = interp_tensers([mask, dep, normal, uv], self.render_wh)
|
465 |
+
texture, cos_map = self.back_project(color, mask, dep, normal, uv)
|
466 |
+
textures.append(texture)
|
467 |
+
weighted_cos_maps.append(weight * (cos_map**4))
|
468 |
+
print("1", time.time() - start)
|
469 |
+
start = time.time()
|
470 |
+
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
|
471 |
+
print("2", time.time() - start)
|
472 |
+
start = time.time()
|
473 |
+
texture_np = self.uv_inpaint(texture, mask)
|
474 |
+
print("3", time.time() - start)
|
475 |
+
start = time.time()
|
476 |
+
texture_np = post_process_texture(texture_np)
|
477 |
+
vertices, faces, uv_map = self.get_mesh_np_attrs(
|
478 |
+
self.scale, self.center
|
479 |
+
)
|
480 |
+
|
481 |
+
textured_mesh = save_mesh_with_mtl(
|
482 |
+
vertices, faces, uv_map, texture_np, output_path
|
483 |
+
)
|
484 |
+
print("4", time.time() - start)
|
485 |
+
|
486 |
+
return textured_mesh
|
487 |
+
|
488 |
+
|
489 |
+
def parse_args():
|
490 |
+
parser = argparse.ArgumentParser(description="Backproject texture")
|
491 |
+
parser.add_argument(
|
492 |
+
"--color_path",
|
493 |
+
type=str,
|
494 |
+
help="Multiview color image in 6x512x512 file path",
|
495 |
+
)
|
496 |
+
parser.add_argument(
|
497 |
+
"--mesh_path",
|
498 |
+
type=str,
|
499 |
+
help="Mesh path, .obj, .glb or .ply",
|
500 |
+
)
|
501 |
+
parser.add_argument(
|
502 |
+
"--output_path",
|
503 |
+
type=str,
|
504 |
+
help="Output mesh path with suffix",
|
505 |
+
)
|
506 |
+
parser.add_argument(
|
507 |
+
"--num_images", type=int, default=6, help="Number of images to render."
|
508 |
+
)
|
509 |
+
parser.add_argument(
|
510 |
+
"--elevation",
|
511 |
+
nargs=2,
|
512 |
+
type=float,
|
513 |
+
default=[20.0, -10.0],
|
514 |
+
help="Elevation angles for the camera (default: [20.0, -10.0])",
|
515 |
+
)
|
516 |
+
parser.add_argument(
|
517 |
+
"--distance",
|
518 |
+
type=float,
|
519 |
+
default=5,
|
520 |
+
help="Camera distance (default: 5)",
|
521 |
+
)
|
522 |
+
parser.add_argument(
|
523 |
+
"--resolution_hw",
|
524 |
+
type=int,
|
525 |
+
nargs=2,
|
526 |
+
default=(2048, 2048),
|
527 |
+
help="Resolution of the mesh rendering",
|
528 |
+
)
|
529 |
+
parser.add_argument(
|
530 |
+
"--target_hw",
|
531 |
+
type=int,
|
532 |
+
nargs=2,
|
533 |
+
default=(2048, 2048),
|
534 |
+
help="Target rendering images resolution",
|
535 |
+
)
|
536 |
+
parser.add_argument(
|
537 |
+
"--fov",
|
538 |
+
type=float,
|
539 |
+
default=30,
|
540 |
+
help="Field of view in degrees (default: 30)",
|
541 |
+
)
|
542 |
+
parser.add_argument(
|
543 |
+
"--device",
|
544 |
+
type=str,
|
545 |
+
choices=["cpu", "cuda"],
|
546 |
+
default="cuda",
|
547 |
+
help="Device to run on (default: `cuda`)",
|
548 |
+
)
|
549 |
+
parser.add_argument(
|
550 |
+
"--skip_fix_mesh", action="store_true", help="Fix mesh geometry."
|
551 |
+
)
|
552 |
+
parser.add_argument(
|
553 |
+
"--texture_wh",
|
554 |
+
nargs=2,
|
555 |
+
type=int,
|
556 |
+
default=[2048, 2048],
|
557 |
+
help="Texture resolution width and height",
|
558 |
+
)
|
559 |
+
parser.add_argument(
|
560 |
+
"--mesh_sipmlify_ratio",
|
561 |
+
type=float,
|
562 |
+
default=0.9,
|
563 |
+
help="Mesh simplification ratio (default: 0.9)",
|
564 |
+
)
|
565 |
+
parser.add_argument(
|
566 |
+
"--delight", action="store_true", help="Use delighting model."
|
567 |
+
)
|
568 |
+
args = parser.parse_args()
|
569 |
+
|
570 |
+
return args
|
571 |
+
|
572 |
+
|
573 |
+
def entrypoint(
|
574 |
+
delight_model: DelightingModel = None,
|
575 |
+
imagesr_model: ImageRealESRGAN = None,
|
576 |
+
**kwargs,
|
577 |
+
) -> trimesh.Trimesh:
|
578 |
+
args = parse_args()
|
579 |
+
for k, v in kwargs.items():
|
580 |
+
if hasattr(args, k) and v is not None:
|
581 |
+
setattr(args, k, v)
|
582 |
+
|
583 |
+
# Setup camera parameters.
|
584 |
+
camera_params = CameraSetting(
|
585 |
+
num_images=args.num_images,
|
586 |
+
elevation=args.elevation,
|
587 |
+
distance=args.distance,
|
588 |
+
resolution_hw=args.resolution_hw,
|
589 |
+
fov=math.radians(args.fov),
|
590 |
+
device=args.device,
|
591 |
+
)
|
592 |
+
view_weights = [1, 0.1, 0.02, 0.1, 1, 0.02]
|
593 |
+
|
594 |
+
color_grid = Image.open(args.color_path)
|
595 |
+
if args.delight:
|
596 |
+
if delight_model is None:
|
597 |
+
delight_model = DelightingModel(
|
598 |
+
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa
|
599 |
+
)
|
600 |
+
save_dir = os.path.dirname(args.output_path)
|
601 |
+
os.makedirs(save_dir, exist_ok=True)
|
602 |
+
color_grid.save(f"{save_dir}/color_grid.png")
|
603 |
+
color_grid = delight_model(color_grid)
|
604 |
+
color_grid.save(f"{save_dir}/color_grid_delight.png")
|
605 |
+
|
606 |
+
multiviews = get_images_from_grid(color_grid, img_size=512)
|
607 |
+
|
608 |
+
# Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
|
609 |
+
if imagesr_model is None:
|
610 |
+
imagesr_model = ImageRealESRGAN(outscale=4)
|
611 |
+
multiviews = [imagesr_model(img.convert("RGB")) for img in multiviews]
|
612 |
+
multiviews = [img.resize(args.target_hw[::-1]) for img in multiviews]
|
613 |
+
|
614 |
+
mesh = trimesh.load(args.mesh_path)
|
615 |
+
if isinstance(mesh, trimesh.Scene):
|
616 |
+
mesh = mesh.dump(concatenate=True)
|
617 |
+
|
618 |
+
if not args.skip_fix_mesh:
|
619 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
620 |
+
mesh_fixer = MeshFixer(mesh.vertices, mesh.faces, args.device)
|
621 |
+
mesh.vertices, mesh.faces = mesh_fixer(
|
622 |
+
filter_ratio=args.mesh_sipmlify_ratio,
|
623 |
+
max_hole_size=0.04,
|
624 |
+
resolution=1024,
|
625 |
+
num_views=1000,
|
626 |
+
norm_mesh_ratio=0.5,
|
627 |
+
)
|
628 |
+
# Restore scale.
|
629 |
+
mesh.vertices = mesh.vertices / scale
|
630 |
+
mesh.vertices = mesh.vertices + center
|
631 |
+
|
632 |
+
# Baking texture to mesh.
|
633 |
+
import time
|
634 |
+
start = time.time()
|
635 |
+
texture_backer = TextureBacker(
|
636 |
+
camera_params=camera_params,
|
637 |
+
view_weights=view_weights,
|
638 |
+
render_wh=args.target_hw,
|
639 |
+
texture_wh=args.texture_wh,
|
640 |
+
)
|
641 |
+
print(time.time()-start)
|
642 |
+
start = time.time()
|
643 |
+
textured_mesh = texture_backer(multiviews, mesh, args.output_path)
|
644 |
+
print(f"Texture backproject time: {time.time() - start:.2f}s")
|
645 |
+
|
646 |
+
return textured_mesh
|
647 |
+
|
648 |
+
|
649 |
+
if __name__ == "__main__":
|
650 |
+
entrypoint()
|
asset3d_gen/data/backup/backproject_v2.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
import custom_rasterizer as cr
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import trimesh
|
11 |
+
import xatlas
|
12 |
+
from PIL import Image
|
13 |
+
from asset3d_gen.data.utils import (
|
14 |
+
get_images_from_file,
|
15 |
+
normalize_vertices_array,
|
16 |
+
post_process_texture,
|
17 |
+
save_mesh_with_mtl,
|
18 |
+
)
|
19 |
+
|
20 |
+
logging.basicConfig(
|
21 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
22 |
+
)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = ["TextureBacker", "Image_Super_Net", "Image_GANNet"]
|
27 |
+
|
28 |
+
|
29 |
+
import math
|
30 |
+
import numpy as np
|
31 |
+
|
32 |
+
|
33 |
+
def get_perspective_projection(
|
34 |
+
fov: float, aspect_wh: float, near: float = 0.01, far: float = 100
|
35 |
+
) -> np.ndarray:
|
36 |
+
"""Compute the perspective projection matrix for 3D rendering."""
|
37 |
+
fov_rad = math.radians(fov)
|
38 |
+
tan_half_fov = math.tan(fov_rad / 2.0)
|
39 |
+
|
40 |
+
return np.array(
|
41 |
+
[
|
42 |
+
[1.0 / (tan_half_fov * aspect_wh), 0.0, 0.0, 0.0],
|
43 |
+
[0.0, 1.0 / tan_half_fov, 0.0, 0.0],
|
44 |
+
[
|
45 |
+
0.0,
|
46 |
+
0.0,
|
47 |
+
-(far + near) / (far - near),
|
48 |
+
-(2.0 * far * near) / (far - near),
|
49 |
+
],
|
50 |
+
[0.0, 0.0, -1.0, 0.0],
|
51 |
+
],
|
52 |
+
dtype=np.float32,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
def transform_vertices(
|
57 |
+
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
|
58 |
+
) -> torch.Tensor:
|
59 |
+
"""Transform 3D vertices using a projection matrix."""
|
60 |
+
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
|
61 |
+
if pos.size(-1) == 3:
|
62 |
+
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
|
63 |
+
|
64 |
+
result = pos @ t_mtx.T
|
65 |
+
|
66 |
+
return result if keepdim else result.unsqueeze(0)
|
67 |
+
|
68 |
+
|
69 |
+
def compute_w2c_matrix(
|
70 |
+
elev_deg: float, azim_deg: float, cam_dist: float
|
71 |
+
) -> np.ndarray:
|
72 |
+
"""Compute w2c 4x4 transformation matrix from spherical coordinates."""
|
73 |
+
|
74 |
+
elev_rad = math.radians(-elev_deg)
|
75 |
+
azim_rad = math.radians(azim_deg)
|
76 |
+
|
77 |
+
sin_elev = math.sin(elev_rad)
|
78 |
+
cos_elev = math.cos(elev_rad)
|
79 |
+
sin_azim = math.sin(azim_rad)
|
80 |
+
cos_azim = math.cos(azim_rad)
|
81 |
+
|
82 |
+
cam_pos = np.array(
|
83 |
+
[
|
84 |
+
cam_dist * cos_elev * cos_azim,
|
85 |
+
cam_dist * cos_elev * sin_azim,
|
86 |
+
cam_dist * sin_elev,
|
87 |
+
]
|
88 |
+
)
|
89 |
+
|
90 |
+
look_dir = -cam_pos / np.linalg.norm(cam_pos)
|
91 |
+
right_dir = np.cross(look_dir, [0, 0, 1])
|
92 |
+
right_dir /= np.linalg.norm(right_dir)
|
93 |
+
up_dir = np.cross(right_dir, look_dir)
|
94 |
+
|
95 |
+
c2w = np.eye(4)
|
96 |
+
c2w[:3, 0] = right_dir
|
97 |
+
c2w[:3, 1] = up_dir
|
98 |
+
c2w[:3, 2] = -look_dir
|
99 |
+
c2w[:3, 3] = cam_pos
|
100 |
+
|
101 |
+
try:
|
102 |
+
w2c = np.linalg.inv(c2w)
|
103 |
+
except np.linalg.LinAlgError as e:
|
104 |
+
raise ArithmeticError("Failed to invert camera-to-world matrix") from e
|
105 |
+
|
106 |
+
return w2c.astype(np.float32)
|
107 |
+
|
108 |
+
|
109 |
+
def _bilinear_interpolation_scattering(
|
110 |
+
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
|
111 |
+
) -> torch.Tensor:
|
112 |
+
"""Bilinear interpolation scattering for grid-based value accumulation."""
|
113 |
+
device = values.device
|
114 |
+
dtype = values.dtype
|
115 |
+
C = values.shape[-1]
|
116 |
+
|
117 |
+
indices = coords * torch.tensor(
|
118 |
+
[image_h - 1, image_w - 1], dtype=dtype, device=device
|
119 |
+
)
|
120 |
+
i, j = indices.unbind(-1)
|
121 |
+
|
122 |
+
i0, j0 = (
|
123 |
+
indices.floor()
|
124 |
+
.long()
|
125 |
+
.clamp(0, image_h - 2)
|
126 |
+
.clamp(0, image_w - 2)
|
127 |
+
.unbind(-1)
|
128 |
+
)
|
129 |
+
i1, j1 = i0 + 1, j0 + 1
|
130 |
+
|
131 |
+
w_i = i - i0.float()
|
132 |
+
w_j = j - j0.float()
|
133 |
+
weights = torch.stack(
|
134 |
+
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
|
135 |
+
dim=1,
|
136 |
+
)
|
137 |
+
|
138 |
+
indices_comb = torch.stack(
|
139 |
+
[
|
140 |
+
torch.stack([i0, j0], dim=1),
|
141 |
+
torch.stack([i0, j1], dim=1),
|
142 |
+
torch.stack([i1, j0], dim=1),
|
143 |
+
torch.stack([i1, j1], dim=1),
|
144 |
+
],
|
145 |
+
dim=1,
|
146 |
+
)
|
147 |
+
|
148 |
+
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
|
149 |
+
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)
|
150 |
+
|
151 |
+
for k in range(4):
|
152 |
+
idx = indices_comb[:, k]
|
153 |
+
w = weights[:, k].unsqueeze(-1)
|
154 |
+
|
155 |
+
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
|
156 |
+
flat_idx = (idx * stride).sum(-1)
|
157 |
+
|
158 |
+
grid.view(-1, C).scatter_add_(
|
159 |
+
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
|
160 |
+
)
|
161 |
+
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)
|
162 |
+
|
163 |
+
mask = cnt.squeeze(-1) > 0
|
164 |
+
grid[mask] = grid[mask] / cnt[mask].repeat(1, C)
|
165 |
+
|
166 |
+
return grid
|
167 |
+
|
168 |
+
|
169 |
+
def _texture_inpaint_smooth(
|
170 |
+
texture: np.ndarray,
|
171 |
+
mask: np.ndarray,
|
172 |
+
vertices: np.ndarray,
|
173 |
+
faces: np.ndarray,
|
174 |
+
uv_map: np.ndarray,
|
175 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
176 |
+
"""Perform texture inpainting using vertex-based color propagation."""
|
177 |
+
image_h, image_w, C = texture.shape
|
178 |
+
N = vertices.shape[0]
|
179 |
+
|
180 |
+
# Initialize vertex data structures
|
181 |
+
vtx_mask = np.zeros(N, dtype=np.float32)
|
182 |
+
vtx_colors = np.zeros((N, C), dtype=np.float32)
|
183 |
+
unprocessed = []
|
184 |
+
adjacency = [[] for _ in range(N)]
|
185 |
+
|
186 |
+
# Build adjacency graph and initial color assignment
|
187 |
+
for face_idx in range(faces.shape[0]):
|
188 |
+
for k in range(3):
|
189 |
+
uv_idx_k = faces[face_idx, k]
|
190 |
+
v_idx = faces[face_idx, k]
|
191 |
+
|
192 |
+
# Convert UV to pixel coordinates with boundary clamping
|
193 |
+
u = np.clip(
|
194 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
195 |
+
)
|
196 |
+
v = np.clip(
|
197 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
198 |
+
0,
|
199 |
+
image_h - 1,
|
200 |
+
)
|
201 |
+
|
202 |
+
if mask[v, u]:
|
203 |
+
vtx_mask[v_idx] = 1.0
|
204 |
+
vtx_colors[v_idx] = texture[v, u]
|
205 |
+
elif v_idx not in unprocessed:
|
206 |
+
unprocessed.append(v_idx)
|
207 |
+
|
208 |
+
# Build undirected adjacency graph
|
209 |
+
neighbor = faces[face_idx, (k + 1) % 3]
|
210 |
+
if neighbor not in adjacency[v_idx]:
|
211 |
+
adjacency[v_idx].append(neighbor)
|
212 |
+
if v_idx not in adjacency[neighbor]:
|
213 |
+
adjacency[neighbor].append(v_idx)
|
214 |
+
|
215 |
+
# Color propagation with dynamic stopping
|
216 |
+
remaining_iters, prev_count = 2, 0
|
217 |
+
while remaining_iters > 0:
|
218 |
+
current_unprocessed = []
|
219 |
+
|
220 |
+
for v_idx in unprocessed:
|
221 |
+
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
|
222 |
+
if not valid_neighbors:
|
223 |
+
current_unprocessed.append(v_idx)
|
224 |
+
continue
|
225 |
+
|
226 |
+
# Calculate inverse square distance weights
|
227 |
+
neighbors_pos = vertices[valid_neighbors]
|
228 |
+
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
|
229 |
+
weights = 1 / np.maximum(dist_sq, 1e-8)
|
230 |
+
|
231 |
+
vtx_colors[v_idx] = np.average(
|
232 |
+
vtx_colors[valid_neighbors], weights=weights, axis=0
|
233 |
+
)
|
234 |
+
vtx_mask[v_idx] = 1.0
|
235 |
+
|
236 |
+
# Update iteration control
|
237 |
+
if len(current_unprocessed) == prev_count:
|
238 |
+
remaining_iters -= 1
|
239 |
+
else:
|
240 |
+
remaining_iters = min(remaining_iters + 1, 2)
|
241 |
+
prev_count = len(current_unprocessed)
|
242 |
+
unprocessed = current_unprocessed
|
243 |
+
|
244 |
+
# Generate output texture
|
245 |
+
inpainted_texture, updated_mask = texture.copy(), mask.copy()
|
246 |
+
for face_idx in range(faces.shape[0]):
|
247 |
+
for k in range(3):
|
248 |
+
v_idx = faces[face_idx, k]
|
249 |
+
if not vtx_mask[v_idx]:
|
250 |
+
continue
|
251 |
+
|
252 |
+
# UV coordinate conversion
|
253 |
+
uv_idx_k = faces[face_idx, k]
|
254 |
+
u = np.clip(
|
255 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
256 |
+
)
|
257 |
+
v = np.clip(
|
258 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
259 |
+
0,
|
260 |
+
image_h - 1,
|
261 |
+
)
|
262 |
+
|
263 |
+
inpainted_texture[v, u] = vtx_colors[v_idx]
|
264 |
+
updated_mask[v, u] = 255
|
265 |
+
|
266 |
+
return inpainted_texture, updated_mask
|
267 |
+
|
268 |
+
|
269 |
+
class TextureBacker:
|
270 |
+
"""Texture baking pipeline for multi-view projection and fusion."""
|
271 |
+
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
camera_elevs: list[float],
|
275 |
+
camera_azims: list[float],
|
276 |
+
camera_distance: int,
|
277 |
+
camera_fov: float,
|
278 |
+
view_weights: list[float] = None,
|
279 |
+
render_wh: tuple[int, int] = (2048, 2048),
|
280 |
+
texture_wh: tuple[int, int] = (2048, 2048),
|
281 |
+
use_antialias: bool = True,
|
282 |
+
bake_angle_thres: int = 75,
|
283 |
+
device="cuda",
|
284 |
+
):
|
285 |
+
self.camera_elevs = camera_elevs
|
286 |
+
self.camera_azims = camera_azims
|
287 |
+
self.view_weights = (
|
288 |
+
view_weights
|
289 |
+
if view_weights is not None
|
290 |
+
else [1] * len(camera_elevs)
|
291 |
+
)
|
292 |
+
self.device = device
|
293 |
+
self.render_wh = render_wh
|
294 |
+
self.texture_wh = texture_wh
|
295 |
+
|
296 |
+
self.camera_distance = camera_distance
|
297 |
+
self.use_antialias = use_antialias
|
298 |
+
|
299 |
+
self.bake_angle_thres = bake_angle_thres
|
300 |
+
self.bake_unreliable_kernel_size = int(
|
301 |
+
(2 / 512) * max(self.render_wh[0], self.render_wh[1])
|
302 |
+
)
|
303 |
+
|
304 |
+
self.camera_proj_mat = get_perspective_projection(
|
305 |
+
camera_fov,
|
306 |
+
self.render_wh[1] / self.render_wh[0],
|
307 |
+
)
|
308 |
+
self.cnt = 0
|
309 |
+
|
310 |
+
def rasterize_mesh(
|
311 |
+
self,
|
312 |
+
vertex: torch.Tensor,
|
313 |
+
face: torch.Tensor,
|
314 |
+
resolution: tuple[int, int],
|
315 |
+
) -> torch.Tensor:
|
316 |
+
vertex = vertex[None] if vertex.ndim == 2 else vertex
|
317 |
+
indices, weights = cr.rasterize(vertex, face, resolution)
|
318 |
+
|
319 |
+
return torch.cat(
|
320 |
+
[weights, indices.unsqueeze(-1).to(weights.dtype)], dim=-1
|
321 |
+
).unsqueeze(0)
|
322 |
+
|
323 |
+
def raster_interpolate(
|
324 |
+
self, uv: torch.Tensor, rast_out: torch.Tensor, faces: torch.Tensor
|
325 |
+
) -> torch.Tensor:
|
326 |
+
barycentric = rast_out[0, ..., :-1]
|
327 |
+
findices = rast_out[0, ..., -1]
|
328 |
+
if uv.dim() == 2:
|
329 |
+
uv = uv.unsqueeze(0)
|
330 |
+
|
331 |
+
return cr.interpolate(uv, findices, barycentric, faces)[0]
|
332 |
+
|
333 |
+
def load_mesh(self, mesh_path: str) -> None:
|
334 |
+
mesh = trimesh.load(mesh_path)
|
335 |
+
if isinstance(mesh, trimesh.Scene):
|
336 |
+
mesh = mesh.dump(concatenate=True)
|
337 |
+
|
338 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
339 |
+
self.scale, self.center = scale, center
|
340 |
+
|
341 |
+
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
|
342 |
+
mesh.vertices = mesh.vertices[vmapping]
|
343 |
+
mesh.faces = indices
|
344 |
+
mesh.visual.uv = uvs
|
345 |
+
|
346 |
+
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
|
347 |
+
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
|
348 |
+
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
|
349 |
+
|
350 |
+
# Transformation of coordinate system
|
351 |
+
self.vertices[:, [0, 1]] = -self.vertices[:, [0, 1]]
|
352 |
+
self.vertices[:, [1, 2]] = self.vertices[:, [2, 1]]
|
353 |
+
self.uv_map[:, 1] = 1 - self.uv_map[:, 1]
|
354 |
+
|
355 |
+
def get_mesh_attrs(
|
356 |
+
self,
|
357 |
+
scale: float = None,
|
358 |
+
center: np.ndarray = None,
|
359 |
+
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
360 |
+
vertices = self.vertices.cpu().numpy()
|
361 |
+
faces = self.faces.cpu().numpy()
|
362 |
+
uv_map = self.uv_map.cpu().numpy()
|
363 |
+
|
364 |
+
# Inverse transformation of coordinate system
|
365 |
+
vertices[:, [1, 2]] = vertices[:, [2, 1]]
|
366 |
+
vertices[:, [0, 1]] = -vertices[:, [0, 1]]
|
367 |
+
uv_map[:, 1] = 1.0 - uv_map[:, 1]
|
368 |
+
|
369 |
+
if scale is not None:
|
370 |
+
vertices = vertices / scale
|
371 |
+
if center is not None:
|
372 |
+
vertices = vertices + center
|
373 |
+
|
374 |
+
return vertices, faces, uv_map
|
375 |
+
|
376 |
+
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
|
377 |
+
depth_image_np = depth_image.cpu().numpy()
|
378 |
+
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
379 |
+
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
380 |
+
combined_edges = depth_edges
|
381 |
+
sketch_image = (
|
382 |
+
torch.from_numpy(combined_edges).to(depth_image.device).float()
|
383 |
+
/ 255
|
384 |
+
)
|
385 |
+
sketch_image = sketch_image.unsqueeze(-1)
|
386 |
+
|
387 |
+
return sketch_image
|
388 |
+
|
389 |
+
def back_project(
|
390 |
+
self, image: Image.Image, elev: float, azim: float
|
391 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
392 |
+
if isinstance(image, Image.Image):
|
393 |
+
image = np.array(image)
|
394 |
+
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
|
395 |
+
if image.ndim == 2:
|
396 |
+
image = image.unsqueeze(-1)
|
397 |
+
image = image / 255.0
|
398 |
+
|
399 |
+
view_mat = compute_w2c_matrix(elev, azim, self.camera_distance)
|
400 |
+
import pdb
|
401 |
+
|
402 |
+
pdb.set_trace()
|
403 |
+
pos_cam = transform_vertices(view_mat, self.vertices, keepdim=True)
|
404 |
+
pos_clip = transform_vertices(self.camera_proj_mat, pos_cam)
|
405 |
+
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
|
406 |
+
|
407 |
+
v0, v1, v2 = (pos_cam[self.faces[:, i]] for i in range(3))
|
408 |
+
face_norm = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
|
409 |
+
vertex_norm = (
|
410 |
+
torch.from_numpy(
|
411 |
+
trimesh.geometry.mean_vertex_normals(
|
412 |
+
len(pos_cam), self.faces.cpu(), face_norm.cpu()
|
413 |
+
)
|
414 |
+
)
|
415 |
+
.to(self.device)
|
416 |
+
.contiguous()
|
417 |
+
)
|
418 |
+
|
419 |
+
rast_out = self.rasterize_mesh(pos_clip, self.faces, image.shape[:2])
|
420 |
+
vis_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0]
|
421 |
+
|
422 |
+
interp_data = {
|
423 |
+
"normal": self.raster_interpolate(
|
424 |
+
vertex_norm[None], rast_out, self.faces
|
425 |
+
),
|
426 |
+
"uv": self.raster_interpolate(
|
427 |
+
self.uv_map[None], rast_out, self.faces
|
428 |
+
),
|
429 |
+
"depth": self.raster_interpolate(
|
430 |
+
pos_cam[:, 2].reshape(1, -1, 1), rast_out, self.faces
|
431 |
+
),
|
432 |
+
}
|
433 |
+
|
434 |
+
valid_depth = interp_data["depth"][vis_mask > 0]
|
435 |
+
depth_norm = (interp_data["depth"] - valid_depth.min()) / (
|
436 |
+
valid_depth.max() - valid_depth.min()
|
437 |
+
)
|
438 |
+
# depth_norm[vis_mask <= 0] = 0
|
439 |
+
sketch_image = self._render_depth_edges(depth_norm * vis_mask)
|
440 |
+
|
441 |
+
# ddd = depth_norm * vis_mask
|
442 |
+
# cv2.imwrite(f"v2_depth_d{self.cnt}.png", (ddd.cpu().numpy() * 255).astype(np.uint8))
|
443 |
+
|
444 |
+
cv2.imwrite(
|
445 |
+
f"v2_vis_mask{self.cnt}.png",
|
446 |
+
(vis_mask.cpu().numpy() * 255).astype(np.uint8),
|
447 |
+
)
|
448 |
+
cv2.imwrite(
|
449 |
+
f"v2_normal{self.cnt}.png",
|
450 |
+
(interp_data["normal"].cpu().numpy() * 255).astype(np.uint8),
|
451 |
+
)
|
452 |
+
cv2.imwrite(
|
453 |
+
f"v2_depth{self.cnt}.png",
|
454 |
+
(depth_norm.cpu().numpy() * 255).astype(np.uint8),
|
455 |
+
)
|
456 |
+
cv2.imwrite(
|
457 |
+
f"v2_uv{self.cnt}.png",
|
458 |
+
(interp_data["uv"][..., 0].cpu().numpy() * 255).astype(np.uint8),
|
459 |
+
)
|
460 |
+
cv2.imwrite(
|
461 |
+
f"v2_sketch{self.cnt}.png",
|
462 |
+
(sketch_image.cpu().numpy() * 255).astype(np.uint8),
|
463 |
+
)
|
464 |
+
|
465 |
+
self.cnt += 1
|
466 |
+
|
467 |
+
cos = F.cosine_similarity(
|
468 |
+
torch.tensor([[0, 0, -1]], device=self.device),
|
469 |
+
interp_data["normal"].view(-1, 3),
|
470 |
+
).view_as(interp_data["normal"][..., :1])
|
471 |
+
cos[cos < np.cos(np.radians(self.bake_angle_thres))] = 0
|
472 |
+
|
473 |
+
cv2.imwrite(
|
474 |
+
f"v2_cos{self.cnt}.png", (cos.cpu().numpy() * 255).astype(np.uint8)
|
475 |
+
)
|
476 |
+
|
477 |
+
k = self.bake_unreliable_kernel_size * 2 + 1
|
478 |
+
kernel = torch.ones((1, 1, k, k), device=self.device)
|
479 |
+
|
480 |
+
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
|
481 |
+
vis_mask = F.conv2d(
|
482 |
+
1.0 - vis_mask,
|
483 |
+
kernel,
|
484 |
+
padding=k // 2,
|
485 |
+
)
|
486 |
+
vis_mask = 1.0 - (vis_mask > 0).float()
|
487 |
+
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
|
488 |
+
|
489 |
+
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
490 |
+
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
|
491 |
+
sketch_image = (sketch_image > 0).float()
|
492 |
+
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
493 |
+
vis_mask = vis_mask * (sketch_image < 0.5)
|
494 |
+
|
495 |
+
cos[vis_mask == 0] = 0
|
496 |
+
|
497 |
+
vis_mask = cv2.imread(
|
498 |
+
f"v3_db_mask{self.cnt}.png", cv2.IMREAD_GRAYSCALE
|
499 |
+
)
|
500 |
+
vis_mask = (
|
501 |
+
torch.from_numpy(vis_mask[..., None]).to(self.device).float() / 255
|
502 |
+
)
|
503 |
+
# cos2 = cv2.imread(f"v3_db_cos{self.cnt}.png", cv2.IMREAD_GRAYSCALE)
|
504 |
+
# cos2 = torch.from_numpy(cos2[..., None]).to(self.device).float() / 255
|
505 |
+
# cos = cos2
|
506 |
+
|
507 |
+
valid_pixels = (vis_mask != 0).view(-1)
|
508 |
+
# import pdb; pdb.set_trace()
|
509 |
+
|
510 |
+
cv2.imwrite(
|
511 |
+
f"v2_db_sketch{self.cnt}.png",
|
512 |
+
(sketch_image.cpu().numpy() * 255).astype(np.uint8),
|
513 |
+
)
|
514 |
+
cv2.imwrite(
|
515 |
+
f"v2_db_uv{self.cnt}.png",
|
516 |
+
(interp_data["uv"][..., 0].cpu().numpy() * 255).astype(np.uint8),
|
517 |
+
)
|
518 |
+
cv2.imwrite(
|
519 |
+
f"v2_db_uv2{self.cnt}.png",
|
520 |
+
(interp_data["uv"][..., 1].cpu().numpy() * 255).astype(np.uint8),
|
521 |
+
)
|
522 |
+
cv2.imwrite(
|
523 |
+
f"v2_db_color{self.cnt}.png",
|
524 |
+
(image.cpu().numpy() * 255).astype(np.uint8),
|
525 |
+
)
|
526 |
+
cv2.imwrite(
|
527 |
+
f"v2_db_cos{self.cnt}.png",
|
528 |
+
(cos.cpu().numpy() * 255).astype(np.uint8),
|
529 |
+
)
|
530 |
+
cv2.imwrite(
|
531 |
+
f"v2_db_mask{self.cnt}.png",
|
532 |
+
(vis_mask.cpu().numpy() * 255).astype(np.uint8),
|
533 |
+
)
|
534 |
+
# import pdb; pdb.set_trace()
|
535 |
+
return (
|
536 |
+
self._scatter_texture(interp_data["uv"], image, valid_pixels),
|
537 |
+
self._scatter_texture(interp_data["uv"], cos, valid_pixels),
|
538 |
+
)
|
539 |
+
|
540 |
+
def _scatter_texture(self, uv, data, mask):
|
541 |
+
def __filter_data(data, mask):
|
542 |
+
return data.view(-1, data.shape[-1])[mask]
|
543 |
+
|
544 |
+
return _bilinear_interpolation_scattering(
|
545 |
+
self.texture_wh[1],
|
546 |
+
self.texture_wh[0],
|
547 |
+
__filter_data(uv, mask)[..., [1, 0]],
|
548 |
+
__filter_data(data, mask),
|
549 |
+
)
|
550 |
+
|
551 |
+
@torch.no_grad()
|
552 |
+
def fast_bake_texture(
|
553 |
+
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
|
554 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
555 |
+
channel = textures[0].shape[-1]
|
556 |
+
texture_merge = torch.zeros(self.texture_wh + (channel,)).to(
|
557 |
+
self.device
|
558 |
+
)
|
559 |
+
trust_map_merge = torch.zeros(self.texture_wh + (1,)).to(self.device)
|
560 |
+
for texture, cos_map in zip(textures, confidence_maps):
|
561 |
+
view_sum = (cos_map > 0).sum()
|
562 |
+
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
|
563 |
+
if painted_sum / view_sum > 0.99:
|
564 |
+
continue
|
565 |
+
texture_merge += texture * cos_map
|
566 |
+
trust_map_merge += cos_map
|
567 |
+
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
|
568 |
+
|
569 |
+
return texture_merge, trust_map_merge > 1e-8
|
570 |
+
|
571 |
+
def uv_inpaint(
|
572 |
+
self, texture: torch.Tensor, mask: torch.Tensor
|
573 |
+
) -> np.ndarray:
|
574 |
+
texture_np = texture.cpu().numpy()
|
575 |
+
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
|
576 |
+
vertices, faces, uv_map = self.get_mesh_attrs()
|
577 |
+
# import pdb; pdb.set_trace()
|
578 |
+
texture_np, mask_np = _texture_inpaint_smooth(
|
579 |
+
texture_np, mask_np, vertices, faces, uv_map
|
580 |
+
)
|
581 |
+
texture_np = texture_np.clip(0, 1)
|
582 |
+
texture_np = cv2.inpaint(
|
583 |
+
(texture_np * 255).astype(np.uint8),
|
584 |
+
255 - mask_np,
|
585 |
+
3,
|
586 |
+
cv2.INPAINT_NS,
|
587 |
+
)
|
588 |
+
|
589 |
+
return texture_np
|
590 |
+
|
591 |
+
def __call__(
|
592 |
+
self, colors: list[Image.Image], input_mesh: str, output_path: str
|
593 |
+
) -> trimesh.Trimesh:
|
594 |
+
self.load_mesh(input_mesh)
|
595 |
+
|
596 |
+
textures, weighted_cos_maps = [], []
|
597 |
+
for color, cam_elev, cam_azim, weight in zip(
|
598 |
+
colors, self.camera_elevs, self.camera_azims, self.view_weights
|
599 |
+
):
|
600 |
+
texture, cos_map = self.back_project(color, cam_elev, cam_azim)
|
601 |
+
cv2.imwrite(
|
602 |
+
f"v2_texture{self.cnt}.png",
|
603 |
+
(texture.cpu().numpy() * 255).astype(np.uint8),
|
604 |
+
)
|
605 |
+
cv2.imwrite(
|
606 |
+
f"v2_texture_cos{self.cnt}.png",
|
607 |
+
(cos_map.cpu().numpy() * 255).astype(np.uint8),
|
608 |
+
)
|
609 |
+
# import pdb; pdb.set_trace()
|
610 |
+
textures.append(texture)
|
611 |
+
weighted_cos_maps.append(weight * (cos_map**4))
|
612 |
+
|
613 |
+
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
|
614 |
+
texture_np = self.uv_inpaint(texture, mask)
|
615 |
+
texture_np = post_process_texture(texture_np)
|
616 |
+
vertices, faces, uvs = self.get_mesh_attrs(self.scale, self.center)
|
617 |
+
# import pdb; pdb.set_trace()
|
618 |
+
cv2.imwrite("v2_texture_np.png", texture_np)
|
619 |
+
|
620 |
+
textured_mesh = save_mesh_with_mtl(
|
621 |
+
vertices, faces, uvs, texture_np, output_path
|
622 |
+
)
|
623 |
+
|
624 |
+
return textured_mesh
|
625 |
+
|
626 |
+
|
627 |
+
class Image_Super_Net:
|
628 |
+
def __init__(self, device="cuda"):
|
629 |
+
from diffusers import StableDiffusionUpscalePipeline
|
630 |
+
|
631 |
+
self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
|
632 |
+
"stabilityai/stable-diffusion-x4-upscaler",
|
633 |
+
torch_dtype=torch.float16,
|
634 |
+
).to(device)
|
635 |
+
self.up_pipeline_x4.set_progress_bar_config(disable=True)
|
636 |
+
|
637 |
+
def __call__(self, image, prompt=""):
|
638 |
+
with torch.no_grad():
|
639 |
+
upscaled_image = self.up_pipeline_x4(
|
640 |
+
prompt=[prompt],
|
641 |
+
image=image,
|
642 |
+
num_inference_steps=10,
|
643 |
+
).images[0]
|
644 |
+
|
645 |
+
return upscaled_image
|
646 |
+
|
647 |
+
|
648 |
+
class Image_GANNet:
|
649 |
+
def __init__(self, outscale: int):
|
650 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
651 |
+
from realesrgan import RealESRGANer
|
652 |
+
|
653 |
+
self.outscale = outscale
|
654 |
+
model = RRDBNet(
|
655 |
+
num_in_ch=3,
|
656 |
+
num_out_ch=3,
|
657 |
+
num_feat=64,
|
658 |
+
num_block=23,
|
659 |
+
num_grow_ch=32,
|
660 |
+
scale=4,
|
661 |
+
)
|
662 |
+
self.upsampler = RealESRGANer(
|
663 |
+
scale=4,
|
664 |
+
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/super_resolution/RealESRGAN_x4plus.pth", # noqa
|
665 |
+
model=model,
|
666 |
+
pre_pad=0,
|
667 |
+
half=True,
|
668 |
+
)
|
669 |
+
|
670 |
+
def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
|
671 |
+
if isinstance(image, Image.Image):
|
672 |
+
image = np.array(image)
|
673 |
+
output, _ = self.upsampler.enhance(image, outscale=self.outscale)
|
674 |
+
|
675 |
+
return Image.fromarray(output)
|
676 |
+
|
677 |
+
|
678 |
+
if __name__ == "__main__":
|
679 |
+
device = "cuda"
|
680 |
+
color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"
|
681 |
+
mesh_path = "outputs/texture_mesh_gen/texture_mesh/kettle_color.glb"
|
682 |
+
output_path = "robot_test_v2/robot.obj"
|
683 |
+
target_image_size = (2048, 2048)
|
684 |
+
|
685 |
+
super_model = Image_GANNet(outscale=4)
|
686 |
+
multiviews = get_images_from_file(color_path, img_size=512)
|
687 |
+
|
688 |
+
texture_backer = TextureBacker(
|
689 |
+
camera_elevs=[20, 20, 20, -10, -10, -10],
|
690 |
+
camera_azims=[-180, -60, 60, -120, 0, 120],
|
691 |
+
view_weights=[1, 0.2, 0.2, 0.2, 1, 0.2],
|
692 |
+
camera_distance=5,
|
693 |
+
camera_fov=30,
|
694 |
+
render_wh=(2048, 2048),
|
695 |
+
texture_wh=(2048, 2048),
|
696 |
+
)
|
697 |
+
|
698 |
+
multiviews = [super_model(img) for img in multiviews]
|
699 |
+
multiviews = [img.convert("RGB") for img in multiviews]
|
700 |
+
textured_mesh = texture_backer(multiviews, mesh_path, output_path)
|
asset3d_gen/data/backup/backproject_v3.py
ADDED
@@ -0,0 +1,866 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
import custom_rasterizer as cr
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import trimesh
|
11 |
+
import xatlas
|
12 |
+
from PIL import Image
|
13 |
+
from asset3d_gen.data.utils import (
|
14 |
+
get_images_from_file,
|
15 |
+
normalize_vertices_array,
|
16 |
+
post_process_texture,
|
17 |
+
save_mesh_with_mtl,
|
18 |
+
)
|
19 |
+
|
20 |
+
logging.basicConfig(
|
21 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
22 |
+
)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = ["TextureBacker", "Image_Super_Net", "Image_GANNet"]
|
27 |
+
|
28 |
+
|
29 |
+
import math
|
30 |
+
import numpy as np
|
31 |
+
|
32 |
+
|
33 |
+
def get_perspective_projection(
|
34 |
+
fov: float, aspect_wh: float, near: float = 0.01, far: float = 100
|
35 |
+
) -> np.ndarray:
|
36 |
+
"""Compute the perspective projection matrix for 3D rendering."""
|
37 |
+
fov_rad = math.radians(fov)
|
38 |
+
tan_half_fov = math.tan(fov_rad / 2.0)
|
39 |
+
|
40 |
+
return np.array(
|
41 |
+
[
|
42 |
+
[1.0 / (tan_half_fov * aspect_wh), 0.0, 0.0, 0.0],
|
43 |
+
[0.0, 1.0 / tan_half_fov, 0.0, 0.0],
|
44 |
+
[
|
45 |
+
0.0,
|
46 |
+
0.0,
|
47 |
+
-(far + near) / (far - near),
|
48 |
+
-(2.0 * far * near) / (far - near),
|
49 |
+
],
|
50 |
+
[0.0, 0.0, -1.0, 0.0],
|
51 |
+
],
|
52 |
+
dtype=np.float32,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
def transform_vertices(
|
57 |
+
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
|
58 |
+
) -> torch.Tensor:
|
59 |
+
"""Transform 3D vertices using a projection matrix."""
|
60 |
+
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
|
61 |
+
if pos.size(-1) == 3:
|
62 |
+
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
|
63 |
+
|
64 |
+
result = pos @ t_mtx.T
|
65 |
+
|
66 |
+
return result if keepdim else result.unsqueeze(0)
|
67 |
+
|
68 |
+
|
69 |
+
def compute_w2c_matrix(
|
70 |
+
elev_deg: float, azim_deg: float, cam_dist: float
|
71 |
+
) -> np.ndarray:
|
72 |
+
"""Compute w2c 4x4 transformation matrix from spherical coordinates."""
|
73 |
+
|
74 |
+
elev_rad = math.radians(-elev_deg)
|
75 |
+
azim_rad = math.radians(azim_deg)
|
76 |
+
|
77 |
+
sin_elev = math.sin(elev_rad)
|
78 |
+
cos_elev = math.cos(elev_rad)
|
79 |
+
sin_azim = math.sin(azim_rad)
|
80 |
+
cos_azim = math.cos(azim_rad)
|
81 |
+
|
82 |
+
cam_pos = np.array(
|
83 |
+
[
|
84 |
+
cam_dist * cos_elev * cos_azim,
|
85 |
+
cam_dist * cos_elev * sin_azim,
|
86 |
+
cam_dist * sin_elev,
|
87 |
+
]
|
88 |
+
)
|
89 |
+
|
90 |
+
look_dir = -cam_pos / np.linalg.norm(cam_pos)
|
91 |
+
right_dir = np.cross(look_dir, [0, 0, 1])
|
92 |
+
right_dir /= np.linalg.norm(right_dir)
|
93 |
+
up_dir = np.cross(right_dir, look_dir)
|
94 |
+
|
95 |
+
c2w = np.eye(4)
|
96 |
+
c2w[:3, 0] = right_dir
|
97 |
+
c2w[:3, 1] = up_dir
|
98 |
+
c2w[:3, 2] = -look_dir
|
99 |
+
c2w[:3, 3] = cam_pos
|
100 |
+
|
101 |
+
try:
|
102 |
+
w2c = np.linalg.inv(c2w)
|
103 |
+
except np.linalg.LinAlgError as e:
|
104 |
+
raise ArithmeticError("Failed to invert camera-to-world matrix") from e
|
105 |
+
|
106 |
+
return w2c.astype(np.float32)
|
107 |
+
|
108 |
+
|
109 |
+
def _bilinear_interpolation_scattering(
|
110 |
+
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
|
111 |
+
) -> torch.Tensor:
|
112 |
+
"""Bilinear interpolation scattering for grid-based value accumulation."""
|
113 |
+
device = values.device
|
114 |
+
dtype = values.dtype
|
115 |
+
C = values.shape[-1]
|
116 |
+
|
117 |
+
indices = coords * torch.tensor(
|
118 |
+
[image_h - 1, image_w - 1], dtype=dtype, device=device
|
119 |
+
)
|
120 |
+
i, j = indices.unbind(-1)
|
121 |
+
|
122 |
+
i0, j0 = (
|
123 |
+
indices.floor()
|
124 |
+
.long()
|
125 |
+
.clamp(0, image_h - 2)
|
126 |
+
.clamp(0, image_w - 2)
|
127 |
+
.unbind(-1)
|
128 |
+
)
|
129 |
+
i1, j1 = i0 + 1, j0 + 1
|
130 |
+
|
131 |
+
w_i = i - i0.float()
|
132 |
+
w_j = j - j0.float()
|
133 |
+
weights = torch.stack(
|
134 |
+
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
|
135 |
+
dim=1,
|
136 |
+
)
|
137 |
+
|
138 |
+
indices_comb = torch.stack(
|
139 |
+
[
|
140 |
+
torch.stack([i0, j0], dim=1),
|
141 |
+
torch.stack([i0, j1], dim=1),
|
142 |
+
torch.stack([i1, j0], dim=1),
|
143 |
+
torch.stack([i1, j1], dim=1),
|
144 |
+
],
|
145 |
+
dim=1,
|
146 |
+
)
|
147 |
+
|
148 |
+
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
|
149 |
+
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)
|
150 |
+
|
151 |
+
for k in range(4):
|
152 |
+
idx = indices_comb[:, k]
|
153 |
+
w = weights[:, k].unsqueeze(-1)
|
154 |
+
|
155 |
+
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
|
156 |
+
flat_idx = (idx * stride).sum(-1)
|
157 |
+
|
158 |
+
grid.view(-1, C).scatter_add_(
|
159 |
+
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
|
160 |
+
)
|
161 |
+
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)
|
162 |
+
|
163 |
+
mask = cnt.squeeze(-1) > 0
|
164 |
+
grid[mask] = grid[mask] / cnt[mask].repeat(1, C)
|
165 |
+
|
166 |
+
return grid
|
167 |
+
|
168 |
+
|
169 |
+
def _texture_inpaint_smooth(
|
170 |
+
texture: np.ndarray,
|
171 |
+
mask: np.ndarray,
|
172 |
+
vertices: np.ndarray,
|
173 |
+
faces: np.ndarray,
|
174 |
+
uv_map: np.ndarray,
|
175 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
176 |
+
"""Perform texture inpainting using vertex-based color propagation."""
|
177 |
+
image_h, image_w, C = texture.shape
|
178 |
+
N = vertices.shape[0]
|
179 |
+
|
180 |
+
# Initialize vertex data structures
|
181 |
+
vtx_mask = np.zeros(N, dtype=np.float32)
|
182 |
+
vtx_colors = np.zeros((N, C), dtype=np.float32)
|
183 |
+
unprocessed = []
|
184 |
+
adjacency = [[] for _ in range(N)]
|
185 |
+
|
186 |
+
# Build adjacency graph and initial color assignment
|
187 |
+
for face_idx in range(faces.shape[0]):
|
188 |
+
for k in range(3):
|
189 |
+
uv_idx_k = faces[face_idx, k]
|
190 |
+
v_idx = faces[face_idx, k]
|
191 |
+
|
192 |
+
# Convert UV to pixel coordinates with boundary clamping
|
193 |
+
u = np.clip(
|
194 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
195 |
+
)
|
196 |
+
v = np.clip(
|
197 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
198 |
+
0,
|
199 |
+
image_h - 1,
|
200 |
+
)
|
201 |
+
|
202 |
+
if mask[v, u]:
|
203 |
+
vtx_mask[v_idx] = 1.0
|
204 |
+
vtx_colors[v_idx] = texture[v, u]
|
205 |
+
elif v_idx not in unprocessed:
|
206 |
+
unprocessed.append(v_idx)
|
207 |
+
|
208 |
+
# Build undirected adjacency graph
|
209 |
+
neighbor = faces[face_idx, (k + 1) % 3]
|
210 |
+
if neighbor not in adjacency[v_idx]:
|
211 |
+
adjacency[v_idx].append(neighbor)
|
212 |
+
if v_idx not in adjacency[neighbor]:
|
213 |
+
adjacency[neighbor].append(v_idx)
|
214 |
+
|
215 |
+
# Color propagation with dynamic stopping
|
216 |
+
remaining_iters, prev_count = 2, 0
|
217 |
+
while remaining_iters > 0:
|
218 |
+
current_unprocessed = []
|
219 |
+
|
220 |
+
for v_idx in unprocessed:
|
221 |
+
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
|
222 |
+
if not valid_neighbors:
|
223 |
+
current_unprocessed.append(v_idx)
|
224 |
+
continue
|
225 |
+
|
226 |
+
# Calculate inverse square distance weights
|
227 |
+
neighbors_pos = vertices[valid_neighbors]
|
228 |
+
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
|
229 |
+
weights = 1 / np.maximum(dist_sq, 1e-8)
|
230 |
+
|
231 |
+
vtx_colors[v_idx] = np.average(
|
232 |
+
vtx_colors[valid_neighbors], weights=weights, axis=0
|
233 |
+
)
|
234 |
+
vtx_mask[v_idx] = 1.0
|
235 |
+
|
236 |
+
# Update iteration control
|
237 |
+
if len(current_unprocessed) == prev_count:
|
238 |
+
remaining_iters -= 1
|
239 |
+
else:
|
240 |
+
remaining_iters = min(remaining_iters + 1, 2)
|
241 |
+
prev_count = len(current_unprocessed)
|
242 |
+
unprocessed = current_unprocessed
|
243 |
+
|
244 |
+
# Generate output texture
|
245 |
+
inpainted_texture, updated_mask = texture.copy(), mask.copy()
|
246 |
+
for face_idx in range(faces.shape[0]):
|
247 |
+
for k in range(3):
|
248 |
+
v_idx = faces[face_idx, k]
|
249 |
+
if not vtx_mask[v_idx]:
|
250 |
+
continue
|
251 |
+
|
252 |
+
# UV coordinate conversion
|
253 |
+
uv_idx_k = faces[face_idx, k]
|
254 |
+
u = np.clip(
|
255 |
+
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
|
256 |
+
)
|
257 |
+
v = np.clip(
|
258 |
+
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
|
259 |
+
0,
|
260 |
+
image_h - 1,
|
261 |
+
)
|
262 |
+
|
263 |
+
inpainted_texture[v, u] = vtx_colors[v_idx]
|
264 |
+
updated_mask[v, u] = 255
|
265 |
+
|
266 |
+
return inpainted_texture, updated_mask
|
267 |
+
|
268 |
+
|
269 |
+
class TextureBacker:
|
270 |
+
"""Texture baking pipeline for multi-view projection and fusion."""
|
271 |
+
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
camera_elevs: list[float],
|
275 |
+
camera_azims: list[float],
|
276 |
+
camera_distance: int,
|
277 |
+
camera_fov: float,
|
278 |
+
view_weights: list[float] = None,
|
279 |
+
render_wh: tuple[int, int] = (2048, 2048),
|
280 |
+
texture_wh: tuple[int, int] = (2048, 2048),
|
281 |
+
use_antialias: bool = True,
|
282 |
+
bake_angle_thresh: int = 75,
|
283 |
+
device="cuda",
|
284 |
+
):
|
285 |
+
self.camera_elevs = camera_elevs
|
286 |
+
self.camera_azims = camera_azims
|
287 |
+
self.view_weights = (
|
288 |
+
view_weights
|
289 |
+
if view_weights is not None
|
290 |
+
else [1] * len(camera_elevs)
|
291 |
+
)
|
292 |
+
self.device = device
|
293 |
+
self.render_wh = render_wh
|
294 |
+
self.texture_wh = texture_wh
|
295 |
+
|
296 |
+
self.camera_distance = camera_distance
|
297 |
+
self.use_antialias = use_antialias
|
298 |
+
|
299 |
+
self.bake_angle_thresh = bake_angle_thresh
|
300 |
+
self.bake_unreliable_kernel_size = int(
|
301 |
+
(2 / 512) * max(self.render_wh[0], self.render_wh[1])
|
302 |
+
)
|
303 |
+
|
304 |
+
self.camera_proj_mat = get_perspective_projection(
|
305 |
+
camera_fov,
|
306 |
+
self.render_wh[1] / self.render_wh[0],
|
307 |
+
)
|
308 |
+
self.cnt = 0
|
309 |
+
|
310 |
+
def rasterize_mesh(
|
311 |
+
self,
|
312 |
+
vertex: torch.Tensor,
|
313 |
+
face: torch.Tensor,
|
314 |
+
resolution: tuple[int, int],
|
315 |
+
) -> torch.Tensor:
|
316 |
+
vertex = vertex[None] if vertex.ndim == 2 else vertex
|
317 |
+
indices, weights = cr.rasterize(vertex, face, resolution)
|
318 |
+
|
319 |
+
return torch.cat(
|
320 |
+
[weights, indices.unsqueeze(-1).to(weights.dtype)], dim=-1
|
321 |
+
).unsqueeze(0)
|
322 |
+
|
323 |
+
def raster_interpolate(
|
324 |
+
self, uv: torch.Tensor, rast_out: torch.Tensor, faces: torch.Tensor
|
325 |
+
) -> torch.Tensor:
|
326 |
+
barycentric = rast_out[0, ..., :-1]
|
327 |
+
findices = rast_out[0, ..., -1]
|
328 |
+
if uv.dim() == 2:
|
329 |
+
uv = uv.unsqueeze(0)
|
330 |
+
|
331 |
+
return cr.interpolate(uv, findices, barycentric, faces)[0]
|
332 |
+
|
333 |
+
def load_mesh(self, mesh_path: str) -> None:
|
334 |
+
mesh = trimesh.load(mesh_path)
|
335 |
+
if isinstance(mesh, trimesh.Scene):
|
336 |
+
mesh = mesh.dump(concatenate=True)
|
337 |
+
|
338 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
339 |
+
self.scale, self.center = scale, center
|
340 |
+
|
341 |
+
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
|
342 |
+
mesh.vertices = mesh.vertices[vmapping]
|
343 |
+
mesh.faces = indices
|
344 |
+
mesh.visual.uv = uvs
|
345 |
+
|
346 |
+
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
|
347 |
+
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
|
348 |
+
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
|
349 |
+
|
350 |
+
# Transformation of coordinate system
|
351 |
+
self.vertices[:, [0, 1]] = -self.vertices[:, [0, 1]]
|
352 |
+
self.vertices[:, [1, 2]] = self.vertices[:, [2, 1]]
|
353 |
+
self.uv_map[:, 1] = 1 - self.uv_map[:, 1]
|
354 |
+
|
355 |
+
def get_mesh_attrs(
|
356 |
+
self,
|
357 |
+
scale: float = None,
|
358 |
+
center: np.ndarray = None,
|
359 |
+
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
360 |
+
vertices = self.vertices.cpu().numpy()
|
361 |
+
faces = self.faces.cpu().numpy()
|
362 |
+
uv_map = self.uv_map.cpu().numpy()
|
363 |
+
|
364 |
+
if scale is not None:
|
365 |
+
vertices = vertices / scale
|
366 |
+
if center is not None:
|
367 |
+
vertices = vertices + center
|
368 |
+
|
369 |
+
return vertices, faces, uv_map
|
370 |
+
|
371 |
+
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
|
372 |
+
depth_image_np = depth_image.cpu().numpy()
|
373 |
+
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
374 |
+
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
375 |
+
sketch_image = (
|
376 |
+
torch.from_numpy(depth_edges).to(depth_image.device).float() / 255
|
377 |
+
)
|
378 |
+
sketch_image = sketch_image.unsqueeze(-1)
|
379 |
+
|
380 |
+
return sketch_image
|
381 |
+
|
382 |
+
def back_project(
|
383 |
+
self, image: Image.Image, elev: float, azim: float
|
384 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
385 |
+
if isinstance(image, Image.Image):
|
386 |
+
image = np.array(image)
|
387 |
+
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
|
388 |
+
if image.ndim == 2:
|
389 |
+
image = image.unsqueeze(-1)
|
390 |
+
image = image / 255.0
|
391 |
+
|
392 |
+
view_mat = compute_w2c_matrix(elev, azim, self.camera_distance)
|
393 |
+
pos_cam = transform_vertices(view_mat, self.vertices, keepdim=True)
|
394 |
+
pos_clip = transform_vertices(self.camera_proj_mat, pos_cam)
|
395 |
+
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
|
396 |
+
|
397 |
+
v0, v1, v2 = (pos_cam[self.faces[:, i]] for i in range(3))
|
398 |
+
face_norm = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
|
399 |
+
vertex_norm = (
|
400 |
+
torch.from_numpy(
|
401 |
+
trimesh.geometry.mean_vertex_normals(
|
402 |
+
len(pos_cam), self.faces.cpu(), face_norm.cpu()
|
403 |
+
)
|
404 |
+
)
|
405 |
+
.to(self.device)
|
406 |
+
.contiguous()
|
407 |
+
)
|
408 |
+
|
409 |
+
rast_out = self.rasterize_mesh(pos_clip, self.faces, image.shape[:2])
|
410 |
+
vis_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0]
|
411 |
+
|
412 |
+
interp_data = {
|
413 |
+
"normal": self.raster_interpolate(
|
414 |
+
vertex_norm[None], rast_out, self.faces
|
415 |
+
),
|
416 |
+
"uv": self.raster_interpolate(
|
417 |
+
self.uv_map[None], rast_out, self.faces
|
418 |
+
),
|
419 |
+
"depth": self.raster_interpolate(
|
420 |
+
pos_cam[:, 2].reshape(1, -1, 1), rast_out, self.faces
|
421 |
+
),
|
422 |
+
}
|
423 |
+
|
424 |
+
valid_depth = interp_data["depth"][vis_mask > 0]
|
425 |
+
depth_norm = (interp_data["depth"] - valid_depth.min()) / (
|
426 |
+
valid_depth.max() - valid_depth.min()
|
427 |
+
)
|
428 |
+
depth_norm[vis_mask <= 0] = 0
|
429 |
+
sketch_image = self._render_depth_edges(depth_norm * vis_mask)
|
430 |
+
|
431 |
+
# cv2.imwrite("vis_mask.png", (vis_mask.cpu().numpy() * 255).astype(np.uint8))
|
432 |
+
# cv2.imwrite("normal.png", (interp_data['normal'].cpu().numpy() * 255).astype(np.uint8))
|
433 |
+
# cv2.imwrite("depth.png", (depth_norm.cpu().numpy() * 255).astype(np.uint8))
|
434 |
+
# cv2.imwrite("uv.png", (interp_data['uv'][..., 0].cpu().numpy() * 255).astype(np.uint8))
|
435 |
+
# import pdb; pdb.set_trace()
|
436 |
+
|
437 |
+
cos = F.cosine_similarity(
|
438 |
+
torch.tensor([[0, 0, -1]], device=self.device),
|
439 |
+
interp_data["normal"].view(-1, 3),
|
440 |
+
).view_as(interp_data["normal"][..., :1])
|
441 |
+
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
|
442 |
+
|
443 |
+
k = self.bake_unreliable_kernel_size * 2 + 1
|
444 |
+
kernel = torch.ones((1, 1, k, k), device=self.device)
|
445 |
+
|
446 |
+
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
|
447 |
+
vis_mask = F.conv2d(
|
448 |
+
1.0 - vis_mask,
|
449 |
+
kernel,
|
450 |
+
padding=k // 2,
|
451 |
+
)
|
452 |
+
vis_mask = 1.0 - (vis_mask > 0).float()
|
453 |
+
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
|
454 |
+
|
455 |
+
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
456 |
+
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
|
457 |
+
sketch_image = (sketch_image > 0).float()
|
458 |
+
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
459 |
+
vis_mask = vis_mask * (sketch_image < 0.5)
|
460 |
+
|
461 |
+
cos[vis_mask == 0] = 0
|
462 |
+
valid_pixels = (vis_mask != 0).view(-1)
|
463 |
+
|
464 |
+
return (
|
465 |
+
self._scatter_texture(interp_data["uv"], image, valid_pixels),
|
466 |
+
self._scatter_texture(interp_data["uv"], cos, valid_pixels),
|
467 |
+
)
|
468 |
+
|
469 |
+
def back_project2(
|
470 |
+
self, image, vis_mask, depth, normal, uv
|
471 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
472 |
+
if isinstance(image, Image.Image):
|
473 |
+
image = np.array(image)
|
474 |
+
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
|
475 |
+
if image.ndim == 2:
|
476 |
+
image = image.unsqueeze(-1)
|
477 |
+
image = image / 255.0
|
478 |
+
|
479 |
+
depth_inv = (1.0 - depth) * vis_mask
|
480 |
+
sketch_image = self._render_depth_edges(depth_inv)
|
481 |
+
|
482 |
+
cv2.imwrite(
|
483 |
+
f"v3_depth_inv{self.cnt}.png",
|
484 |
+
(depth_inv.cpu().numpy() * 255).astype(np.uint8),
|
485 |
+
)
|
486 |
+
|
487 |
+
cos = F.cosine_similarity(
|
488 |
+
torch.tensor([[0, 0, 1]], device=self.device),
|
489 |
+
normal.view(-1, 3),
|
490 |
+
).view_as(normal[..., :1])
|
491 |
+
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
|
492 |
+
# import pdb; pdb.set_trace()
|
493 |
+
# cv2.imwrite(f"v3_cos{self.cnt}.png", (cos.cpu().numpy() * 255).astype(np.uint8))
|
494 |
+
# cv2.imwrite(f"v3_sketch{self.cnt}.png", (sketch_image.cpu().numpy() * 255).astype(np.uint8))
|
495 |
+
|
496 |
+
# cos2 = cv2.imread(f"v2_cos{self.cnt+1}.png", cv2.IMREAD_GRAYSCALE)
|
497 |
+
# cos2 = torch.from_numpy(cos2[..., None]).to(self.device).float() / 255
|
498 |
+
# cos = cos2
|
499 |
+
|
500 |
+
self.cnt += 1
|
501 |
+
|
502 |
+
k = self.bake_unreliable_kernel_size * 2 + 1
|
503 |
+
kernel = torch.ones((1, 1, k, k), device=self.device)
|
504 |
+
|
505 |
+
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
|
506 |
+
vis_mask = F.conv2d(
|
507 |
+
1.0 - vis_mask,
|
508 |
+
kernel,
|
509 |
+
padding=k // 2,
|
510 |
+
)
|
511 |
+
vis_mask = 1.0 - (vis_mask > 0).float()
|
512 |
+
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
|
513 |
+
|
514 |
+
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
515 |
+
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
|
516 |
+
sketch_image = (sketch_image > 0).float()
|
517 |
+
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
518 |
+
vis_mask = vis_mask * (sketch_image < 0.5)
|
519 |
+
# import pdb; pdb.set_trace()
|
520 |
+
cv2.imwrite(
|
521 |
+
f"v3_db_sketch{self.cnt}.png",
|
522 |
+
(sketch_image.cpu().numpy() * 255).astype(np.uint8),
|
523 |
+
)
|
524 |
+
|
525 |
+
cos[vis_mask == 0] = 0
|
526 |
+
# import pdb; pdb.set_trace()
|
527 |
+
# vis_mask = cv2.imread(f"v2_db_mask{self.cnt}.png", cv2.IMREAD_GRAYSCALE)
|
528 |
+
# vis_mask = torch.from_numpy(vis_mask[..., None]).to(self.device).float() / 255
|
529 |
+
# cos2 = cv2.imread(f"v2_db_cos{self.cnt}.png", cv2.IMREAD_GRAYSCALE)
|
530 |
+
# cos2 = torch.from_numpy(cos2[..., None]).to(self.device).float() / 255
|
531 |
+
# cos = cos2
|
532 |
+
|
533 |
+
valid_pixels = (vis_mask != 0).view(-1)
|
534 |
+
# import pdb; pdb.set_trace()
|
535 |
+
cv2.imwrite(
|
536 |
+
f"v3_db_uv{self.cnt}.png",
|
537 |
+
(uv[..., 0].cpu().numpy() * 255).astype(np.uint8),
|
538 |
+
)
|
539 |
+
cv2.imwrite(
|
540 |
+
f"v3_db_uv2{self.cnt}.png",
|
541 |
+
(uv[..., 1].cpu().numpy() * 255).astype(np.uint8),
|
542 |
+
)
|
543 |
+
cv2.imwrite(
|
544 |
+
f"v3_db_color{self.cnt}.png",
|
545 |
+
(image.cpu().numpy() * 255).astype(np.uint8),
|
546 |
+
)
|
547 |
+
cv2.imwrite(
|
548 |
+
f"v3_db_cos{self.cnt}.png",
|
549 |
+
(cos.cpu().numpy() * 255).astype(np.uint8),
|
550 |
+
)
|
551 |
+
cv2.imwrite(
|
552 |
+
f"v3_db_mask{self.cnt}.png",
|
553 |
+
(vis_mask.cpu().numpy() * 255).astype(np.uint8),
|
554 |
+
)
|
555 |
+
|
556 |
+
return (
|
557 |
+
self._scatter_texture(uv, image, valid_pixels),
|
558 |
+
self._scatter_texture(uv, cos, valid_pixels),
|
559 |
+
)
|
560 |
+
|
561 |
+
def _scatter_texture(self, uv, data, mask):
|
562 |
+
def __filter_data(data, mask):
|
563 |
+
return data.view(-1, data.shape[-1])[mask]
|
564 |
+
|
565 |
+
return _bilinear_interpolation_scattering(
|
566 |
+
self.texture_wh[1],
|
567 |
+
self.texture_wh[0],
|
568 |
+
__filter_data(uv, mask)[..., [1, 0]],
|
569 |
+
__filter_data(data, mask),
|
570 |
+
)
|
571 |
+
|
572 |
+
@torch.no_grad()
|
573 |
+
def fast_bake_texture(
|
574 |
+
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
|
575 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
576 |
+
channel = textures[0].shape[-1]
|
577 |
+
texture_merge = torch.zeros(self.texture_wh + (channel,)).to(
|
578 |
+
self.device
|
579 |
+
)
|
580 |
+
trust_map_merge = torch.zeros(self.texture_wh + (1,)).to(self.device)
|
581 |
+
for texture, cos_map in zip(textures, confidence_maps):
|
582 |
+
view_sum = (cos_map > 0).sum()
|
583 |
+
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
|
584 |
+
if painted_sum / view_sum > 0.99:
|
585 |
+
continue
|
586 |
+
texture_merge += texture * cos_map
|
587 |
+
trust_map_merge += cos_map
|
588 |
+
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
|
589 |
+
|
590 |
+
return texture_merge, trust_map_merge > 1e-8
|
591 |
+
|
592 |
+
def uv_inpaint(
|
593 |
+
self, texture: torch.Tensor, mask: torch.Tensor
|
594 |
+
) -> np.ndarray:
|
595 |
+
texture_np = texture.cpu().numpy()
|
596 |
+
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
|
597 |
+
vertices, faces, uv_map = self.get_mesh_attrs()
|
598 |
+
# import pdb; pdb.set_trace()
|
599 |
+
texture_np, mask_np = _texture_inpaint_smooth(
|
600 |
+
texture_np, mask_np, vertices, faces, uv_map
|
601 |
+
)
|
602 |
+
texture_np = texture_np.clip(0, 1)
|
603 |
+
texture_np = cv2.inpaint(
|
604 |
+
(texture_np * 255).astype(np.uint8),
|
605 |
+
255 - mask_np,
|
606 |
+
3,
|
607 |
+
cv2.INPAINT_NS,
|
608 |
+
)
|
609 |
+
|
610 |
+
return texture_np
|
611 |
+
|
612 |
+
def __call__(
|
613 |
+
self, colors: list[Image.Image], input_mesh: str, output_path: str
|
614 |
+
) -> trimesh.Trimesh:
|
615 |
+
self.load_mesh(input_mesh)
|
616 |
+
|
617 |
+
textures, weighted_cos_maps = [], []
|
618 |
+
for color, cam_elev, cam_azim, weight in zip(
|
619 |
+
colors, self.camera_elevs, self.camera_azims, self.view_weights
|
620 |
+
):
|
621 |
+
texture, cos_map = self.back_project(color, cam_elev, cam_azim)
|
622 |
+
textures.append(texture)
|
623 |
+
weighted_cos_maps.append(weight * (cos_map**4))
|
624 |
+
|
625 |
+
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
|
626 |
+
texture_np = self.uv_inpaint(texture, mask)
|
627 |
+
texture_np = post_process_texture(texture_np)
|
628 |
+
vertices, faces, uv_map = self.get_mesh_attrs(self.scale, self.center)
|
629 |
+
# import pdb; pdb.set_trace()
|
630 |
+
textured_mesh = save_mesh_with_mtl(
|
631 |
+
vertices, faces, uv_map, texture_np, output_path
|
632 |
+
)
|
633 |
+
|
634 |
+
return textured_mesh
|
635 |
+
|
636 |
+
def forward(
|
637 |
+
self,
|
638 |
+
colors: list[Image.Image],
|
639 |
+
masks,
|
640 |
+
depths,
|
641 |
+
normals,
|
642 |
+
uvs,
|
643 |
+
) -> trimesh.Trimesh:
|
644 |
+
textures, weighted_cos_maps = [], []
|
645 |
+
for color, mask, depth, normal, uv, weight in zip(
|
646 |
+
colors, masks, depths, normals, uvs, self.view_weights
|
647 |
+
):
|
648 |
+
texture, cos_map = self.back_project2(
|
649 |
+
color, mask, depth, normal, uv
|
650 |
+
)
|
651 |
+
cv2.imwrite(
|
652 |
+
f"v3_texture{self.cnt}.png",
|
653 |
+
(texture.cpu().numpy() * 255).astype(np.uint8),
|
654 |
+
)
|
655 |
+
cv2.imwrite(
|
656 |
+
f"v3_texture_cos{self.cnt}.png",
|
657 |
+
(cos_map.cpu().numpy() * 255).astype(np.uint8),
|
658 |
+
)
|
659 |
+
|
660 |
+
textures.append(texture)
|
661 |
+
weighted_cos_maps.append(weight * (cos_map**4))
|
662 |
+
|
663 |
+
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
|
664 |
+
texture_np = self.uv_inpaint(texture, mask)
|
665 |
+
texture_np = post_process_texture(texture_np)
|
666 |
+
vertices, faces, uv_map = self.get_mesh_attrs(self.scale, self.center)
|
667 |
+
# import pdb; pdb.set_trace()
|
668 |
+
cv2.imwrite("v3_texture_np.png", texture_np)
|
669 |
+
textured_mesh = save_mesh_with_mtl(
|
670 |
+
vertices, faces, uv_map, texture_np, output_path
|
671 |
+
)
|
672 |
+
|
673 |
+
return textured_mesh
|
674 |
+
|
675 |
+
|
676 |
+
class Image_Super_Net:
|
677 |
+
def __init__(self, device="cuda"):
|
678 |
+
from diffusers import StableDiffusionUpscalePipeline
|
679 |
+
|
680 |
+
self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
|
681 |
+
"stabilityai/stable-diffusion-x4-upscaler",
|
682 |
+
torch_dtype=torch.float16,
|
683 |
+
).to(device)
|
684 |
+
self.up_pipeline_x4.set_progress_bar_config(disable=True)
|
685 |
+
|
686 |
+
def __call__(self, image, prompt=""):
|
687 |
+
with torch.no_grad():
|
688 |
+
upscaled_image = self.up_pipeline_x4(
|
689 |
+
prompt=[prompt],
|
690 |
+
image=image,
|
691 |
+
num_inference_steps=10,
|
692 |
+
).images[0]
|
693 |
+
|
694 |
+
return upscaled_image
|
695 |
+
|
696 |
+
|
697 |
+
class Image_GANNet:
|
698 |
+
def __init__(self, outscale: int):
|
699 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
700 |
+
from realesrgan import RealESRGANer
|
701 |
+
|
702 |
+
self.outscale = outscale
|
703 |
+
model = RRDBNet(
|
704 |
+
num_in_ch=3,
|
705 |
+
num_out_ch=3,
|
706 |
+
num_feat=64,
|
707 |
+
num_block=23,
|
708 |
+
num_grow_ch=32,
|
709 |
+
scale=4,
|
710 |
+
)
|
711 |
+
self.upsampler = RealESRGANer(
|
712 |
+
scale=4,
|
713 |
+
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/super_resolution/RealESRGAN_x4plus.pth", # noqa
|
714 |
+
model=model,
|
715 |
+
pre_pad=0,
|
716 |
+
half=True,
|
717 |
+
)
|
718 |
+
|
719 |
+
def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
|
720 |
+
if isinstance(image, Image.Image):
|
721 |
+
image = np.array(image)
|
722 |
+
output, _ = self.upsampler.enhance(image, outscale=self.outscale)
|
723 |
+
|
724 |
+
return Image.fromarray(output)
|
725 |
+
|
726 |
+
|
727 |
+
if __name__ == "__main__":
|
728 |
+
device = "cuda"
|
729 |
+
color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"
|
730 |
+
mesh_path = "outputs/texture_mesh_gen/texture_mesh/kettle_color.glb"
|
731 |
+
output_path = "robot_test_v6/robot.obj"
|
732 |
+
target_image_size = (2048, 2048)
|
733 |
+
|
734 |
+
super_model = Image_GANNet(outscale=4)
|
735 |
+
multiviews = get_images_from_file(color_path, img_size=512)
|
736 |
+
multiviews = [super_model(img) for img in multiviews]
|
737 |
+
multiviews = [img.convert("RGB") for img in multiviews]
|
738 |
+
|
739 |
+
from asset3d_gen.data.utils import (
|
740 |
+
CameraSetting,
|
741 |
+
init_kal_camera,
|
742 |
+
DiffrastRender,
|
743 |
+
)
|
744 |
+
import nvdiffrast.torch as dr
|
745 |
+
|
746 |
+
camera_params = CameraSetting(
|
747 |
+
num_images=6,
|
748 |
+
elevation=[20.0, -10.0],
|
749 |
+
distance=5,
|
750 |
+
resolution_hw=(2048, 2048),
|
751 |
+
fov=math.radians(30),
|
752 |
+
device="cuda",
|
753 |
+
)
|
754 |
+
camera = init_kal_camera(camera_params)
|
755 |
+
mv = camera.view_matrix() # (n 4 4) world2cam
|
756 |
+
p = camera.intrinsics.projection_matrix()
|
757 |
+
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
|
758 |
+
p[:, 1, 1] = -p[:, 1, 1]
|
759 |
+
renderer = DiffrastRender(
|
760 |
+
p_matrix=p,
|
761 |
+
mv_matrix=mv,
|
762 |
+
resolution_hw=camera_params.resolution_hw,
|
763 |
+
context=dr.RasterizeCudaContext(),
|
764 |
+
mask_thresh=0.5,
|
765 |
+
grad_db=False,
|
766 |
+
device=camera_params.device,
|
767 |
+
antialias_mask=True,
|
768 |
+
)
|
769 |
+
|
770 |
+
mesh = trimesh.load(mesh_path)
|
771 |
+
if isinstance(mesh, trimesh.Scene):
|
772 |
+
mesh = mesh.dump(concatenate=True)
|
773 |
+
|
774 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
775 |
+
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
|
776 |
+
uvs[:, 1] = 1 - uvs[:, 1]
|
777 |
+
mesh.vertices = mesh.vertices[vmapping]
|
778 |
+
mesh.faces = indices
|
779 |
+
mesh.visual.uv = uvs
|
780 |
+
|
781 |
+
vertices = torch.from_numpy(mesh.vertices).to(camera_params.device).float()
|
782 |
+
faces = (
|
783 |
+
torch.from_numpy(mesh.faces).to(camera_params.device).to(torch.int64)
|
784 |
+
)
|
785 |
+
uvs = torch.from_numpy(mesh.visual.uv).to(camera_params.device).float()
|
786 |
+
|
787 |
+
rendered_view_normals = []
|
788 |
+
rast, vertices_clip = renderer.compute_dr_raster(vertices, faces)
|
789 |
+
for idx in range(len(mv)):
|
790 |
+
pos_cam = transform_vertices(mv[idx], vertices, keepdim=True)
|
791 |
+
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
|
792 |
+
v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3))
|
793 |
+
face_norm = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
|
794 |
+
vertex_norm = (
|
795 |
+
torch.from_numpy(
|
796 |
+
trimesh.geometry.mean_vertex_normals(
|
797 |
+
len(pos_cam), faces.cpu(), face_norm.cpu()
|
798 |
+
)
|
799 |
+
)
|
800 |
+
.to(camera_params.device)
|
801 |
+
.contiguous()
|
802 |
+
)
|
803 |
+
im_base_normals, _ = dr.interpolate(
|
804 |
+
vertex_norm[None, ...].float(),
|
805 |
+
rast[idx : idx + 1],
|
806 |
+
faces.to(torch.int32),
|
807 |
+
)
|
808 |
+
rendered_view_normals.append(im_base_normals)
|
809 |
+
|
810 |
+
rendered_view_normals = torch.cat(rendered_view_normals, dim=0)
|
811 |
+
|
812 |
+
rendered_depth, masks = renderer.render_depth(vertices, faces)
|
813 |
+
norm_depths = []
|
814 |
+
for idx in range(len(rendered_depth)):
|
815 |
+
norm_depth = renderer.normalize_map_by_mask(
|
816 |
+
rendered_depth[idx : idx + 1], masks[idx : idx + 1]
|
817 |
+
)
|
818 |
+
norm_depths.append(norm_depth)
|
819 |
+
norm_depths = torch.cat(norm_depths, dim=0)
|
820 |
+
render_uvs, _ = renderer.render_uv(vertices, faces, uvs)
|
821 |
+
|
822 |
+
for index in range(6):
|
823 |
+
cv2.imwrite(
|
824 |
+
f"v3_mask{index}.png",
|
825 |
+
(masks[index] * 255).cpu().numpy().astype(np.uint8),
|
826 |
+
)
|
827 |
+
cv2.imwrite(
|
828 |
+
f"v3_normalv2{index}.png",
|
829 |
+
(rendered_view_normals[index] * 255)
|
830 |
+
.cpu()
|
831 |
+
.numpy()
|
832 |
+
.astype(np.uint8)[..., ::-1],
|
833 |
+
)
|
834 |
+
cv2.imwrite(
|
835 |
+
f"v3_depth{index}.png",
|
836 |
+
(norm_depths[index] * 255).cpu().numpy().astype(np.uint8),
|
837 |
+
)
|
838 |
+
cv2.imwrite(
|
839 |
+
f"v3_uv{index}.png",
|
840 |
+
(render_uvs[index, ..., 0] * 255).cpu().numpy().astype(np.uint8),
|
841 |
+
)
|
842 |
+
multiviews[index].save(f"v3_color{index}.png")
|
843 |
+
|
844 |
+
texture_backer = TextureBacker(
|
845 |
+
camera_elevs=[20, 20, 20, -10, -10, -10],
|
846 |
+
camera_azims=[-180, -60, 60, -120, 0, 120],
|
847 |
+
view_weights=[1, 0.2, 0.2, 0.2, 1, 0.2],
|
848 |
+
camera_distance=5,
|
849 |
+
camera_fov=30,
|
850 |
+
render_wh=(2048, 2048),
|
851 |
+
texture_wh=(2048, 2048),
|
852 |
+
)
|
853 |
+
texture_backer.vertices = vertices
|
854 |
+
texture_backer.faces = faces
|
855 |
+
uvs[:, 1] = 1.0 - uvs[:, 1]
|
856 |
+
texture_backer.uv_map = uvs
|
857 |
+
texture_backer.center = center
|
858 |
+
texture_backer.scale = scale
|
859 |
+
|
860 |
+
textured_mesh = texture_backer.forward(
|
861 |
+
multiviews, masks, norm_depths, rendered_view_normals, render_uvs
|
862 |
+
)
|
863 |
+
|
864 |
+
# multiviews = [super_model(img) for img in multiviews]
|
865 |
+
# multiviews = [img.convert("RGB") for img in multiviews]
|
866 |
+
# textured_mesh = texture_backer(multiviews, mesh_path, output_path)
|
asset3d_gen/data/backup/backprojectv2.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import math
|
6 |
+
import trimesh
|
7 |
+
import cv2
|
8 |
+
import xatlas
|
9 |
+
from typing import Union
|
10 |
+
|
11 |
+
|
12 |
+
def get_perspective_projection_matrix(fovy, aspect_wh, near, far):
|
13 |
+
fovy_rad = math.radians(fovy)
|
14 |
+
return np.array(
|
15 |
+
[
|
16 |
+
[1.0 / (math.tan(fovy_rad / 2.0) * aspect_wh), 0, 0, 0],
|
17 |
+
[0, 1.0 / math.tan(fovy_rad / 2.0), 0, 0],
|
18 |
+
[
|
19 |
+
0,
|
20 |
+
0,
|
21 |
+
-(far + near) / (far - near),
|
22 |
+
-2.0 * far * near / (far - near),
|
23 |
+
],
|
24 |
+
[0, 0, -1, 0],
|
25 |
+
]
|
26 |
+
).astype(np.float32)
|
27 |
+
|
28 |
+
|
29 |
+
def load_mesh(mesh):
|
30 |
+
vtx_pos = mesh.vertices if hasattr(mesh, "vertices") else None
|
31 |
+
pos_idx = mesh.faces if hasattr(mesh, "faces") else None
|
32 |
+
|
33 |
+
vtx_uv = mesh.visual.uv if hasattr(mesh.visual, "uv") else None
|
34 |
+
uv_idx = mesh.faces if hasattr(mesh, "faces") else None
|
35 |
+
|
36 |
+
texture_data = None
|
37 |
+
|
38 |
+
return vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data
|
39 |
+
|
40 |
+
|
41 |
+
def save_mesh(mesh, texture_data):
|
42 |
+
material = trimesh.visual.texture.SimpleMaterial(
|
43 |
+
image=texture_data, diffuse=(255, 255, 255)
|
44 |
+
)
|
45 |
+
texture_visuals = trimesh.visual.TextureVisuals(
|
46 |
+
uv=mesh.visual.uv, image=texture_data, material=material
|
47 |
+
)
|
48 |
+
mesh.visual = texture_visuals
|
49 |
+
return mesh
|
50 |
+
|
51 |
+
|
52 |
+
def transform_pos(mtx, pos, keepdim=False):
|
53 |
+
t_mtx = (
|
54 |
+
torch.from_numpy(mtx).to(pos.device)
|
55 |
+
if isinstance(mtx, np.ndarray)
|
56 |
+
else mtx
|
57 |
+
)
|
58 |
+
if pos.shape[-1] == 3:
|
59 |
+
posw = torch.cat(
|
60 |
+
[pos, torch.ones([pos.shape[0], 1]).to(pos.device)], axis=1
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
posw = pos
|
64 |
+
|
65 |
+
if keepdim:
|
66 |
+
return torch.matmul(posw, t_mtx.t())[...]
|
67 |
+
else:
|
68 |
+
return torch.matmul(posw, t_mtx.t())[None, ...]
|
69 |
+
|
70 |
+
|
71 |
+
def get_mv_matrix(elev, azim, camera_distance, center=None):
|
72 |
+
elev = -elev
|
73 |
+
|
74 |
+
elev_rad = math.radians(elev)
|
75 |
+
azim_rad = math.radians(azim)
|
76 |
+
|
77 |
+
camera_position = np.array(
|
78 |
+
[
|
79 |
+
camera_distance * math.cos(elev_rad) * math.cos(azim_rad),
|
80 |
+
camera_distance * math.cos(elev_rad) * math.sin(azim_rad),
|
81 |
+
camera_distance * math.sin(elev_rad),
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
if center is None:
|
86 |
+
center = np.array([0, 0, 0])
|
87 |
+
else:
|
88 |
+
center = np.array(center)
|
89 |
+
|
90 |
+
lookat = center - camera_position
|
91 |
+
lookat = lookat / np.linalg.norm(lookat)
|
92 |
+
|
93 |
+
up = np.array([0, 0, 1.0])
|
94 |
+
right = np.cross(lookat, up)
|
95 |
+
right = right / np.linalg.norm(right)
|
96 |
+
up = np.cross(right, lookat)
|
97 |
+
up = up / np.linalg.norm(up)
|
98 |
+
|
99 |
+
c2w = np.concatenate(
|
100 |
+
[np.stack([right, up, -lookat], axis=-1), camera_position[:, None]],
|
101 |
+
axis=-1,
|
102 |
+
)
|
103 |
+
|
104 |
+
w2c = np.zeros((4, 4))
|
105 |
+
w2c[:3, :3] = np.transpose(c2w[:3, :3], (1, 0))
|
106 |
+
w2c[:3, 3:] = -np.matmul(np.transpose(c2w[:3, :3], (1, 0)), c2w[:3, 3:])
|
107 |
+
w2c[3, 3] = 1.0
|
108 |
+
|
109 |
+
return w2c.astype(np.float32)
|
110 |
+
|
111 |
+
|
112 |
+
def stride_from_shape(shape):
|
113 |
+
stride = [1]
|
114 |
+
for x in reversed(shape[1:]):
|
115 |
+
stride.append(stride[-1] * x)
|
116 |
+
return list(reversed(stride))
|
117 |
+
|
118 |
+
|
119 |
+
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
|
120 |
+
# input: [..., C], D dimension + C channel
|
121 |
+
# count: [..., 1], D dimension
|
122 |
+
# indices: [N, D], long
|
123 |
+
# values: [N, C]
|
124 |
+
|
125 |
+
D = indices.shape[-1]
|
126 |
+
C = input.shape[-1]
|
127 |
+
size = input.shape[:-1]
|
128 |
+
stride = stride_from_shape(size)
|
129 |
+
|
130 |
+
assert len(size) == D
|
131 |
+
|
132 |
+
input = input.view(-1, C) # [HW, C]
|
133 |
+
count = count.view(-1, 1)
|
134 |
+
|
135 |
+
flatten_indices = (
|
136 |
+
indices * torch.tensor(stride, dtype=torch.long, device=indices.device)
|
137 |
+
).sum(
|
138 |
+
-1
|
139 |
+
) # [N]
|
140 |
+
|
141 |
+
if weights is None:
|
142 |
+
weights = torch.ones_like(values[..., :1])
|
143 |
+
|
144 |
+
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
|
145 |
+
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
|
146 |
+
|
147 |
+
return input.view(*size, C), count.view(*size, 1)
|
148 |
+
|
149 |
+
|
150 |
+
def linear_grid_put_2d(H, W, coords, values, return_count=False):
|
151 |
+
# coords: [N, 2], float in [0, 1]
|
152 |
+
# values: [N, C]
|
153 |
+
|
154 |
+
C = values.shape[-1]
|
155 |
+
|
156 |
+
indices = coords * torch.tensor(
|
157 |
+
[H - 1, W - 1], dtype=torch.float32, device=coords.device
|
158 |
+
)
|
159 |
+
indices_00 = indices.floor().long() # [N, 2]
|
160 |
+
indices_00[:, 0].clamp_(0, H - 2)
|
161 |
+
indices_00[:, 1].clamp_(0, W - 2)
|
162 |
+
indices_01 = indices_00 + torch.tensor(
|
163 |
+
[0, 1], dtype=torch.long, device=indices.device
|
164 |
+
)
|
165 |
+
indices_10 = indices_00 + torch.tensor(
|
166 |
+
[1, 0], dtype=torch.long, device=indices.device
|
167 |
+
)
|
168 |
+
indices_11 = indices_00 + torch.tensor(
|
169 |
+
[1, 1], dtype=torch.long, device=indices.device
|
170 |
+
)
|
171 |
+
|
172 |
+
h = indices[..., 0] - indices_00[..., 0].float()
|
173 |
+
w = indices[..., 1] - indices_00[..., 1].float()
|
174 |
+
w_00 = (1 - h) * (1 - w)
|
175 |
+
w_01 = (1 - h) * w
|
176 |
+
w_10 = h * (1 - w)
|
177 |
+
w_11 = h * w
|
178 |
+
|
179 |
+
result = torch.zeros(
|
180 |
+
H, W, C, device=values.device, dtype=values.dtype
|
181 |
+
) # [H, W, C]
|
182 |
+
count = torch.zeros(
|
183 |
+
H, W, 1, device=values.device, dtype=values.dtype
|
184 |
+
) # [H, W, 1]
|
185 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
186 |
+
|
187 |
+
result, count = scatter_add_nd_with_count(
|
188 |
+
result,
|
189 |
+
count,
|
190 |
+
indices_00,
|
191 |
+
values * w_00.unsqueeze(1),
|
192 |
+
weights * w_00.unsqueeze(1),
|
193 |
+
)
|
194 |
+
result, count = scatter_add_nd_with_count(
|
195 |
+
result,
|
196 |
+
count,
|
197 |
+
indices_01,
|
198 |
+
values * w_01.unsqueeze(1),
|
199 |
+
weights * w_01.unsqueeze(1),
|
200 |
+
)
|
201 |
+
result, count = scatter_add_nd_with_count(
|
202 |
+
result,
|
203 |
+
count,
|
204 |
+
indices_10,
|
205 |
+
values * w_10.unsqueeze(1),
|
206 |
+
weights * w_10.unsqueeze(1),
|
207 |
+
)
|
208 |
+
result, count = scatter_add_nd_with_count(
|
209 |
+
result,
|
210 |
+
count,
|
211 |
+
indices_11,
|
212 |
+
values * w_11.unsqueeze(1),
|
213 |
+
weights * w_11.unsqueeze(1),
|
214 |
+
)
|
215 |
+
|
216 |
+
if return_count:
|
217 |
+
return result, count
|
218 |
+
|
219 |
+
mask = count.squeeze(-1) > 0
|
220 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
221 |
+
|
222 |
+
return result
|
223 |
+
|
224 |
+
|
225 |
+
def meshVerticeInpaint_smooth(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx):
|
226 |
+
texture_height, texture_width, texture_channel = texture.shape
|
227 |
+
vtx_num = vtx_pos.shape[0]
|
228 |
+
|
229 |
+
vtx_mask = np.zeros(vtx_num, dtype=np.float32)
|
230 |
+
vtx_color = [
|
231 |
+
np.zeros(texture_channel, dtype=np.float32) for _ in range(vtx_num)
|
232 |
+
]
|
233 |
+
uncolored_vtxs = []
|
234 |
+
G = [[] for _ in range(vtx_num)]
|
235 |
+
|
236 |
+
for i in range(uv_idx.shape[0]):
|
237 |
+
for k in range(3):
|
238 |
+
vtx_uv_idx = uv_idx[i, k]
|
239 |
+
vtx_idx = pos_idx[i, k]
|
240 |
+
uv_v = int(round(vtx_uv[vtx_uv_idx, 0] * (texture_width - 1)))
|
241 |
+
uv_u = int(
|
242 |
+
round((1.0 - vtx_uv[vtx_uv_idx, 1]) * (texture_height - 1))
|
243 |
+
)
|
244 |
+
if mask[uv_u, uv_v] > 0:
|
245 |
+
vtx_mask[vtx_idx] = 1.0
|
246 |
+
vtx_color[vtx_idx] = texture[uv_u, uv_v]
|
247 |
+
else:
|
248 |
+
uncolored_vtxs.append(vtx_idx)
|
249 |
+
G[pos_idx[i, k]].append(pos_idx[i, (k + 1) % 3])
|
250 |
+
|
251 |
+
smooth_count = 2
|
252 |
+
last_uncolored_vtx_count = 0
|
253 |
+
while smooth_count > 0:
|
254 |
+
uncolored_vtx_count = 0
|
255 |
+
for vtx_idx in uncolored_vtxs:
|
256 |
+
sum_color = np.zeros(texture_channel, dtype=np.float32)
|
257 |
+
total_weight = 0.0
|
258 |
+
vtx_0 = vtx_pos[vtx_idx]
|
259 |
+
for connected_idx in G[vtx_idx]:
|
260 |
+
if vtx_mask[connected_idx] > 0:
|
261 |
+
vtx1 = vtx_pos[connected_idx]
|
262 |
+
dist = np.sqrt(np.sum((vtx_0 - vtx1) ** 2))
|
263 |
+
dist_weight = 1.0 / max(dist, 1e-4)
|
264 |
+
dist_weight *= dist_weight
|
265 |
+
sum_color += vtx_color[connected_idx] * dist_weight
|
266 |
+
total_weight += dist_weight
|
267 |
+
if total_weight > 0:
|
268 |
+
vtx_color[vtx_idx] = sum_color / total_weight
|
269 |
+
vtx_mask[vtx_idx] = 1.0
|
270 |
+
else:
|
271 |
+
uncolored_vtx_count += 1
|
272 |
+
|
273 |
+
if last_uncolored_vtx_count == uncolored_vtx_count:
|
274 |
+
smooth_count -= 1
|
275 |
+
else:
|
276 |
+
smooth_count += 1
|
277 |
+
last_uncolored_vtx_count = uncolored_vtx_count
|
278 |
+
|
279 |
+
new_texture = texture.copy()
|
280 |
+
new_mask = mask.copy()
|
281 |
+
for face_idx in range(uv_idx.shape[0]):
|
282 |
+
for k in range(3):
|
283 |
+
vtx_uv_idx = uv_idx[face_idx, k]
|
284 |
+
vtx_idx = pos_idx[face_idx, k]
|
285 |
+
if vtx_mask[vtx_idx] == 1.0:
|
286 |
+
uv_v = int(round(vtx_uv[vtx_uv_idx, 0] * (texture_width - 1)))
|
287 |
+
uv_u = int(
|
288 |
+
round((1.0 - vtx_uv[vtx_uv_idx, 1]) * (texture_height - 1))
|
289 |
+
)
|
290 |
+
new_texture[uv_u, uv_v] = vtx_color[vtx_idx]
|
291 |
+
new_mask[uv_u, uv_v] = 255
|
292 |
+
|
293 |
+
return new_texture, new_mask
|
294 |
+
|
295 |
+
|
296 |
+
def mesh_uv_wrap(mesh):
|
297 |
+
if isinstance(mesh, trimesh.Scene):
|
298 |
+
mesh = mesh.dump(concatenate=True)
|
299 |
+
|
300 |
+
if len(mesh.faces) > 500000000:
|
301 |
+
raise ValueError(
|
302 |
+
"The mesh has more than 500,000,000 faces, which is not supported."
|
303 |
+
)
|
304 |
+
|
305 |
+
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
|
306 |
+
|
307 |
+
mesh.vertices = mesh.vertices[vmapping]
|
308 |
+
mesh.faces = indices
|
309 |
+
mesh.visual.uv = uvs
|
310 |
+
|
311 |
+
return mesh
|
312 |
+
|
313 |
+
|
314 |
+
class MeshRender:
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
camera_distance=1.45,
|
318 |
+
default_resolution=1024,
|
319 |
+
texture_size=1024,
|
320 |
+
use_antialias=True,
|
321 |
+
max_mip_level=None,
|
322 |
+
filter_mode="linear",
|
323 |
+
bake_mode="linear",
|
324 |
+
raster_mode="cr",
|
325 |
+
device="cuda",
|
326 |
+
):
|
327 |
+
|
328 |
+
self.device = device
|
329 |
+
|
330 |
+
self.set_default_render_resolution(default_resolution)
|
331 |
+
self.set_default_texture_resolution(texture_size)
|
332 |
+
|
333 |
+
self.camera_distance = camera_distance
|
334 |
+
self.use_antialias = use_antialias
|
335 |
+
self.max_mip_level = max_mip_level
|
336 |
+
self.filter_mode = filter_mode
|
337 |
+
|
338 |
+
self.bake_angle_thres = 75
|
339 |
+
self.bake_unreliable_kernel_size = int(
|
340 |
+
(2 / 512)
|
341 |
+
* max(self.default_resolution[0], self.default_resolution[1])
|
342 |
+
)
|
343 |
+
self.bake_mode = bake_mode
|
344 |
+
|
345 |
+
self.raster_mode = raster_mode
|
346 |
+
if self.raster_mode == "cr":
|
347 |
+
import custom_rasterizer as cr
|
348 |
+
|
349 |
+
self.raster = cr
|
350 |
+
else:
|
351 |
+
raise f"No raster named {self.raster_mode}"
|
352 |
+
|
353 |
+
fov = 30
|
354 |
+
self.camera_proj_mat = get_perspective_projection_matrix(
|
355 |
+
fov,
|
356 |
+
self.default_resolution[1] / self.default_resolution[0],
|
357 |
+
0.01,
|
358 |
+
100.0,
|
359 |
+
)
|
360 |
+
|
361 |
+
def raster_rasterize(
|
362 |
+
self, pos, tri, resolution, ranges=None, grad_db=True
|
363 |
+
):
|
364 |
+
|
365 |
+
if self.raster_mode == "cr":
|
366 |
+
rast_out_db = None
|
367 |
+
if pos.dim() == 2:
|
368 |
+
pos = pos.unsqueeze(0)
|
369 |
+
findices, barycentric = self.raster.rasterize(pos, tri, resolution)
|
370 |
+
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1)
|
371 |
+
rast_out = rast_out.unsqueeze(0)
|
372 |
+
else:
|
373 |
+
raise f"No raster named {self.raster_mode}"
|
374 |
+
|
375 |
+
return rast_out, rast_out_db
|
376 |
+
|
377 |
+
def raster_interpolate(
|
378 |
+
self, uv, rast_out, uv_idx, rast_db=None, diff_attrs=None
|
379 |
+
):
|
380 |
+
|
381 |
+
if self.raster_mode == "cr":
|
382 |
+
textd = None
|
383 |
+
barycentric = rast_out[0, ..., :-1]
|
384 |
+
findices = rast_out[0, ..., -1]
|
385 |
+
if uv.dim() == 2:
|
386 |
+
uv = uv.unsqueeze(0)
|
387 |
+
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx)
|
388 |
+
else:
|
389 |
+
raise f"No raster named {self.raster_mode}"
|
390 |
+
|
391 |
+
return textc, textd
|
392 |
+
|
393 |
+
def load_mesh(
|
394 |
+
self,
|
395 |
+
mesh,
|
396 |
+
):
|
397 |
+
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh)
|
398 |
+
self.mesh_copy = mesh
|
399 |
+
self.set_mesh(
|
400 |
+
vtx_pos,
|
401 |
+
pos_idx,
|
402 |
+
vtx_uv=vtx_uv,
|
403 |
+
uv_idx=uv_idx,
|
404 |
+
)
|
405 |
+
if texture_data is not None:
|
406 |
+
self.set_texture(texture_data)
|
407 |
+
|
408 |
+
def save_mesh(self):
|
409 |
+
texture_data = self.get_texture()
|
410 |
+
texture_data = Image.fromarray((texture_data * 255).astype(np.uint8))
|
411 |
+
return save_mesh(self.mesh_copy, texture_data)
|
412 |
+
|
413 |
+
def set_mesh(
|
414 |
+
self,
|
415 |
+
vtx_pos,
|
416 |
+
pos_idx,
|
417 |
+
vtx_uv=None,
|
418 |
+
uv_idx=None,
|
419 |
+
):
|
420 |
+
|
421 |
+
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device).float()
|
422 |
+
self.pos_idx = torch.from_numpy(pos_idx).to(self.device).to(torch.int)
|
423 |
+
if (vtx_uv is not None) and (uv_idx is not None):
|
424 |
+
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device).float()
|
425 |
+
self.uv_idx = (
|
426 |
+
torch.from_numpy(uv_idx).to(self.device).to(torch.int)
|
427 |
+
)
|
428 |
+
else:
|
429 |
+
self.vtx_uv = None
|
430 |
+
self.uv_idx = None
|
431 |
+
|
432 |
+
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]]
|
433 |
+
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]]
|
434 |
+
if (vtx_uv is not None) and (uv_idx is not None):
|
435 |
+
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1]
|
436 |
+
|
437 |
+
def set_texture(self, tex):
|
438 |
+
if isinstance(tex, np.ndarray):
|
439 |
+
tex = Image.fromarray((tex * 255).astype(np.uint8))
|
440 |
+
elif isinstance(tex, torch.Tensor):
|
441 |
+
tex = tex.cpu().numpy()
|
442 |
+
tex = Image.fromarray((tex * 255).astype(np.uint8))
|
443 |
+
|
444 |
+
tex = tex.resize(self.texture_size).convert("RGB")
|
445 |
+
tex = np.array(tex) / 255.0
|
446 |
+
self.tex = torch.from_numpy(tex).to(self.device)
|
447 |
+
self.tex = self.tex.float()
|
448 |
+
|
449 |
+
def set_default_render_resolution(self, default_resolution):
|
450 |
+
if isinstance(default_resolution, int):
|
451 |
+
default_resolution = (default_resolution, default_resolution)
|
452 |
+
self.default_resolution = default_resolution
|
453 |
+
|
454 |
+
def set_default_texture_resolution(self, texture_size):
|
455 |
+
if isinstance(texture_size, int):
|
456 |
+
texture_size = (texture_size, texture_size)
|
457 |
+
self.texture_size = texture_size
|
458 |
+
|
459 |
+
def get_mesh(self):
|
460 |
+
vtx_pos = self.vtx_pos.cpu().numpy()
|
461 |
+
pos_idx = self.pos_idx.cpu().numpy()
|
462 |
+
vtx_uv = self.vtx_uv.cpu().numpy()
|
463 |
+
uv_idx = self.uv_idx.cpu().numpy()
|
464 |
+
|
465 |
+
# 坐标变换的逆变换
|
466 |
+
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]]
|
467 |
+
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]]
|
468 |
+
|
469 |
+
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1]
|
470 |
+
return vtx_pos, pos_idx, vtx_uv, uv_idx
|
471 |
+
|
472 |
+
def get_texture(self):
|
473 |
+
return self.tex.cpu().numpy()
|
474 |
+
|
475 |
+
def render_sketch_from_depth(self, depth_image):
|
476 |
+
depth_image_np = depth_image.cpu().numpy()
|
477 |
+
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
478 |
+
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
479 |
+
combined_edges = depth_edges
|
480 |
+
sketch_image = (
|
481 |
+
torch.from_numpy(combined_edges).to(depth_image.device).float()
|
482 |
+
/ 255.0
|
483 |
+
)
|
484 |
+
sketch_image = sketch_image.unsqueeze(-1)
|
485 |
+
return sketch_image
|
486 |
+
|
487 |
+
def back_project(
|
488 |
+
self, image, elev, azim, camera_distance=None, center=None, method=None
|
489 |
+
):
|
490 |
+
if isinstance(image, Image.Image):
|
491 |
+
image = torch.tensor(np.array(image) / 255.0)
|
492 |
+
elif isinstance(image, np.ndarray):
|
493 |
+
image = torch.tensor(image)
|
494 |
+
if image.dim() == 2:
|
495 |
+
image = image.unsqueeze(-1)
|
496 |
+
image = image.float().to(self.device)
|
497 |
+
resolution = image.shape[:2]
|
498 |
+
channel = image.shape[-1]
|
499 |
+
texture = torch.zeros(self.texture_size + (channel,)).to(self.device)
|
500 |
+
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device)
|
501 |
+
|
502 |
+
proj = self.camera_proj_mat
|
503 |
+
r_mv = get_mv_matrix(
|
504 |
+
elev=elev,
|
505 |
+
azim=azim,
|
506 |
+
camera_distance=(
|
507 |
+
self.camera_distance
|
508 |
+
if camera_distance is None
|
509 |
+
else camera_distance
|
510 |
+
),
|
511 |
+
center=center,
|
512 |
+
)
|
513 |
+
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
|
514 |
+
pos_clip = transform_pos(proj, pos_camera)
|
515 |
+
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
|
516 |
+
v0 = pos_camera[self.pos_idx[:, 0], :]
|
517 |
+
v1 = pos_camera[self.pos_idx[:, 1], :]
|
518 |
+
v2 = pos_camera[self.pos_idx[:, 2], :]
|
519 |
+
face_normals = F.normalize(
|
520 |
+
torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1
|
521 |
+
)
|
522 |
+
vertex_normals = trimesh.geometry.mean_vertex_normals(
|
523 |
+
vertex_count=self.vtx_pos.shape[0],
|
524 |
+
faces=self.pos_idx.cpu(),
|
525 |
+
face_normals=face_normals.cpu(),
|
526 |
+
)
|
527 |
+
vertex_normals = (
|
528 |
+
torch.from_numpy(vertex_normals)
|
529 |
+
.float()
|
530 |
+
.to(self.device)
|
531 |
+
.contiguous()
|
532 |
+
)
|
533 |
+
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
|
534 |
+
rast_out, rast_out_db = self.raster_rasterize(
|
535 |
+
pos_clip, self.pos_idx, resolution=resolution
|
536 |
+
)
|
537 |
+
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
|
538 |
+
|
539 |
+
normal, _ = self.raster_interpolate(
|
540 |
+
vertex_normals[None, ...], rast_out, self.pos_idx
|
541 |
+
)
|
542 |
+
normal = normal[0, ...]
|
543 |
+
|
544 |
+
uv, _ = self.raster_interpolate(
|
545 |
+
self.vtx_uv[None, ...], rast_out, self.uv_idx
|
546 |
+
)
|
547 |
+
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
|
548 |
+
depth = depth[0, ...]
|
549 |
+
|
550 |
+
depth_max, depth_min = (
|
551 |
+
depth[visible_mask > 0].max(),
|
552 |
+
depth[visible_mask > 0].min(),
|
553 |
+
)
|
554 |
+
depth_normalized = (depth - depth_min) / (depth_max - depth_min)
|
555 |
+
depth_image = depth_normalized * visible_mask # Mask out background.
|
556 |
+
|
557 |
+
sketch_image = self.render_sketch_from_depth(depth_image)
|
558 |
+
|
559 |
+
cv2.imwrite("d_depth.png", depth_image.cpu().numpy() * 255)
|
560 |
+
cv2.imwrite("d_normal.png", normal.cpu().numpy() * 255)
|
561 |
+
cv2.imwrite(
|
562 |
+
"d_image.png", image.cpu().numpy()[..., :3][..., ::-1] * 255
|
563 |
+
)
|
564 |
+
cv2.imwrite("d_sketch_image.png", sketch_image.cpu().numpy() * 255)
|
565 |
+
cv2.imwrite("d_uv1.png", uv.cpu().numpy()[0, ..., 0] * 255)
|
566 |
+
cv2.imwrite("d_uv2.png", uv.cpu().numpy()[0, ..., 1] * 255)
|
567 |
+
# p uv[0,...,0].mean(axis=0)
|
568 |
+
# import pdb; pdb.set_trace()
|
569 |
+
|
570 |
+
# depth_image = None
|
571 |
+
# normal = None
|
572 |
+
# image = None
|
573 |
+
|
574 |
+
sketch_image = self.render_sketch_from_depth(depth_image)
|
575 |
+
channel = image.shape[-1]
|
576 |
+
|
577 |
+
lookat = torch.tensor([[0, 0, -1]], device=self.device)
|
578 |
+
cos_image = torch.nn.functional.cosine_similarity(
|
579 |
+
lookat, normal.view(-1, 3)
|
580 |
+
)
|
581 |
+
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1)
|
582 |
+
|
583 |
+
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi)
|
584 |
+
cos_image[cos_image < cos_thres] = 0
|
585 |
+
|
586 |
+
# shrink
|
587 |
+
kernel_size = self.bake_unreliable_kernel_size * 2 + 1
|
588 |
+
kernel = torch.ones(
|
589 |
+
(1, 1, kernel_size, kernel_size), dtype=torch.float32
|
590 |
+
).to(sketch_image.device)
|
591 |
+
|
592 |
+
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float()
|
593 |
+
visible_mask = F.conv2d(
|
594 |
+
1.0 - visible_mask, kernel, padding=kernel_size // 2
|
595 |
+
)
|
596 |
+
visible_mask = 1.0 - (visible_mask > 0).float() # 二值化
|
597 |
+
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0)
|
598 |
+
|
599 |
+
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
600 |
+
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2)
|
601 |
+
sketch_image = (sketch_image > 0).float() # 二值化
|
602 |
+
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
603 |
+
visible_mask = visible_mask * (sketch_image < 0.5)
|
604 |
+
|
605 |
+
cos_image[visible_mask == 0] = 0
|
606 |
+
proj_mask = (visible_mask != 0).view(-1)
|
607 |
+
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
|
608 |
+
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
|
609 |
+
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]
|
610 |
+
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask]
|
611 |
+
import pdb
|
612 |
+
|
613 |
+
pdb.set_trace()
|
614 |
+
texture = linear_grid_put_2d(
|
615 |
+
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image
|
616 |
+
)
|
617 |
+
cos_map = linear_grid_put_2d(
|
618 |
+
self.texture_size[1],
|
619 |
+
self.texture_size[0],
|
620 |
+
uv[..., [1, 0]],
|
621 |
+
cos_image,
|
622 |
+
)
|
623 |
+
boundary_map = linear_grid_put_2d(
|
624 |
+
self.texture_size[1],
|
625 |
+
self.texture_size[0],
|
626 |
+
uv[..., [1, 0]],
|
627 |
+
sketch_image,
|
628 |
+
)
|
629 |
+
|
630 |
+
return texture, cos_map, boundary_map
|
631 |
+
|
632 |
+
@torch.no_grad()
|
633 |
+
def fast_bake_texture(self, textures, cos_maps):
|
634 |
+
|
635 |
+
channel = textures[0].shape[-1]
|
636 |
+
texture_merge = torch.zeros(self.texture_size + (channel,)).to(
|
637 |
+
self.device
|
638 |
+
)
|
639 |
+
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device)
|
640 |
+
for texture, cos_map in zip(textures, cos_maps):
|
641 |
+
view_sum = (cos_map > 0).sum()
|
642 |
+
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
|
643 |
+
if painted_sum / view_sum > 0.99:
|
644 |
+
continue
|
645 |
+
texture_merge += texture * cos_map
|
646 |
+
trust_map_merge += cos_map
|
647 |
+
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
|
648 |
+
|
649 |
+
return texture_merge, trust_map_merge > 1e-8
|
650 |
+
|
651 |
+
def uv_inpaint(self, texture, mask):
|
652 |
+
|
653 |
+
if isinstance(texture, torch.Tensor):
|
654 |
+
texture_np = texture.cpu().numpy()
|
655 |
+
elif isinstance(texture, np.ndarray):
|
656 |
+
texture_np = texture
|
657 |
+
elif isinstance(texture, Image.Image):
|
658 |
+
texture_np = np.array(texture) / 255.0
|
659 |
+
|
660 |
+
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh()
|
661 |
+
|
662 |
+
texture_np, mask = meshVerticeInpaint_smooth(
|
663 |
+
texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx
|
664 |
+
)
|
665 |
+
|
666 |
+
texture_np = cv2.inpaint(
|
667 |
+
(texture_np * 255).astype(np.uint8), 255 - mask, 3, cv2.INPAINT_NS
|
668 |
+
)
|
669 |
+
|
670 |
+
return texture_np
|
671 |
+
|
672 |
+
|
673 |
+
def get_images_from_file(img_path: str, img_size: int) -> list[np.array]:
|
674 |
+
input_image = Image.open(img_path)
|
675 |
+
view_images = np.array(input_image)
|
676 |
+
view_images = np.concatenate(
|
677 |
+
[view_images[:img_size, ...], view_images[img_size:, ...]], axis=1
|
678 |
+
)
|
679 |
+
images = np.split(view_images, view_images.shape[1] // img_size, axis=1)
|
680 |
+
|
681 |
+
return images
|
682 |
+
|
683 |
+
|
684 |
+
def bake_from_multiview(
|
685 |
+
render, views, camera_elevs, camera_azims, view_weights, method="fast"
|
686 |
+
):
|
687 |
+
project_textures, project_weighted_cos_maps = [], []
|
688 |
+
project_boundary_maps = []
|
689 |
+
for view, camera_elev, camera_azim, weight in zip(
|
690 |
+
views, camera_elevs, camera_azims, view_weights
|
691 |
+
):
|
692 |
+
project_texture, project_cos_map, project_boundary_map = (
|
693 |
+
render.back_project(view, camera_elev, camera_azim)
|
694 |
+
)
|
695 |
+
project_cos_map = weight * (project_cos_map**4)
|
696 |
+
project_textures.append(project_texture)
|
697 |
+
project_weighted_cos_maps.append(project_cos_map)
|
698 |
+
project_boundary_maps.append(project_boundary_map)
|
699 |
+
|
700 |
+
if method == "fast":
|
701 |
+
texture, ori_trust_map = render.fast_bake_texture(
|
702 |
+
project_textures, project_weighted_cos_maps
|
703 |
+
)
|
704 |
+
else:
|
705 |
+
raise f"no method {method}"
|
706 |
+
|
707 |
+
return texture, ori_trust_map > 1e-8
|
708 |
+
|
709 |
+
|
710 |
+
def post_process(texture: np.ndarray, iter: int = 2) -> np.ndarray:
|
711 |
+
for _ in range(iter):
|
712 |
+
texture = cv2.fastNlMeansDenoisingColored(texture, None, 11, 11, 9, 25)
|
713 |
+
texture = cv2.bilateralFilter(
|
714 |
+
texture, d=7, sigmaColor=80, sigmaSpace=80
|
715 |
+
)
|
716 |
+
|
717 |
+
return texture
|
718 |
+
|
719 |
+
|
720 |
+
class Image_Super_Net:
|
721 |
+
def __init__(self, device="cuda"):
|
722 |
+
from diffusers import StableDiffusionUpscalePipeline
|
723 |
+
|
724 |
+
self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
|
725 |
+
"stabilityai/stable-diffusion-x4-upscaler",
|
726 |
+
torch_dtype=torch.float16,
|
727 |
+
).to(device)
|
728 |
+
self.up_pipeline_x4.set_progress_bar_config(disable=True)
|
729 |
+
|
730 |
+
def __call__(self, image, prompt=""):
|
731 |
+
with torch.no_grad():
|
732 |
+
upscaled_image = self.up_pipeline_x4(
|
733 |
+
prompt=[prompt],
|
734 |
+
image=image,
|
735 |
+
num_inference_steps=10,
|
736 |
+
).images[0]
|
737 |
+
|
738 |
+
return upscaled_image
|
739 |
+
|
740 |
+
|
741 |
+
class Image_GANNet:
|
742 |
+
def __init__(self, outscale: int):
|
743 |
+
from realesrgan import RealESRGANer
|
744 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
745 |
+
|
746 |
+
self.outscale = outscale
|
747 |
+
model = RRDBNet(
|
748 |
+
num_in_ch=3,
|
749 |
+
num_out_ch=3,
|
750 |
+
num_feat=64,
|
751 |
+
num_block=23,
|
752 |
+
num_grow_ch=32,
|
753 |
+
scale=4,
|
754 |
+
)
|
755 |
+
self.upsampler = RealESRGANer(
|
756 |
+
scale=4,
|
757 |
+
model_path="/home/users/xinjie.wang/xinjie/Real-ESRGAN/weights/RealESRGAN_x4plus.pth",
|
758 |
+
model=model,
|
759 |
+
pre_pad=0,
|
760 |
+
half=True,
|
761 |
+
)
|
762 |
+
|
763 |
+
def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
|
764 |
+
if isinstance(image, Image.Image):
|
765 |
+
image = np.array(image)
|
766 |
+
output, _ = self.upsampler.enhance(image, outscale=self.outscale)
|
767 |
+
|
768 |
+
return Image.fromarray(output)
|
769 |
+
|
770 |
+
|
771 |
+
if __name__ == "__main__":
|
772 |
+
device = "cuda"
|
773 |
+
|
774 |
+
# super_model = Image_Super_Net(device)
|
775 |
+
super_model = Image_GANNet(outscale=4)
|
776 |
+
|
777 |
+
selected_camera_elevs = [20, 20, 20, -10, -10, -10]
|
778 |
+
selected_camera_azims = [-180, -60, 60, -120, 0, 120]
|
779 |
+
selected_view_weights = [1, 0.2, 0.2, 0.2, 1, 0.2]
|
780 |
+
# selected_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
|
781 |
+
|
782 |
+
multiviews = get_images_from_file(
|
783 |
+
"scripts/apps/texture_sessions/mfq4e7u4ko/multi_view/color_sample1.png",
|
784 |
+
512,
|
785 |
+
)
|
786 |
+
target_image_size = (2048, 2048)
|
787 |
+
|
788 |
+
render = MeshRender(
|
789 |
+
camera_distance=5,
|
790 |
+
default_resolution=2048,
|
791 |
+
texture_size=2048,
|
792 |
+
)
|
793 |
+
|
794 |
+
mesh = trimesh.load("scripts/apps/assets/example_texture/meshes/robot.obj")
|
795 |
+
from asset3d_gen.data.utils import normalize_vertices_array
|
796 |
+
|
797 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
798 |
+
mesh = mesh_uv_wrap(mesh)
|
799 |
+
render.load_mesh(mesh)
|
800 |
+
|
801 |
+
# multiviews = [Image.fromarray(img) for img in multiviews]
|
802 |
+
# multiviews = [Image.fromarray(img).convert("RGB") for img in multiviews]
|
803 |
+
# for idx, img in enumerate(multiviews):
|
804 |
+
# img.save(f"robot/raw/res_{idx}.png")
|
805 |
+
|
806 |
+
multiviews = [super_model(img) for img in multiviews]
|
807 |
+
multiviews = [img.convert("RGB") for img in multiviews]
|
808 |
+
for idx, img in enumerate(multiviews):
|
809 |
+
img.save(f"robot/super_gan_res_{idx}.png")
|
810 |
+
|
811 |
+
texture, mask = bake_from_multiview(
|
812 |
+
render,
|
813 |
+
multiviews,
|
814 |
+
selected_camera_elevs,
|
815 |
+
selected_camera_azims,
|
816 |
+
selected_view_weights,
|
817 |
+
)
|
818 |
+
|
819 |
+
texture_np = (texture.cpu().numpy() * 255).astype(np.uint8)[..., :3][
|
820 |
+
..., ::-1
|
821 |
+
]
|
822 |
+
cv2.imwrite("robot/raw_texture.png", texture_np)
|
823 |
+
print("texture done.")
|
824 |
+
|
825 |
+
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
|
826 |
+
texture_np = render.uv_inpaint(texture, mask_np)
|
827 |
+
cv2.imwrite("robot/inpaint_texture.png", texture_np[..., ::-1])
|
828 |
+
# texture_np = post_process(texture_np, 2)
|
829 |
+
# cv2.imwrite("robot/inpaint_conv_texture.png", texture_np[..., ::-1])
|
830 |
+
print("inpaint done.")
|
831 |
+
|
832 |
+
texture = torch.tensor(texture_np / 255).float().to(texture.device)
|
833 |
+
render.set_texture(texture)
|
834 |
+
textured_mesh = render.save_mesh()
|
835 |
+
_ = textured_mesh.export("robot/robot.obj")
|
asset3d_gen/data/backup/gpt_qwen.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import os
|
5 |
+
os.environ["https_proxy"] = "10.9.0.31:8838"
|
6 |
+
|
7 |
+
|
8 |
+
# # default: Load the model on the available device(s)
|
9 |
+
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
10 |
+
# "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
11 |
+
# )
|
12 |
+
|
13 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
14 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
15 |
+
"Qwen/Qwen2.5-VL-7B-Instruct",
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
+
attn_implementation="flash_attention_2",
|
18 |
+
device_map="auto",
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
# default processer
|
23 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
24 |
+
|
25 |
+
# The default range for the number of visual tokens per image in the model is 4-16384.
|
26 |
+
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
27 |
+
# min_pixels = 256*28*28
|
28 |
+
# max_pixels = 1280*28*28
|
29 |
+
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
30 |
+
|
31 |
+
messages = [
|
32 |
+
{
|
33 |
+
"role": "user",
|
34 |
+
"content": [
|
35 |
+
{
|
36 |
+
"type": "image",
|
37 |
+
"image": "outputs/text2image/demo_objects/bed/sample_0.jpg",
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"type": "image",
|
41 |
+
"image": "outputs/imageto3d/v2/cups/sample_69/URDF_sample_69/qa_renders/image_color/003.png",
|
42 |
+
},
|
43 |
+
{"type": "text", "text": "Describe the secend image."},
|
44 |
+
],
|
45 |
+
}
|
46 |
+
]
|
47 |
+
|
48 |
+
# Preparation for inference
|
49 |
+
text = processor.apply_chat_template(
|
50 |
+
messages, tokenize=False, add_generation_prompt=True
|
51 |
+
)
|
52 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
53 |
+
inputs = processor(
|
54 |
+
text=[text],
|
55 |
+
images=image_inputs,
|
56 |
+
videos=video_inputs,
|
57 |
+
padding=True,
|
58 |
+
return_tensors="pt",
|
59 |
+
)
|
60 |
+
inputs = inputs.to("cuda")
|
61 |
+
|
62 |
+
# Inference: Generation of the output
|
63 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
64 |
+
generated_ids_trimmed = [
|
65 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
66 |
+
]
|
67 |
+
output_text = processor.batch_decode(
|
68 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
69 |
+
)
|
70 |
+
print(output_text)
|
asset3d_gen/data/backup/quat.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def quaternion_rotation_x_counterclockwise(angle_degrees):
|
4 |
+
angle_radians = np.radians(angle_degrees)
|
5 |
+
w = np.cos(angle_radians / 2)
|
6 |
+
x = np.sin(angle_radians / 2)
|
7 |
+
y, z = 0.0, 0.0
|
8 |
+
return np.array([x, y, z, w]).round(4).tolist()
|
9 |
+
|
10 |
+
|
11 |
+
def quaternion_rotation_y_counterclockwise(angle_degrees):
|
12 |
+
angle_radians = np.radians(angle_degrees)
|
13 |
+
w = np.cos(angle_radians / 2)
|
14 |
+
y = np.sin(angle_radians / 2)
|
15 |
+
x, z = 0.0, 0.0
|
16 |
+
return np.array([x, y, z, w]).round(4).tolist()
|
17 |
+
|
18 |
+
|
19 |
+
def quaternion_rotation_z_counterclockwise(angle_degrees):
|
20 |
+
angle_radians = np.radians(angle_degrees)
|
21 |
+
w = np.cos(angle_radians / 2)
|
22 |
+
z = np.sin(angle_radians / 2)
|
23 |
+
x, y = 0.0, 0.0
|
24 |
+
return np.array([x, y, z, w]).round(4).tolist()
|
25 |
+
|
26 |
+
|
27 |
+
def quaternion_multiply(q1, q2):
|
28 |
+
x1, y1, z1, w1 = q1
|
29 |
+
x2, y2, z2, w2 = q2
|
30 |
+
w = w1*w2 - x1*x2 - y1*y2 - z1*z2
|
31 |
+
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
|
32 |
+
y = w1*y2 - x1*z2 + y1*w2 + z1*x2
|
33 |
+
z = w1*z2 + x1*y2 - y1*x2 + z1*w2
|
34 |
+
return np.array([w, x, y, z])
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
angle = 180
|
39 |
+
|
40 |
+
print(f"X轴逆时针旋转{angle}度: {quaternion_rotation_x_counterclockwise(angle)}")
|
41 |
+
print(f"Y轴逆时针旋转{angle}度: {quaternion_rotation_y_counterclockwise(angle)}")
|
42 |
+
print(f"Z轴逆时针旋转{angle}度: {quaternion_rotation_z_counterclockwise(angle)}")
|
43 |
+
|
44 |
+
|
45 |
+
q_1 = np.array([1.0, 0.0, 0.0, 0.0])
|
46 |
+
q_2 = np.array([0.0, 0.0, 1.0, 0.0])
|
47 |
+
|
48 |
+
q_total = quaternion_multiply(q_2, q_1)
|
49 |
+
print(q_total.round(4).tolist())
|
asset3d_gen/data/datasets.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
from typing import Any, Callable, Dict, List, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
from PIL import Image
|
10 |
+
from torch import nn
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
logging.basicConfig(
|
15 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
16 |
+
)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
"Asset3dGenDataset",
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
class Asset3dGenDataset(Dataset):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
index_file: str,
|
29 |
+
target_hw: Tuple[int, int],
|
30 |
+
transform: Callable = None,
|
31 |
+
control_transform: Callable = None,
|
32 |
+
max_train_samples: int = None,
|
33 |
+
sub_idxs: List[List[int]] = None,
|
34 |
+
seed: int = 79,
|
35 |
+
) -> None:
|
36 |
+
if not os.path.exists(index_file):
|
37 |
+
raise FileNotFoundError(f"{index_file} index_file not found.")
|
38 |
+
|
39 |
+
self.index_file = index_file
|
40 |
+
self.target_hw = target_hw
|
41 |
+
self.transform = transform
|
42 |
+
self.control_transform = control_transform
|
43 |
+
self.max_train_samples = max_train_samples
|
44 |
+
self.meta_info = self.prepare_data_index(index_file)
|
45 |
+
self.data_list = sorted(self.meta_info.keys())
|
46 |
+
self.sub_idxs = sub_idxs # sub_idxs [[0,1,2], [3,4,5], [...], ...]
|
47 |
+
self.image_num = 6 # hardcode temp.
|
48 |
+
random.seed(seed)
|
49 |
+
logger.info(f"Trainset: {len(self)} asset3d instances.")
|
50 |
+
|
51 |
+
def __len__(self) -> int:
|
52 |
+
return len(self.meta_info)
|
53 |
+
|
54 |
+
def prepare_data_index(self, index_file: str) -> Dict[str, Any]:
|
55 |
+
with open(index_file, "r") as fin:
|
56 |
+
meta_info = json.load(fin)
|
57 |
+
|
58 |
+
meta_info_filtered = dict()
|
59 |
+
for idx, uid in enumerate(meta_info):
|
60 |
+
if "status" not in meta_info[uid]:
|
61 |
+
continue
|
62 |
+
if meta_info[uid]["status"] != "success":
|
63 |
+
continue
|
64 |
+
if self.max_train_samples and idx >= self.max_train_samples:
|
65 |
+
break
|
66 |
+
|
67 |
+
meta_info_filtered[uid] = meta_info[uid]
|
68 |
+
|
69 |
+
logger.info(
|
70 |
+
f"Load {len(meta_info)} assets, keep {len(meta_info_filtered)} valids." # noqa
|
71 |
+
)
|
72 |
+
|
73 |
+
return meta_info_filtered
|
74 |
+
|
75 |
+
def fetch_sample_images(
|
76 |
+
self,
|
77 |
+
uid: str,
|
78 |
+
attrs: List[str],
|
79 |
+
sub_index: int = None,
|
80 |
+
transform: Callable = None,
|
81 |
+
) -> torch.Tensor:
|
82 |
+
sample = self.meta_info[uid]
|
83 |
+
images = []
|
84 |
+
for attr in attrs:
|
85 |
+
item = sample[attr]
|
86 |
+
if sub_index is not None:
|
87 |
+
item = item[sub_index]
|
88 |
+
mode = "L" if attr == "image_mask" else "RGB"
|
89 |
+
image = Image.open(item).convert(mode)
|
90 |
+
if transform is not None:
|
91 |
+
image = transform(image)
|
92 |
+
if len(image.shape) == 2:
|
93 |
+
image = image[..., None]
|
94 |
+
images.append(image)
|
95 |
+
|
96 |
+
images = torch.cat(images, dim=0)
|
97 |
+
|
98 |
+
return images
|
99 |
+
|
100 |
+
def fetch_sample_grid_images(
|
101 |
+
self,
|
102 |
+
uid: str,
|
103 |
+
attrs: List[str],
|
104 |
+
sub_idxs: List[List[int]],
|
105 |
+
transform: Callable = None,
|
106 |
+
) -> torch.Tensor:
|
107 |
+
assert transform is not None
|
108 |
+
|
109 |
+
grid_image = []
|
110 |
+
for row_idxs in sub_idxs:
|
111 |
+
row_image = []
|
112 |
+
for row_idx in row_idxs:
|
113 |
+
image = self.fetch_sample_images(
|
114 |
+
uid, attrs, row_idx, transform
|
115 |
+
)
|
116 |
+
row_image.append(image)
|
117 |
+
row_image = torch.cat(row_image, dim=2) # (c h w)
|
118 |
+
grid_image.append(row_image)
|
119 |
+
|
120 |
+
grid_image = torch.cat(grid_image, dim=1)
|
121 |
+
|
122 |
+
return grid_image
|
123 |
+
|
124 |
+
def compute_text_embeddings(
|
125 |
+
self, embed_path: str, original_size: Tuple[int, int]
|
126 |
+
) -> Dict[str, nn.Module]:
|
127 |
+
data_dict = torch.load(embed_path)
|
128 |
+
prompt_embeds = data_dict["prompt_embeds"][0]
|
129 |
+
add_text_embeds = data_dict["pooled_prompt_embeds"][0]
|
130 |
+
|
131 |
+
# Need changed if random crop, set as crop_top_left [y1, x1], center crop as [0, 0]. # noqa
|
132 |
+
crops_coords_top_left = (0, 0)
|
133 |
+
add_time_ids = list(
|
134 |
+
original_size + crops_coords_top_left + self.target_hw
|
135 |
+
)
|
136 |
+
add_time_ids = torch.tensor([add_time_ids])
|
137 |
+
# add_time_ids = add_time_ids.repeat((len(add_text_embeds), 1))
|
138 |
+
|
139 |
+
unet_added_cond_kwargs = {
|
140 |
+
"text_embeds": add_text_embeds,
|
141 |
+
"time_ids": add_time_ids,
|
142 |
+
}
|
143 |
+
|
144 |
+
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}
|
145 |
+
|
146 |
+
def visualize_item(
|
147 |
+
self,
|
148 |
+
control: torch.Tensor,
|
149 |
+
color: torch.Tensor,
|
150 |
+
save_dir: str = None,
|
151 |
+
) -> List[Image.Image]:
|
152 |
+
to_pil = transforms.ToPILImage()
|
153 |
+
|
154 |
+
color = (color + 1) / 2
|
155 |
+
color_pil = to_pil(color)
|
156 |
+
normal_pil = to_pil(control[0:3])
|
157 |
+
position_pil = to_pil(control[3:6])
|
158 |
+
mask_pil = to_pil(control[6:])
|
159 |
+
|
160 |
+
if save_dir is not None:
|
161 |
+
os.makedirs(save_dir, exist_ok=True)
|
162 |
+
color_pil.save(f"{save_dir}/rgb.jpg")
|
163 |
+
normal_pil.save(f"{save_dir}/normal.jpg")
|
164 |
+
position_pil.save(f"{save_dir}/position.jpg")
|
165 |
+
mask_pil.save(f"{save_dir}/mask.jpg")
|
166 |
+
logger.info(f"Visualization in {save_dir}")
|
167 |
+
|
168 |
+
return normal_pil, position_pil, mask_pil, color_pil
|
169 |
+
|
170 |
+
def __getitem__(self, index: int) -> Dict[str, torch.Tensor]:
|
171 |
+
uid = self.data_list[index]
|
172 |
+
|
173 |
+
sub_idxs = self.sub_idxs
|
174 |
+
if sub_idxs is None:
|
175 |
+
sub_idxs = [[random.randint(0, self.image_num - 1)]]
|
176 |
+
|
177 |
+
input_image = self.fetch_sample_grid_images(
|
178 |
+
uid,
|
179 |
+
attrs=["image_view_normal", "image_position", "image_mask"],
|
180 |
+
sub_idxs=sub_idxs,
|
181 |
+
transform=self.control_transform,
|
182 |
+
)
|
183 |
+
assert input_image.shape[1:] == self.target_hw
|
184 |
+
|
185 |
+
output_image = self.fetch_sample_grid_images(
|
186 |
+
uid,
|
187 |
+
attrs=["image_color"],
|
188 |
+
sub_idxs=sub_idxs,
|
189 |
+
transform=self.transform,
|
190 |
+
)
|
191 |
+
|
192 |
+
sample = self.meta_info[uid]
|
193 |
+
text_feats = self.compute_text_embeddings(
|
194 |
+
sample["text_feat"], tuple(sample["image_hw"])
|
195 |
+
)
|
196 |
+
|
197 |
+
data = dict(
|
198 |
+
pixel_values=output_image,
|
199 |
+
conditioning_pixel_values=input_image,
|
200 |
+
prompt_embeds=text_feats["prompt_embeds"],
|
201 |
+
text_embeds=text_feats["text_embeds"],
|
202 |
+
time_ids=text_feats["time_ids"],
|
203 |
+
)
|
204 |
+
|
205 |
+
return data
|
206 |
+
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
index_file = "/horizon-bucket/robot_lab/users/xinjie.wang/datasets/objaverse/v1.0/statistics_1.0_gobjaverse_filter/view6s_v4/meta_ac2e0ddea8909db26d102c8465b5bcb2.json" # noqa
|
210 |
+
target_hw = (512, 512)
|
211 |
+
transform_list = [
|
212 |
+
transforms.Resize(
|
213 |
+
target_hw, interpolation=transforms.InterpolationMode.BILINEAR
|
214 |
+
),
|
215 |
+
transforms.CenterCrop(target_hw),
|
216 |
+
transforms.ToTensor(),
|
217 |
+
transforms.Normalize([0.5], [0.5]),
|
218 |
+
]
|
219 |
+
image_transform = transforms.Compose(transform_list)
|
220 |
+
control_transform = transforms.Compose(transform_list[:-1])
|
221 |
+
|
222 |
+
sub_idxs = [[0, 1, 2], [3, 4, 5]] # None
|
223 |
+
if sub_idxs is not None:
|
224 |
+
target_hw = (
|
225 |
+
target_hw[0] * len(sub_idxs),
|
226 |
+
target_hw[1] * len(sub_idxs[0]),
|
227 |
+
)
|
228 |
+
|
229 |
+
dataset = Asset3dGenDataset(
|
230 |
+
index_file,
|
231 |
+
target_hw,
|
232 |
+
image_transform,
|
233 |
+
control_transform,
|
234 |
+
sub_idxs=sub_idxs,
|
235 |
+
)
|
236 |
+
data = dataset[0]
|
237 |
+
dataset.visualize_item(
|
238 |
+
data["conditioning_pixel_values"], data["pixel_values"], save_dir="./"
|
239 |
+
)
|
asset3d_gen/data/differentiable_render.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from collections import defaultdict
|
7 |
+
from typing import List, Union
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import imageio
|
11 |
+
import numpy as np
|
12 |
+
import nvdiffrast.torch as dr
|
13 |
+
import torch
|
14 |
+
from PIL import Image
|
15 |
+
from tqdm import tqdm
|
16 |
+
from asset3d_gen.data.utils import (
|
17 |
+
CameraSetting,
|
18 |
+
DiffrastRender,
|
19 |
+
RenderItems,
|
20 |
+
as_list,
|
21 |
+
calc_vertex_normals,
|
22 |
+
import_kaolin_mesh,
|
23 |
+
init_kal_camera,
|
24 |
+
normalize_vertices_array,
|
25 |
+
render_pbr,
|
26 |
+
save_images,
|
27 |
+
)
|
28 |
+
|
29 |
+
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
30 |
+
os.environ["TORCH_EXTENSIONS_DIR"] = os.path.expanduser(
|
31 |
+
"~/.cache/torch_extensions"
|
32 |
+
)
|
33 |
+
logging.basicConfig(
|
34 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
35 |
+
)
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
def create_gif_from_images(images, output_path, fps=10):
|
40 |
+
pil_images = []
|
41 |
+
for image in images:
|
42 |
+
image = image.clip(min=0, max=1)
|
43 |
+
image = (255.0 * image).astype(np.uint8)
|
44 |
+
image = Image.fromarray(image, mode="RGBA")
|
45 |
+
pil_images.append(image.convert("RGB"))
|
46 |
+
|
47 |
+
duration = 1000 // fps
|
48 |
+
pil_images[0].save(
|
49 |
+
output_path,
|
50 |
+
save_all=True,
|
51 |
+
append_images=pil_images[1:],
|
52 |
+
duration=duration,
|
53 |
+
loop=0,
|
54 |
+
)
|
55 |
+
|
56 |
+
logger.info(f"GIF saved to {output_path}")
|
57 |
+
|
58 |
+
|
59 |
+
def create_mp4_from_images(images, output_path, fps=10, prompt=None):
|
60 |
+
font = cv2.FONT_HERSHEY_SIMPLEX # 字体样式
|
61 |
+
font_scale = 0.5 # 字体大小
|
62 |
+
font_thickness = 1 # 字体粗细
|
63 |
+
color = (255, 255, 255) # 文字颜色(白色)
|
64 |
+
position = (20, 25) # 左上角坐标 (x, y)
|
65 |
+
|
66 |
+
with imageio.get_writer(output_path, fps=fps) as writer:
|
67 |
+
for image in images:
|
68 |
+
image = image.clip(min=0, max=1)
|
69 |
+
image = (255.0 * image).astype(np.uint8)
|
70 |
+
image = image[..., :3]
|
71 |
+
if prompt is not None:
|
72 |
+
cv2.putText(
|
73 |
+
image,
|
74 |
+
prompt,
|
75 |
+
position,
|
76 |
+
font,
|
77 |
+
font_scale,
|
78 |
+
color,
|
79 |
+
font_thickness,
|
80 |
+
)
|
81 |
+
|
82 |
+
writer.append_data(image)
|
83 |
+
|
84 |
+
logger.info(f"MP4 video saved to {output_path}")
|
85 |
+
|
86 |
+
|
87 |
+
class ImageRender(object):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
render_items: list[RenderItems],
|
91 |
+
camera_params: CameraSetting,
|
92 |
+
recompute_vtx_normal: bool = True,
|
93 |
+
device: str = "cuda",
|
94 |
+
with_mtl: bool = False,
|
95 |
+
gen_color_gif: bool = False,
|
96 |
+
gen_color_mp4: bool = False,
|
97 |
+
gen_viewnormal_mp4: bool = False,
|
98 |
+
gen_glonormal_mp4: bool = False,
|
99 |
+
no_index_file: bool = False,
|
100 |
+
light_factor: float = 1.0,
|
101 |
+
) -> None:
|
102 |
+
camera_params.device = device
|
103 |
+
camera = init_kal_camera(camera_params)
|
104 |
+
self.camera = camera
|
105 |
+
|
106 |
+
# Setup MVP matrix and renderer.
|
107 |
+
mv = camera.view_matrix() # (n 4 4) world2cam
|
108 |
+
p = camera.intrinsics.projection_matrix()
|
109 |
+
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
|
110 |
+
p[:, 1, 1] = -p[:, 1, 1]
|
111 |
+
# mvp = torch.bmm(p, mv) # camera.view_projection_matrix()
|
112 |
+
self.mv = mv
|
113 |
+
self.p = p
|
114 |
+
|
115 |
+
renderer = DiffrastRender(
|
116 |
+
p_matrix=p,
|
117 |
+
mv_matrix=mv,
|
118 |
+
resolution_hw=camera_params.resolution_hw,
|
119 |
+
context=dr.RasterizeCudaContext(),
|
120 |
+
mask_thresh=0.5,
|
121 |
+
grad_db=False,
|
122 |
+
device=camera_params.device,
|
123 |
+
antialias_mask=True,
|
124 |
+
)
|
125 |
+
self.renderer = renderer
|
126 |
+
self.recompute_vtx_normal = recompute_vtx_normal
|
127 |
+
self.render_items = render_items
|
128 |
+
self.device = device
|
129 |
+
self.with_mtl = with_mtl
|
130 |
+
self.gen_color_gif = gen_color_gif
|
131 |
+
self.gen_color_mp4 = gen_color_mp4
|
132 |
+
self.gen_viewnormal_mp4 = gen_viewnormal_mp4
|
133 |
+
self.gen_glonormal_mp4 = gen_glonormal_mp4
|
134 |
+
self.light_factor = light_factor
|
135 |
+
self.no_index_file = no_index_file
|
136 |
+
|
137 |
+
def render_mesh(
|
138 |
+
self,
|
139 |
+
mesh_path: Union[str, List[str]],
|
140 |
+
output_root: str,
|
141 |
+
uuid: Union[str, List[str]] = None,
|
142 |
+
prompts: List[str] = None,
|
143 |
+
) -> None:
|
144 |
+
mesh_path = as_list(mesh_path)
|
145 |
+
if uuid is None:
|
146 |
+
uuid = [os.path.basename(p).split(".")[0] for p in mesh_path]
|
147 |
+
uuid = as_list(uuid)
|
148 |
+
assert len(mesh_path) == len(uuid)
|
149 |
+
os.makedirs(output_root, exist_ok=True)
|
150 |
+
|
151 |
+
meta_info = dict()
|
152 |
+
for idx, (path, uid) in tqdm(
|
153 |
+
enumerate(zip(mesh_path, uuid)), total=len(mesh_path)
|
154 |
+
):
|
155 |
+
output_dir = os.path.join(output_root, uid)
|
156 |
+
os.makedirs(output_dir, exist_ok=True)
|
157 |
+
prompt = prompts[idx] if prompts else None
|
158 |
+
data_dict = self(path, output_dir, prompt)
|
159 |
+
meta_info[uid] = data_dict
|
160 |
+
|
161 |
+
if self.no_index_file:
|
162 |
+
return
|
163 |
+
|
164 |
+
index_file = os.path.join(output_root, "index.json")
|
165 |
+
with open(index_file, "w") as fout:
|
166 |
+
json.dump(meta_info, fout)
|
167 |
+
|
168 |
+
logger.info(f"Rendering meta info logged in {index_file}")
|
169 |
+
|
170 |
+
def __call__(
|
171 |
+
self, mesh_path: str, output_dir: str, prompt: str = None
|
172 |
+
) -> dict[str, str]:
|
173 |
+
try:
|
174 |
+
mesh = import_kaolin_mesh(mesh_path, self.with_mtl)
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"[ERROR MESH LOAD]: {e}, skip {mesh_path}")
|
177 |
+
return
|
178 |
+
|
179 |
+
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
|
180 |
+
if self.recompute_vtx_normal:
|
181 |
+
mesh.vertex_normals = calc_vertex_normals(
|
182 |
+
mesh.vertices, mesh.faces
|
183 |
+
)
|
184 |
+
|
185 |
+
mesh = mesh.to(self.device)
|
186 |
+
vertices, faces, vertex_normals = (
|
187 |
+
mesh.vertices,
|
188 |
+
mesh.faces,
|
189 |
+
mesh.vertex_normals,
|
190 |
+
)
|
191 |
+
|
192 |
+
# Perform rendering.
|
193 |
+
data_dict = defaultdict(list)
|
194 |
+
if RenderItems.ALPHA.value in self.render_items:
|
195 |
+
masks, _ = self.renderer.render_rast_alpha(vertices, faces)
|
196 |
+
render_paths = save_images(
|
197 |
+
masks, f"{output_dir}/{RenderItems.ALPHA}"
|
198 |
+
)
|
199 |
+
data_dict[RenderItems.ALPHA.value] = render_paths
|
200 |
+
|
201 |
+
if RenderItems.GLOBAL_NORMAL.value in self.render_items:
|
202 |
+
rendered_normals, masks = self.renderer.render_global_normal(
|
203 |
+
vertices, faces, vertex_normals
|
204 |
+
)
|
205 |
+
if self.gen_glonormal_mp4:
|
206 |
+
if isinstance(rendered_normals, torch.Tensor):
|
207 |
+
rendered_normals = rendered_normals.detach().cpu().numpy()
|
208 |
+
create_mp4_from_images(
|
209 |
+
rendered_normals,
|
210 |
+
output_path=f"{output_dir}/normal.mp4",
|
211 |
+
fps=15,
|
212 |
+
prompt=prompt,
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
render_paths = save_images(
|
216 |
+
rendered_normals,
|
217 |
+
f"{output_dir}/{RenderItems.GLOBAL_NORMAL}",
|
218 |
+
cvt_color=cv2.COLOR_BGR2RGB,
|
219 |
+
)
|
220 |
+
data_dict[RenderItems.GLOBAL_NORMAL.value] = render_paths
|
221 |
+
|
222 |
+
if RenderItems.VIEW_NORMAL.value in self.render_items:
|
223 |
+
assert (
|
224 |
+
RenderItems.GLOBAL_NORMAL in self.render_items
|
225 |
+
), f"Must render global normal firstly, got render_items: {self.render_items}." # noqa
|
226 |
+
rendered_view_normals = self.renderer.transform_normal(
|
227 |
+
rendered_normals, self.mv, masks, to_view=True
|
228 |
+
)
|
229 |
+
# rendered_inv_view_normals = renderer.transform_normal(rendered_view_normals, torch.linalg.inv(mv), masks, to_view=False) # noqa
|
230 |
+
if self.gen_viewnormal_mp4:
|
231 |
+
create_mp4_from_images(
|
232 |
+
rendered_view_normals,
|
233 |
+
output_path=f"{output_dir}/view_normal.mp4",
|
234 |
+
fps=15,
|
235 |
+
prompt=prompt,
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
render_paths = save_images(
|
239 |
+
rendered_view_normals,
|
240 |
+
f"{output_dir}/{RenderItems.VIEW_NORMAL}",
|
241 |
+
cvt_color=cv2.COLOR_BGR2RGB,
|
242 |
+
)
|
243 |
+
data_dict[RenderItems.VIEW_NORMAL.value] = render_paths
|
244 |
+
|
245 |
+
if RenderItems.POSITION_MAP.value in self.render_items:
|
246 |
+
rendered_position, masks = self.renderer.render_position(
|
247 |
+
vertices, faces
|
248 |
+
)
|
249 |
+
norm_position = self.renderer.normalize_map_by_mask(
|
250 |
+
rendered_position, masks
|
251 |
+
)
|
252 |
+
render_paths = save_images(
|
253 |
+
norm_position,
|
254 |
+
f"{output_dir}/{RenderItems.POSITION_MAP}",
|
255 |
+
cvt_color=cv2.COLOR_BGR2RGB,
|
256 |
+
)
|
257 |
+
data_dict[RenderItems.POSITION_MAP.value] = render_paths
|
258 |
+
|
259 |
+
if RenderItems.DEPTH.value in self.render_items:
|
260 |
+
rendered_depth, masks = self.renderer.render_depth(vertices, faces)
|
261 |
+
norm_depth = self.renderer.normalize_map_by_mask(
|
262 |
+
rendered_depth, masks
|
263 |
+
)
|
264 |
+
render_paths = save_images(
|
265 |
+
norm_depth,
|
266 |
+
f"{output_dir}/{RenderItems.DEPTH}",
|
267 |
+
)
|
268 |
+
data_dict[RenderItems.DEPTH.value] = render_paths
|
269 |
+
|
270 |
+
render_paths = save_images(
|
271 |
+
rendered_depth,
|
272 |
+
f"{output_dir}/{RenderItems.DEPTH}_exr",
|
273 |
+
to_uint8=False,
|
274 |
+
format=".exr",
|
275 |
+
)
|
276 |
+
data_dict[f"{RenderItems.DEPTH.value}_exr"] = render_paths
|
277 |
+
|
278 |
+
if RenderItems.IMAGE.value in self.render_items:
|
279 |
+
images = []
|
280 |
+
albedos = []
|
281 |
+
diffuses = []
|
282 |
+
masks, _ = self.renderer.render_rast_alpha(vertices, faces)
|
283 |
+
try:
|
284 |
+
for idx, cam in enumerate(self.camera):
|
285 |
+
image, albedo, diffuse, _ = render_pbr(
|
286 |
+
mesh, cam, light_factor=self.light_factor
|
287 |
+
)
|
288 |
+
image = torch.cat([image[0], masks[idx]], axis=-1)
|
289 |
+
images.append(image.detach().cpu().numpy())
|
290 |
+
|
291 |
+
if RenderItems.ALBEDO.value in self.render_items:
|
292 |
+
albedo = torch.cat([albedo[0], masks[idx]], axis=-1)
|
293 |
+
albedos.append(albedo.detach().cpu().numpy())
|
294 |
+
|
295 |
+
if RenderItems.DIFFUSE.value in self.render_items:
|
296 |
+
diffuse = torch.cat([diffuse[0], masks[idx]], axis=-1)
|
297 |
+
diffuses.append(diffuse.detach().cpu().numpy())
|
298 |
+
|
299 |
+
except Exception as e:
|
300 |
+
logger.error(f"[ERROR pbr render]: {e}, skip {mesh_path}")
|
301 |
+
return
|
302 |
+
|
303 |
+
if self.gen_color_gif:
|
304 |
+
create_gif_from_images(
|
305 |
+
images,
|
306 |
+
output_path=f"{output_dir}/color.gif",
|
307 |
+
fps=15,
|
308 |
+
)
|
309 |
+
|
310 |
+
if self.gen_color_mp4:
|
311 |
+
create_mp4_from_images(
|
312 |
+
images,
|
313 |
+
output_path=f"{output_dir}/color.mp4",
|
314 |
+
fps=15,
|
315 |
+
prompt=prompt,
|
316 |
+
)
|
317 |
+
|
318 |
+
if self.gen_color_mp4 or self.gen_color_gif:
|
319 |
+
return data_dict
|
320 |
+
|
321 |
+
render_paths = save_images(
|
322 |
+
images,
|
323 |
+
f"{output_dir}/{RenderItems.IMAGE}",
|
324 |
+
cvt_color=cv2.COLOR_BGRA2RGBA,
|
325 |
+
)
|
326 |
+
data_dict[RenderItems.IMAGE.value] = render_paths
|
327 |
+
|
328 |
+
render_paths = save_images(
|
329 |
+
albedos,
|
330 |
+
f"{output_dir}/{RenderItems.ALBEDO}",
|
331 |
+
cvt_color=cv2.COLOR_BGRA2RGBA,
|
332 |
+
)
|
333 |
+
data_dict[RenderItems.ALBEDO.value] = render_paths
|
334 |
+
|
335 |
+
render_paths = save_images(
|
336 |
+
diffuses,
|
337 |
+
f"{output_dir}/{RenderItems.DIFFUSE}",
|
338 |
+
cvt_color=cv2.COLOR_BGRA2RGBA,
|
339 |
+
)
|
340 |
+
data_dict[RenderItems.DIFFUSE.value] = render_paths
|
341 |
+
|
342 |
+
data_dict["status"] = "success"
|
343 |
+
|
344 |
+
logger.info(f"Finish rendering in {output_dir}")
|
345 |
+
|
346 |
+
return data_dict
|
347 |
+
|
348 |
+
|
349 |
+
def parse_args():
|
350 |
+
parser = argparse.ArgumentParser(description="Render settings")
|
351 |
+
|
352 |
+
parser.add_argument(
|
353 |
+
"--mesh_path",
|
354 |
+
type=str,
|
355 |
+
nargs="+",
|
356 |
+
required=True,
|
357 |
+
help="Paths to the mesh files for rendering.",
|
358 |
+
)
|
359 |
+
parser.add_argument(
|
360 |
+
"--output_root",
|
361 |
+
type=str,
|
362 |
+
required=True,
|
363 |
+
help="Root directory for output",
|
364 |
+
)
|
365 |
+
parser.add_argument(
|
366 |
+
"--uuid",
|
367 |
+
type=str,
|
368 |
+
nargs="+",
|
369 |
+
default=None,
|
370 |
+
help="uuid for rendering saving.",
|
371 |
+
)
|
372 |
+
parser.add_argument(
|
373 |
+
"--num_images", type=int, default=6, help="Number of images to render."
|
374 |
+
)
|
375 |
+
parser.add_argument(
|
376 |
+
"--elevation",
|
377 |
+
type=float,
|
378 |
+
nargs="+",
|
379 |
+
default=[20.0, -10.0],
|
380 |
+
help="Elevation angles for the camera (default: [20.0, -10.0])",
|
381 |
+
)
|
382 |
+
parser.add_argument(
|
383 |
+
"--distance",
|
384 |
+
type=float,
|
385 |
+
default=5,
|
386 |
+
help="Camera distance (default: 5)",
|
387 |
+
)
|
388 |
+
parser.add_argument(
|
389 |
+
"--resolution_hw",
|
390 |
+
type=int,
|
391 |
+
nargs=2,
|
392 |
+
default=(512, 512),
|
393 |
+
help="Resolution of the output images (default: (512, 512))",
|
394 |
+
)
|
395 |
+
parser.add_argument(
|
396 |
+
"--fov",
|
397 |
+
type=float,
|
398 |
+
default=30,
|
399 |
+
help="Field of view in degrees (default: 30)",
|
400 |
+
)
|
401 |
+
parser.add_argument(
|
402 |
+
"--pbr_light_factor",
|
403 |
+
type=float,
|
404 |
+
default=1.0,
|
405 |
+
help="Light factor for mesh PBR rendering (default: 2.)",
|
406 |
+
)
|
407 |
+
parser.add_argument(
|
408 |
+
"--device",
|
409 |
+
type=str,
|
410 |
+
choices=["cpu", "cuda"],
|
411 |
+
default="cuda",
|
412 |
+
help="Device to run on (default: 'cuda')",
|
413 |
+
)
|
414 |
+
parser.add_argument(
|
415 |
+
"--with_mtl",
|
416 |
+
action="store_true",
|
417 |
+
help="Whether to render with mesh material.",
|
418 |
+
)
|
419 |
+
parser.add_argument(
|
420 |
+
"--gen_color_gif",
|
421 |
+
action="store_true",
|
422 |
+
help="Whether to generate color .gif rendering file.",
|
423 |
+
)
|
424 |
+
parser.add_argument(
|
425 |
+
"--gen_color_mp4",
|
426 |
+
action="store_true",
|
427 |
+
help="Whether to generate color .mp4 rendering file.",
|
428 |
+
)
|
429 |
+
parser.add_argument(
|
430 |
+
"--gen_viewnormal_mp4",
|
431 |
+
action="store_true",
|
432 |
+
help="Whether to generate view normal .mp4 rendering file.",
|
433 |
+
)
|
434 |
+
parser.add_argument(
|
435 |
+
"--gen_glonormal_mp4",
|
436 |
+
action="store_true",
|
437 |
+
help="Whether to generate global normal .mp4 rendering file.",
|
438 |
+
)
|
439 |
+
parser.add_argument(
|
440 |
+
"--prompts",
|
441 |
+
type=str,
|
442 |
+
nargs="+",
|
443 |
+
default=None,
|
444 |
+
help="Text prompts for the rendering.",
|
445 |
+
)
|
446 |
+
|
447 |
+
args = parser.parse_args()
|
448 |
+
|
449 |
+
if args.uuid is None:
|
450 |
+
args.uuid = []
|
451 |
+
for path in args.mesh_path:
|
452 |
+
uuid = os.path.basename(path).split(".")[0]
|
453 |
+
args.uuid.append(uuid)
|
454 |
+
|
455 |
+
return args
|
456 |
+
|
457 |
+
|
458 |
+
def entrypoint() -> None:
|
459 |
+
args = parse_args()
|
460 |
+
|
461 |
+
camera_settings = CameraSetting(
|
462 |
+
num_images=args.num_images,
|
463 |
+
elevation=args.elevation,
|
464 |
+
distance=args.distance,
|
465 |
+
resolution_hw=args.resolution_hw,
|
466 |
+
fov=math.radians(args.fov),
|
467 |
+
device=args.device,
|
468 |
+
)
|
469 |
+
|
470 |
+
render_items = [
|
471 |
+
RenderItems.ALPHA.value,
|
472 |
+
RenderItems.GLOBAL_NORMAL.value,
|
473 |
+
RenderItems.VIEW_NORMAL.value,
|
474 |
+
RenderItems.POSITION_MAP.value,
|
475 |
+
RenderItems.IMAGE.value,
|
476 |
+
RenderItems.DEPTH.value,
|
477 |
+
# RenderItems.ALBEDO.value,
|
478 |
+
# RenderItems.DIFFUSE.value,
|
479 |
+
]
|
480 |
+
|
481 |
+
gen_video = (
|
482 |
+
args.gen_color_gif
|
483 |
+
or args.gen_color_mp4
|
484 |
+
or args.gen_viewnormal_mp4
|
485 |
+
or args.gen_glonormal_mp4
|
486 |
+
)
|
487 |
+
if gen_video:
|
488 |
+
render_items = []
|
489 |
+
if args.gen_color_gif or args.gen_color_mp4:
|
490 |
+
render_items.append(RenderItems.IMAGE.value)
|
491 |
+
if args.gen_glonormal_mp4:
|
492 |
+
render_items.append(RenderItems.GLOBAL_NORMAL.value)
|
493 |
+
if args.gen_viewnormal_mp4:
|
494 |
+
render_items.append(RenderItems.VIEW_NORMAL.value)
|
495 |
+
if RenderItems.GLOBAL_NORMAL.value not in render_items:
|
496 |
+
render_items.append(RenderItems.GLOBAL_NORMAL.value)
|
497 |
+
|
498 |
+
image_render = ImageRender(
|
499 |
+
render_items=render_items,
|
500 |
+
camera_params=camera_settings,
|
501 |
+
with_mtl=args.with_mtl,
|
502 |
+
gen_color_gif=args.gen_color_gif,
|
503 |
+
gen_color_mp4=args.gen_color_mp4,
|
504 |
+
gen_viewnormal_mp4=args.gen_viewnormal_mp4,
|
505 |
+
gen_glonormal_mp4=args.gen_glonormal_mp4,
|
506 |
+
light_factor=args.pbr_light_factor,
|
507 |
+
no_index_file=gen_video,
|
508 |
+
)
|
509 |
+
image_render.render_mesh(
|
510 |
+
mesh_path=args.mesh_path,
|
511 |
+
output_root=args.output_root,
|
512 |
+
uuid=args.uuid,
|
513 |
+
prompts=args.prompts,
|
514 |
+
)
|
515 |
+
|
516 |
+
return
|
517 |
+
|
518 |
+
|
519 |
+
if __name__ == "__main__":
|
520 |
+
entrypoint()
|
asset3d_gen/data/mesh_operator.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import igraph
|
5 |
+
import numpy as np
|
6 |
+
import pyvista as pv
|
7 |
+
import torch
|
8 |
+
import utils3d
|
9 |
+
from pymeshfix import _meshfix
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
logging.basicConfig(
|
13 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
14 |
+
)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = ["MeshFixer"]
|
19 |
+
|
20 |
+
|
21 |
+
def radical_inverse(base, n):
|
22 |
+
val = 0
|
23 |
+
inv_base = 1.0 / base
|
24 |
+
inv_base_n = inv_base
|
25 |
+
while n > 0:
|
26 |
+
digit = n % base
|
27 |
+
val += digit * inv_base_n
|
28 |
+
n //= base
|
29 |
+
inv_base_n *= inv_base
|
30 |
+
return val
|
31 |
+
|
32 |
+
|
33 |
+
def halton_sequence(dim, n):
|
34 |
+
PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
|
35 |
+
return [radical_inverse(PRIMES[dim], n) for dim in range(dim)]
|
36 |
+
|
37 |
+
|
38 |
+
def hammersley_sequence(dim, n, num_samples):
|
39 |
+
return [n / num_samples] + halton_sequence(dim - 1, n)
|
40 |
+
|
41 |
+
|
42 |
+
def sphere_hammersley_sequence(n, num_samples, offset=(0, 0), remap=False):
|
43 |
+
"""Generate a point on a unit sphere using the Hammersley sequence.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
n (int): The index of the sample.
|
47 |
+
num_samples (int): The total number of samples.
|
48 |
+
offset (tuple, optional): Offset for the u and v coordinates.
|
49 |
+
remap (bool, optional): Whether to remap the u coordinate.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
list: A list containing the spherical coordinates [phi, theta].
|
53 |
+
"""
|
54 |
+
u, v = hammersley_sequence(2, n, num_samples)
|
55 |
+
u += offset[0] / num_samples
|
56 |
+
v += offset[1]
|
57 |
+
|
58 |
+
if remap:
|
59 |
+
u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3
|
60 |
+
|
61 |
+
theta = np.arccos(1 - 2 * u) - np.pi / 2
|
62 |
+
phi = v * 2 * np.pi
|
63 |
+
return [phi, theta]
|
64 |
+
|
65 |
+
|
66 |
+
class MeshFixer(object):
|
67 |
+
"""Reduce and postprocess 3D meshes, simplifying and filling holes."""
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
vertices: Union[torch.Tensor, np.ndarray],
|
72 |
+
faces: Union[torch.Tensor, np.ndarray],
|
73 |
+
device: str = "cuda",
|
74 |
+
) -> None:
|
75 |
+
self.device = device
|
76 |
+
self.vertices = (
|
77 |
+
torch.tensor(vertices, device=device)
|
78 |
+
if isinstance(vertices, np.ndarray)
|
79 |
+
else vertices.to(device)
|
80 |
+
)
|
81 |
+
self.faces = (
|
82 |
+
torch.tensor(faces.astype(np.int32), device=device)
|
83 |
+
if isinstance(faces, np.ndarray)
|
84 |
+
else faces.to(device)
|
85 |
+
)
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def log_mesh_changes(method):
|
89 |
+
def wrapper(self, *args, **kwargs):
|
90 |
+
logger.info(
|
91 |
+
f"Before {method.__name__}: {self.vertices.shape[0]} vertices, {self.faces.shape[0]} faces" # noqa
|
92 |
+
)
|
93 |
+
result = method(self, *args, **kwargs)
|
94 |
+
logger.info(
|
95 |
+
f"After {method.__name__}: {self.vertices.shape[0]} vertices, {self.faces.shape[0]} faces" # noqa
|
96 |
+
)
|
97 |
+
return result
|
98 |
+
|
99 |
+
return wrapper
|
100 |
+
|
101 |
+
@log_mesh_changes
|
102 |
+
def fill_holes(
|
103 |
+
self,
|
104 |
+
max_hole_size: float,
|
105 |
+
max_hole_nbe: int,
|
106 |
+
resolution: int,
|
107 |
+
num_views: int,
|
108 |
+
norm_mesh_ratio: float = 1.0,
|
109 |
+
) -> None:
|
110 |
+
self.vertices = self.vertices * norm_mesh_ratio
|
111 |
+
vertices, self.faces = self._fill_holes(
|
112 |
+
self.vertices,
|
113 |
+
self.faces,
|
114 |
+
max_hole_size,
|
115 |
+
max_hole_nbe,
|
116 |
+
resolution,
|
117 |
+
num_views,
|
118 |
+
)
|
119 |
+
self.vertices = vertices / norm_mesh_ratio
|
120 |
+
|
121 |
+
@staticmethod
|
122 |
+
@torch.no_grad()
|
123 |
+
def _fill_holes(
|
124 |
+
vertices: torch.Tensor,
|
125 |
+
faces: torch.Tensor,
|
126 |
+
max_hole_size: float,
|
127 |
+
max_hole_nbe: int,
|
128 |
+
resolution: int,
|
129 |
+
num_views: int,
|
130 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
131 |
+
yaws, pitchs = [], []
|
132 |
+
for i in range(num_views):
|
133 |
+
y, p = sphere_hammersley_sequence(i, num_views)
|
134 |
+
yaws.append(y)
|
135 |
+
pitchs.append(p)
|
136 |
+
|
137 |
+
yaws, pitchs = torch.tensor(yaws).to(vertices), torch.tensor(
|
138 |
+
pitchs
|
139 |
+
).to(vertices)
|
140 |
+
radius, fov = 2.0, torch.deg2rad(torch.tensor(40)).to(vertices)
|
141 |
+
projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3)
|
142 |
+
|
143 |
+
views = []
|
144 |
+
for yaw, pitch in zip(yaws, pitchs):
|
145 |
+
orig = (
|
146 |
+
torch.tensor(
|
147 |
+
[
|
148 |
+
torch.sin(yaw) * torch.cos(pitch),
|
149 |
+
torch.cos(yaw) * torch.cos(pitch),
|
150 |
+
torch.sin(pitch),
|
151 |
+
]
|
152 |
+
).to(vertices)
|
153 |
+
* radius
|
154 |
+
)
|
155 |
+
view = utils3d.torch.view_look_at(
|
156 |
+
orig,
|
157 |
+
torch.tensor([0, 0, 0]).to(vertices),
|
158 |
+
torch.tensor([0, 0, 1]).to(vertices),
|
159 |
+
)
|
160 |
+
views.append(view)
|
161 |
+
views = torch.stack(views, dim=0)
|
162 |
+
|
163 |
+
# Rasterize the mesh
|
164 |
+
visibility = torch.zeros(
|
165 |
+
faces.shape[0], dtype=torch.int32, device=faces.device
|
166 |
+
)
|
167 |
+
rastctx = utils3d.torch.RastContext(backend="cuda")
|
168 |
+
|
169 |
+
for i in tqdm(
|
170 |
+
range(views.shape[0]), total=views.shape[0], desc="Rasterizing"
|
171 |
+
):
|
172 |
+
view = views[i]
|
173 |
+
buffers = utils3d.torch.rasterize_triangle_faces(
|
174 |
+
rastctx,
|
175 |
+
vertices[None],
|
176 |
+
faces,
|
177 |
+
resolution,
|
178 |
+
resolution,
|
179 |
+
view=view,
|
180 |
+
projection=projection,
|
181 |
+
)
|
182 |
+
face_id = buffers["face_id"][0][buffers["mask"][0] > 0.95] - 1
|
183 |
+
face_id = torch.unique(face_id).long()
|
184 |
+
visibility[face_id] += 1
|
185 |
+
|
186 |
+
# Normalize visibility by the number of views
|
187 |
+
visibility = visibility.float() / num_views
|
188 |
+
|
189 |
+
# Mincut: Identify outer and inner faces
|
190 |
+
edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces)
|
191 |
+
boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1)
|
192 |
+
connected_components = utils3d.torch.compute_connected_components(
|
193 |
+
faces, edges, face2edge
|
194 |
+
)
|
195 |
+
|
196 |
+
outer_face_indices = torch.zeros(
|
197 |
+
faces.shape[0], dtype=torch.bool, device=faces.device
|
198 |
+
)
|
199 |
+
for i in range(len(connected_components)):
|
200 |
+
outer_face_indices[connected_components[i]] = visibility[
|
201 |
+
connected_components[i]
|
202 |
+
] > min(
|
203 |
+
max(
|
204 |
+
visibility[connected_components[i]].quantile(0.75).item(),
|
205 |
+
0.25,
|
206 |
+
),
|
207 |
+
0.5,
|
208 |
+
)
|
209 |
+
|
210 |
+
outer_face_indices = outer_face_indices.nonzero().reshape(-1)
|
211 |
+
inner_face_indices = torch.nonzero(visibility == 0).reshape(-1)
|
212 |
+
|
213 |
+
if inner_face_indices.shape[0] == 0:
|
214 |
+
return vertices, faces
|
215 |
+
|
216 |
+
# Construct dual graph (faces as nodes, edges as edges)
|
217 |
+
dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(
|
218 |
+
face2edge
|
219 |
+
)
|
220 |
+
dual_edge2edge = edges[dual_edge2edge]
|
221 |
+
dual_edges_weights = torch.norm(
|
222 |
+
vertices[dual_edge2edge[:, 0]] - vertices[dual_edge2edge[:, 1]],
|
223 |
+
dim=1,
|
224 |
+
)
|
225 |
+
|
226 |
+
# Mincut: Construct main graph and solve the mincut problem
|
227 |
+
g = igraph.Graph()
|
228 |
+
g.add_vertices(faces.shape[0])
|
229 |
+
g.add_edges(dual_edges.cpu().numpy())
|
230 |
+
g.es["weight"] = dual_edges_weights.cpu().numpy()
|
231 |
+
|
232 |
+
g.add_vertex("s") # source
|
233 |
+
g.add_vertex("t") # target
|
234 |
+
|
235 |
+
g.add_edges(
|
236 |
+
[(f, "s") for f in inner_face_indices],
|
237 |
+
attributes={
|
238 |
+
"weight": torch.ones(
|
239 |
+
inner_face_indices.shape[0], dtype=torch.float32
|
240 |
+
)
|
241 |
+
.cpu()
|
242 |
+
.numpy()
|
243 |
+
},
|
244 |
+
)
|
245 |
+
g.add_edges(
|
246 |
+
[(f, "t") for f in outer_face_indices],
|
247 |
+
attributes={
|
248 |
+
"weight": torch.ones(
|
249 |
+
outer_face_indices.shape[0], dtype=torch.float32
|
250 |
+
)
|
251 |
+
.cpu()
|
252 |
+
.numpy()
|
253 |
+
},
|
254 |
+
)
|
255 |
+
|
256 |
+
cut = g.mincut("s", "t", (np.array(g.es["weight"]) * 1000).tolist())
|
257 |
+
remove_face_indices = torch.tensor(
|
258 |
+
[v for v in cut.partition[0] if v < faces.shape[0]],
|
259 |
+
dtype=torch.long,
|
260 |
+
device=faces.device,
|
261 |
+
)
|
262 |
+
|
263 |
+
# Check if the cut is valid with each connected component
|
264 |
+
to_remove_cc = utils3d.torch.compute_connected_components(
|
265 |
+
faces[remove_face_indices]
|
266 |
+
)
|
267 |
+
valid_remove_cc = []
|
268 |
+
cutting_edges = []
|
269 |
+
for cc in to_remove_cc:
|
270 |
+
# Check visibility median for connected component
|
271 |
+
visibility_median = visibility[remove_face_indices[cc]].median()
|
272 |
+
if visibility_median > 0.25:
|
273 |
+
continue
|
274 |
+
|
275 |
+
# Check if the cutting loop is small enough
|
276 |
+
cc_edge_indices, cc_edges_degree = torch.unique(
|
277 |
+
face2edge[remove_face_indices[cc]], return_counts=True
|
278 |
+
)
|
279 |
+
cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1]
|
280 |
+
cc_new_boundary_edge_indices = cc_boundary_edge_indices[
|
281 |
+
~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)
|
282 |
+
]
|
283 |
+
if len(cc_new_boundary_edge_indices) > 0:
|
284 |
+
cc_new_boundary_edge_cc = (
|
285 |
+
utils3d.torch.compute_edge_connected_components(
|
286 |
+
edges[cc_new_boundary_edge_indices]
|
287 |
+
)
|
288 |
+
)
|
289 |
+
cc_new_boundary_edges_cc_center = [
|
290 |
+
vertices[edges[cc_new_boundary_edge_indices[edge_cc]]]
|
291 |
+
.mean(dim=1)
|
292 |
+
.mean(dim=0)
|
293 |
+
for edge_cc in cc_new_boundary_edge_cc
|
294 |
+
]
|
295 |
+
cc_new_boundary_edges_cc_area = []
|
296 |
+
for i, edge_cc in enumerate(cc_new_boundary_edge_cc):
|
297 |
+
_e1 = (
|
298 |
+
vertices[
|
299 |
+
edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]
|
300 |
+
]
|
301 |
+
- cc_new_boundary_edges_cc_center[i]
|
302 |
+
)
|
303 |
+
_e2 = (
|
304 |
+
vertices[
|
305 |
+
edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]
|
306 |
+
]
|
307 |
+
- cc_new_boundary_edges_cc_center[i]
|
308 |
+
)
|
309 |
+
cc_new_boundary_edges_cc_area.append(
|
310 |
+
torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum()
|
311 |
+
* 0.5
|
312 |
+
)
|
313 |
+
cutting_edges.append(cc_new_boundary_edge_indices)
|
314 |
+
if any(
|
315 |
+
[
|
316 |
+
_l > max_hole_size
|
317 |
+
for _l in cc_new_boundary_edges_cc_area
|
318 |
+
]
|
319 |
+
):
|
320 |
+
continue
|
321 |
+
|
322 |
+
valid_remove_cc.append(cc)
|
323 |
+
|
324 |
+
if len(valid_remove_cc) > 0:
|
325 |
+
remove_face_indices = remove_face_indices[
|
326 |
+
torch.cat(valid_remove_cc)
|
327 |
+
]
|
328 |
+
mask = torch.ones(
|
329 |
+
faces.shape[0], dtype=torch.bool, device=faces.device
|
330 |
+
)
|
331 |
+
mask[remove_face_indices] = 0
|
332 |
+
faces = faces[mask]
|
333 |
+
faces, vertices = utils3d.torch.remove_unreferenced_vertices(
|
334 |
+
faces, vertices
|
335 |
+
)
|
336 |
+
|
337 |
+
tqdm.write(f"Removed {(~mask).sum()} faces by mincut")
|
338 |
+
else:
|
339 |
+
tqdm.write(f"Removed 0 faces by mincut")
|
340 |
+
|
341 |
+
# Fill small boundaries (holes)
|
342 |
+
mesh = _meshfix.PyTMesh()
|
343 |
+
mesh.load_array(vertices.cpu().numpy(), faces.cpu().numpy())
|
344 |
+
mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True)
|
345 |
+
|
346 |
+
_vertices, _faces = mesh.return_arrays()
|
347 |
+
vertices = torch.tensor(_vertices).to(vertices)
|
348 |
+
faces = torch.tensor(_faces).to(faces)
|
349 |
+
|
350 |
+
return vertices, faces
|
351 |
+
|
352 |
+
@property
|
353 |
+
def vertices_np(self) -> np.ndarray:
|
354 |
+
return self.vertices.cpu().numpy()
|
355 |
+
|
356 |
+
@property
|
357 |
+
def faces_np(self) -> np.ndarray:
|
358 |
+
return self.faces.cpu().numpy()
|
359 |
+
|
360 |
+
@log_mesh_changes
|
361 |
+
def simplify(self, ratio: float) -> None:
|
362 |
+
"""Simplify the mesh using quadric edge collapse decimation.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
ratio (float): Ratio of faces to filter out.
|
366 |
+
"""
|
367 |
+
if ratio <= 0 or ratio >= 1:
|
368 |
+
raise ValueError("Simplify ratio must be between 0 and 1.")
|
369 |
+
|
370 |
+
# Convert to PyVista format for simplification
|
371 |
+
mesh = pv.PolyData(
|
372 |
+
self.vertices_np,
|
373 |
+
np.hstack([np.full((self.faces.shape[0], 1), 3), self.faces_np]),
|
374 |
+
)
|
375 |
+
mesh = mesh.decimate(ratio, progress_bar=True)
|
376 |
+
|
377 |
+
# Update vertices and faces
|
378 |
+
self.vertices = torch.tensor(
|
379 |
+
mesh.points, device=self.device, dtype=torch.float32
|
380 |
+
)
|
381 |
+
self.faces = torch.tensor(
|
382 |
+
mesh.faces.reshape(-1, 4)[:, 1:],
|
383 |
+
device=self.device,
|
384 |
+
dtype=torch.int32,
|
385 |
+
)
|
386 |
+
|
387 |
+
def __call__(
|
388 |
+
self,
|
389 |
+
filter_ratio: float,
|
390 |
+
max_hole_size: float,
|
391 |
+
resolution: int,
|
392 |
+
num_views: int,
|
393 |
+
norm_mesh_ratio: float = 1.0,
|
394 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
395 |
+
"""Post-process the mesh by simplifying and filling holes.
|
396 |
+
|
397 |
+
This method performs a two-step process:
|
398 |
+
1. Simplifies mesh by reducing faces using quadric edge decimation.
|
399 |
+
2. Fills holes by removing invisible faces, repairing small boundaries.
|
400 |
+
|
401 |
+
Args:
|
402 |
+
filter_ratio (float): Ratio of faces to simplify out.
|
403 |
+
Must be in the range (0, 1).
|
404 |
+
max_hole_size (float): Maximum area of a hole to fill. Connected
|
405 |
+
components of holes larger than this size will not be repaired.
|
406 |
+
resolution (int): Resolution of the rasterization buffer.
|
407 |
+
num_views (int): Number of viewpoints to sample for rasterization.
|
408 |
+
norm_mesh_ratio (float, optional): A scaling factor applied to the
|
409 |
+
vertices of the mesh during processing.
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
Tuple[np.ndarray, np.ndarray]:
|
413 |
+
- vertices: Simplified and repaired vertex array of (V, 3).
|
414 |
+
- faces: Simplified and repaired face array of (F, 3).
|
415 |
+
"""
|
416 |
+
self.simplify(ratio=filter_ratio)
|
417 |
+
self.fill_holes(
|
418 |
+
max_hole_size=max_hole_size,
|
419 |
+
max_hole_nbe=int(250 * np.sqrt(1 - filter_ratio)),
|
420 |
+
resolution=resolution,
|
421 |
+
num_views=num_views,
|
422 |
+
norm_mesh_ratio=norm_mesh_ratio,
|
423 |
+
)
|
424 |
+
|
425 |
+
return self.vertices_np, self.faces_np
|
asset3d_gen/data/utils.py
ADDED
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
from glob import glob
|
5 |
+
from typing import List, Tuple, Union
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import kaolin as kal
|
9 |
+
import numpy as np
|
10 |
+
import nvdiffrast.torch as dr
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
try:
|
16 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
17 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
18 |
+
except ImportError:
|
19 |
+
ChatGLMTokenizer = None
|
20 |
+
ChatGLMModel = None
|
21 |
+
import logging
|
22 |
+
from dataclasses import dataclass, field
|
23 |
+
from enum import Enum
|
24 |
+
|
25 |
+
import trimesh
|
26 |
+
from kaolin.render.camera import Camera
|
27 |
+
from torch import nn
|
28 |
+
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
__all__ = [
|
33 |
+
"center_points",
|
34 |
+
"get_points_stat",
|
35 |
+
"DiffrastRender",
|
36 |
+
"compute_cam_pts_by_az_el",
|
37 |
+
"compute_cam_pts_by_views",
|
38 |
+
"save_images",
|
39 |
+
"render_pbr",
|
40 |
+
"load_llm_models",
|
41 |
+
"prelabel_text_feature",
|
42 |
+
"calc_vertex_normals",
|
43 |
+
"normalize_vertices_array",
|
44 |
+
"load_mesh_to_unit_cube",
|
45 |
+
"as_list",
|
46 |
+
"CameraSetting",
|
47 |
+
"RenderItems",
|
48 |
+
"import_kaolin_mesh",
|
49 |
+
"save_mesh_with_mtl",
|
50 |
+
"get_images_from_grid",
|
51 |
+
"post_process_texture",
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
def get_points_stat(
|
56 |
+
points: torch.FloatTensor, eps: float = 1e-6
|
57 |
+
) -> torch.FloatTensor:
|
58 |
+
assert (
|
59 |
+
len(points.shape) == 3
|
60 |
+
), f"Points have unexpected shape {points.shape}"
|
61 |
+
|
62 |
+
vmin = points.min(dim=1, keepdim=True)[0]
|
63 |
+
vmax = points.max(dim=1, keepdim=True)[0]
|
64 |
+
pts_center = (vmin + vmax) / 2
|
65 |
+
|
66 |
+
pts_dim = (vmax - vmin).max(dim=-1, keepdim=True)[0].clip(min=eps)
|
67 |
+
|
68 |
+
return pts_center, pts_dim
|
69 |
+
|
70 |
+
|
71 |
+
def center_points(
|
72 |
+
points: torch.FloatTensor, normalize: bool = False, eps: float = 1e-6
|
73 |
+
) -> torch.FloatTensor:
|
74 |
+
vmid, den = get_points_stat(points)
|
75 |
+
|
76 |
+
res = points - vmid
|
77 |
+
|
78 |
+
if normalize:
|
79 |
+
res = res / den
|
80 |
+
|
81 |
+
return res
|
82 |
+
|
83 |
+
|
84 |
+
class DiffrastRender(object):
|
85 |
+
"""A class to handle differentiable rendering using nvdiffrast.
|
86 |
+
|
87 |
+
This class provides methods to render position, depth, and normal maps
|
88 |
+
with optional anti-aliasing and gradient disabling for rasterization.
|
89 |
+
|
90 |
+
Attributes:
|
91 |
+
p_mtx (torch.Tensor): Projection matrix.
|
92 |
+
mv_mtx (torch.Tensor): Model-view matrix.
|
93 |
+
mvp_mtx (torch.Tensor): Model-view-projection matrix, calculated as
|
94 |
+
p_mtx @ mv_mtx if not provided.
|
95 |
+
resolution_hw (Tuple[int, int]): Height and width of the rendering resolution. # noqa
|
96 |
+
_ctx (Union[dr.RasterizeCudaContext, dr.RasterizeGLContext]): Rasterization context. # noqa
|
97 |
+
mask_thresh (float): Threshold for mask creation.
|
98 |
+
grad_db (bool): Whether to disable gradients during rasterization.
|
99 |
+
antialias_mask (bool): Whether to apply anti-aliasing to the mask.
|
100 |
+
device (str): Device used for rendering ('cuda' or 'cpu').
|
101 |
+
|
102 |
+
Methods:
|
103 |
+
_warmup(glctx): Warmup rasterization by rendering a simple triangle.
|
104 |
+
compute_dr_raster(vertices, faces): Rasterizes the mesh and returns
|
105 |
+
rasterized outputs and transformed vertices.
|
106 |
+
transform_vertices(vertices, matrix): Transforms the vertices using
|
107 |
+
the provided transformation matrix.
|
108 |
+
normalize_map_by_mask_separately(map, mask): Normalizes each map in
|
109 |
+
the batch separately using the mask.
|
110 |
+
normalize_map_by_mask(map, mask): Normalizes the entire map using the
|
111 |
+
mask, keeping the output in the range [0, 1].
|
112 |
+
render_position(vertices, faces): Renders the position map and
|
113 |
+
alpha mask from the given vertices and faces.
|
114 |
+
render_depth(vertices, faces): Renders the depth map and alpha
|
115 |
+
mask from the given vertices and faces.
|
116 |
+
_compute_mask(rast, vertices_clip, faces): Computes the mask from the
|
117 |
+
rasterization output.
|
118 |
+
render_global_normal(vertices, faces, vertice_normals): Renders the
|
119 |
+
normal map and alpha mask from the given vertices, faces, and
|
120 |
+
vertex normals.
|
121 |
+
transform_normal_to_view(normals, mat_w2c, masks): Transforms the normals
|
122 |
+
to the view space using the world-to-camera matrix.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
p_matrix: torch.Tensor,
|
128 |
+
mv_matrix: torch.Tensor,
|
129 |
+
resolution_hw: Tuple[int, int],
|
130 |
+
context: Union[dr.RasterizeCudaContext, dr.RasterizeGLContext] = None,
|
131 |
+
mvp_matrix: torch.Tensor = None,
|
132 |
+
mask_thresh: float = 0.5,
|
133 |
+
grad_db: bool = False,
|
134 |
+
antialias_mask: bool = True,
|
135 |
+
align_coordinate: bool = True,
|
136 |
+
device: str = "cuda",
|
137 |
+
) -> None:
|
138 |
+
self.p_mtx = p_matrix
|
139 |
+
self.mv_mtx = mv_matrix
|
140 |
+
if mvp_matrix is None:
|
141 |
+
self.mvp_mtx = torch.bmm(p_matrix, mv_matrix)
|
142 |
+
|
143 |
+
self.resolution_hw = resolution_hw
|
144 |
+
if context is None:
|
145 |
+
context = dr.RasterizeCudaContext(device=device)
|
146 |
+
self._ctx = context
|
147 |
+
self.mask_thresh = mask_thresh
|
148 |
+
self.grad_db = grad_db
|
149 |
+
self.antialias_mask = antialias_mask
|
150 |
+
self.align_coordinate = align_coordinate
|
151 |
+
self.device = device
|
152 |
+
# self._warmup(self._ctx)
|
153 |
+
|
154 |
+
def _warmup(self, glctx):
|
155 |
+
# Seem solved. https://github.com/NVlabs/nvdiffrast/issues/59
|
156 |
+
def tensor(*args, **kwargs):
|
157 |
+
return torch.tensor(*args, device=self.device, **kwargs)
|
158 |
+
|
159 |
+
pos = tensor(
|
160 |
+
[[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]],
|
161 |
+
dtype=torch.float32,
|
162 |
+
)
|
163 |
+
tri = tensor([[0, 1, 2]], dtype=torch.int32)
|
164 |
+
dr.rasterize(glctx, pos, tri, resolution=[256, 256])
|
165 |
+
|
166 |
+
def compute_dr_raster(
|
167 |
+
self,
|
168 |
+
vertices: torch.Tensor,
|
169 |
+
faces: torch.Tensor,
|
170 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
171 |
+
vertices_clip = self.transform_vertices(vertices, matrix=self.mvp_mtx)
|
172 |
+
rast, _ = dr.rasterize(
|
173 |
+
self._ctx,
|
174 |
+
vertices_clip,
|
175 |
+
faces.int(),
|
176 |
+
resolution=self.resolution_hw,
|
177 |
+
grad_db=self.grad_db,
|
178 |
+
)
|
179 |
+
|
180 |
+
return rast, vertices_clip
|
181 |
+
|
182 |
+
def transform_vertices(
|
183 |
+
self,
|
184 |
+
vertices: torch.Tensor,
|
185 |
+
matrix: torch.Tensor,
|
186 |
+
) -> torch.Tensor:
|
187 |
+
verts_ones = torch.ones((len(vertices), 1)).to(vertices)
|
188 |
+
verts_homo = torch.cat([vertices, verts_ones], dim=-1)
|
189 |
+
trans_vertices = torch.matmul(verts_homo, matrix.permute(0, 2, 1))
|
190 |
+
|
191 |
+
return trans_vertices
|
192 |
+
|
193 |
+
def normalize_map_by_mask_separately(
|
194 |
+
self, map: torch.Tensor, mask: torch.Tensor
|
195 |
+
) -> torch.Tensor:
|
196 |
+
# Normalize each map separately by mask, normalized map in [0, 1].
|
197 |
+
normalized_maps = []
|
198 |
+
for map_item, mask_item in zip(map, mask):
|
199 |
+
normalized_map = self.normalize_map_by_mask(map_item, mask_item)
|
200 |
+
normalized_maps.append(normalized_map)
|
201 |
+
|
202 |
+
normalized_maps = torch.stack(normalized_maps, dim=0)
|
203 |
+
|
204 |
+
return normalized_maps
|
205 |
+
|
206 |
+
def normalize_map_by_mask(
|
207 |
+
self, map: torch.Tensor, mask: torch.Tensor
|
208 |
+
) -> torch.Tensor:
|
209 |
+
# Normalize all maps in total by mask, normalized map in [0, 1].
|
210 |
+
foreground = (mask == 1).squeeze(dim=-1)
|
211 |
+
foreground_elements = map[foreground]
|
212 |
+
if len(foreground_elements) == 0:
|
213 |
+
return map
|
214 |
+
|
215 |
+
min_val, _ = foreground_elements.min(dim=0)
|
216 |
+
max_val, _ = foreground_elements.max(dim=0)
|
217 |
+
val_range = (max_val - min_val).clip(min=1e-6)
|
218 |
+
|
219 |
+
normalized_map = (map - min_val) / val_range
|
220 |
+
normalized_map = torch.lerp(
|
221 |
+
torch.zeros_like(normalized_map), normalized_map, mask
|
222 |
+
)
|
223 |
+
normalized_map[normalized_map < 0] = 0
|
224 |
+
|
225 |
+
return normalized_map
|
226 |
+
|
227 |
+
def _compute_mask(
|
228 |
+
self,
|
229 |
+
rast: torch.Tensor,
|
230 |
+
vertices_clip: torch.Tensor,
|
231 |
+
faces: torch.Tensor,
|
232 |
+
) -> torch.Tensor:
|
233 |
+
mask = (rast[..., 3:] > 0).float()
|
234 |
+
mask = mask.clip(min=0, max=1)
|
235 |
+
|
236 |
+
if self.antialias_mask is True:
|
237 |
+
mask = dr.antialias(mask, rast, vertices_clip, faces)
|
238 |
+
else:
|
239 |
+
foreground = mask > self.mask_thresh
|
240 |
+
mask[foreground] = 1
|
241 |
+
mask[~foreground] = 0
|
242 |
+
|
243 |
+
return mask
|
244 |
+
|
245 |
+
def render_rast_alpha(
|
246 |
+
self,
|
247 |
+
vertices: torch.Tensor,
|
248 |
+
faces: torch.Tensor,
|
249 |
+
):
|
250 |
+
faces = faces.to(torch.int32)
|
251 |
+
rast, vertices_clip = self.compute_dr_raster(vertices, faces)
|
252 |
+
mask = self._compute_mask(rast, vertices_clip, faces)
|
253 |
+
|
254 |
+
return mask, rast
|
255 |
+
|
256 |
+
def render_position(
|
257 |
+
self,
|
258 |
+
vertices: torch.Tensor,
|
259 |
+
faces: torch.Tensor,
|
260 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
261 |
+
# Vertices in model coordinate system, real position coordinate number.
|
262 |
+
faces = faces.to(torch.int32)
|
263 |
+
mask, rast = self.render_rast_alpha(vertices, faces)
|
264 |
+
|
265 |
+
vertices_model = vertices[None, ...].contiguous().float()
|
266 |
+
position_map, _ = dr.interpolate(vertices_model, rast, faces)
|
267 |
+
# Align with blender.
|
268 |
+
if self.align_coordinate:
|
269 |
+
position_map = position_map[..., [0, 2, 1]]
|
270 |
+
position_map[..., 1] = -position_map[..., 1]
|
271 |
+
|
272 |
+
position_map = torch.lerp(
|
273 |
+
torch.zeros_like(position_map), position_map, mask
|
274 |
+
)
|
275 |
+
|
276 |
+
return position_map, mask
|
277 |
+
|
278 |
+
def render_uv(
|
279 |
+
self,
|
280 |
+
vertices: torch.Tensor,
|
281 |
+
faces: torch.Tensor,
|
282 |
+
vtx_uv: torch.Tensor,
|
283 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
284 |
+
faces = faces.to(torch.int32)
|
285 |
+
mask, rast = self.render_rast_alpha(vertices, faces)
|
286 |
+
uv_map, _ = dr.interpolate(vtx_uv, rast, faces)
|
287 |
+
uv_map = torch.lerp(torch.zeros_like(uv_map), uv_map, mask)
|
288 |
+
|
289 |
+
return uv_map, mask
|
290 |
+
|
291 |
+
def render_depth(
|
292 |
+
self,
|
293 |
+
vertices: torch.Tensor,
|
294 |
+
faces: torch.Tensor,
|
295 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
296 |
+
# Vertices in model coordinate system, real depth coordinate number.
|
297 |
+
faces = faces.to(torch.int32)
|
298 |
+
mask, rast = self.render_rast_alpha(vertices, faces)
|
299 |
+
|
300 |
+
vertices_camera = self.transform_vertices(vertices, matrix=self.mv_mtx)
|
301 |
+
vertices_camera = vertices_camera[..., 2:3].contiguous().float()
|
302 |
+
depth_map, _ = dr.interpolate(vertices_camera, rast, faces)
|
303 |
+
# Change camera depth minus to positive.
|
304 |
+
if self.align_coordinate:
|
305 |
+
depth_map = -depth_map
|
306 |
+
depth_map = torch.lerp(torch.zeros_like(depth_map), depth_map, mask)
|
307 |
+
|
308 |
+
return depth_map, mask
|
309 |
+
|
310 |
+
def render_global_normal(
|
311 |
+
self,
|
312 |
+
vertices: torch.Tensor,
|
313 |
+
faces: torch.Tensor,
|
314 |
+
vertice_normals: torch.Tensor,
|
315 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
316 |
+
# NOTE: vertice_normals in [-1, 1], return normal in [0, 1].
|
317 |
+
# vertices / vertice_normals in model coordinate system.
|
318 |
+
faces = faces.to(torch.int32)
|
319 |
+
mask, rast = self.render_rast_alpha(vertices, faces)
|
320 |
+
im_base_normals, _ = dr.interpolate(
|
321 |
+
vertice_normals[None, ...].float(), rast, faces
|
322 |
+
)
|
323 |
+
|
324 |
+
if im_base_normals is not None:
|
325 |
+
faces = faces.to(torch.int64)
|
326 |
+
vertices_cam = self.transform_vertices(
|
327 |
+
vertices, matrix=self.mv_mtx
|
328 |
+
)
|
329 |
+
face_vertices_ndc = kal.ops.mesh.index_vertices_by_faces(
|
330 |
+
vertices_cam[..., :3], faces
|
331 |
+
)
|
332 |
+
face_normal_sign = kal.ops.mesh.face_normals(face_vertices_ndc)[
|
333 |
+
..., 2
|
334 |
+
]
|
335 |
+
for idx in range(len(im_base_normals)):
|
336 |
+
face_idx = (rast[idx, ..., -1].long() - 1).contiguous()
|
337 |
+
im_normal_sign = torch.sign(face_normal_sign[idx, face_idx])
|
338 |
+
im_normal_sign[face_idx == -1] = 0
|
339 |
+
im_base_normals[idx] *= im_normal_sign.unsqueeze(-1)
|
340 |
+
|
341 |
+
normal = (im_base_normals + 1) / 2
|
342 |
+
normal = normal.clip(min=0, max=1)
|
343 |
+
normal = torch.lerp(torch.zeros_like(normal), normal, mask)
|
344 |
+
|
345 |
+
return normal, mask
|
346 |
+
|
347 |
+
def transform_normal(
|
348 |
+
self,
|
349 |
+
normals: torch.Tensor,
|
350 |
+
trans_matrix: torch.Tensor,
|
351 |
+
masks: torch.Tensor,
|
352 |
+
to_view: bool,
|
353 |
+
) -> torch.Tensor:
|
354 |
+
# NOTE: input normals in [0, 1], output normals in [0, 1].
|
355 |
+
normals = normals.clone()
|
356 |
+
assert len(normals) == len(trans_matrix)
|
357 |
+
|
358 |
+
if not to_view:
|
359 |
+
# Flip the sign on the x-axis to match inv bae system for global transformation. # noqa
|
360 |
+
normals[..., 0] = 1 - normals[..., 0]
|
361 |
+
|
362 |
+
normals = 2 * normals - 1
|
363 |
+
b, h, w, c = normals.shape
|
364 |
+
|
365 |
+
transformed_normals = []
|
366 |
+
for normal, matrix in zip(normals, trans_matrix):
|
367 |
+
# Transform normals using the transformation matrix (4x4).
|
368 |
+
reshaped_normals = normal.view(-1, c) # (h w 3) -> (hw 3)
|
369 |
+
padded_vectors = torch.nn.functional.pad(
|
370 |
+
reshaped_normals, pad=(0, 1), mode="constant", value=0.0
|
371 |
+
)
|
372 |
+
transformed_normal = torch.matmul(
|
373 |
+
padded_vectors, matrix.transpose(0, 1)
|
374 |
+
)[..., :3]
|
375 |
+
|
376 |
+
# Normalize and clip the normals to [0, 1] range.
|
377 |
+
transformed_normal = F.normalize(transformed_normal, p=2, dim=-1)
|
378 |
+
transformed_normal = (transformed_normal + 1) / 2
|
379 |
+
|
380 |
+
if to_view:
|
381 |
+
# Flip the sign on the x-axis to match bae system for view transformation. # noqa
|
382 |
+
transformed_normal[..., 0] = 1 - transformed_normal[..., 0]
|
383 |
+
|
384 |
+
transformed_normals.append(transformed_normal.view(h, w, c))
|
385 |
+
|
386 |
+
transformed_normals = torch.stack(transformed_normals, dim=0)
|
387 |
+
|
388 |
+
if masks is not None:
|
389 |
+
transformed_normals = torch.lerp(
|
390 |
+
torch.zeros_like(transformed_normals),
|
391 |
+
transformed_normals,
|
392 |
+
masks,
|
393 |
+
)
|
394 |
+
|
395 |
+
return transformed_normals
|
396 |
+
|
397 |
+
|
398 |
+
def az_el_to_points(
|
399 |
+
azimuths: np.ndarray, elevations: np.ndarray
|
400 |
+
) -> np.ndarray:
|
401 |
+
x = np.cos(azimuths) * np.cos(elevations)
|
402 |
+
y = np.sin(azimuths) * np.cos(elevations)
|
403 |
+
z = np.sin(elevations)
|
404 |
+
|
405 |
+
return np.stack([x, y, z], axis=-1)
|
406 |
+
|
407 |
+
|
408 |
+
def compute_az_el_by_views(
|
409 |
+
num_view: int, el: float
|
410 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
411 |
+
azimuths = np.arange(num_view) / num_view * np.pi * 2
|
412 |
+
elevations = np.deg2rad(np.array([el] * num_view))
|
413 |
+
|
414 |
+
return azimuths, elevations
|
415 |
+
|
416 |
+
|
417 |
+
def compute_cam_pts_by_az_el(
|
418 |
+
azs: np.ndarray,
|
419 |
+
els: np.ndarray,
|
420 |
+
distance: float,
|
421 |
+
extra_pts: np.ndarray = None,
|
422 |
+
) -> np.ndarray:
|
423 |
+
distances = np.array([distance for _ in range(len(azs))])
|
424 |
+
cam_pts = az_el_to_points(azs, els) * distances[:, None]
|
425 |
+
|
426 |
+
if extra_pts is not None:
|
427 |
+
cam_pts = np.concatenate([cam_pts, extra_pts], axis=0)
|
428 |
+
|
429 |
+
# Align coordinate system.
|
430 |
+
cam_pts = cam_pts[:, [0, 2, 1]] # xyz -> xzy
|
431 |
+
cam_pts[..., 2] = -cam_pts[..., 2]
|
432 |
+
|
433 |
+
return cam_pts
|
434 |
+
|
435 |
+
|
436 |
+
def compute_cam_pts_by_views(
|
437 |
+
num_view: int, el: float, distance: float, extra_pts: np.ndarray = None
|
438 |
+
) -> torch.Tensor:
|
439 |
+
"""Computes object-center camera points for a given number of views.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
num_view (int): The number of views (camera positions) to compute.
|
443 |
+
el (float): The elevation angle in degrees.
|
444 |
+
distance (float): The distance from the origin to the camera.
|
445 |
+
extra_pts (np.ndarray): Extra camera points postion.
|
446 |
+
|
447 |
+
Returns:
|
448 |
+
torch.Tensor: A tensor containing the camera points for each view, with shape `(num_view, 3)`. # noqa
|
449 |
+
"""
|
450 |
+
azimuths, elevations = compute_az_el_by_views(num_view, el)
|
451 |
+
cam_pts = compute_cam_pts_by_az_el(
|
452 |
+
azimuths, elevations, distance, extra_pts
|
453 |
+
)
|
454 |
+
|
455 |
+
return cam_pts
|
456 |
+
|
457 |
+
|
458 |
+
def save_images(
|
459 |
+
images: Union[list[np.ndarray], list[torch.Tensor]],
|
460 |
+
output_dir: str,
|
461 |
+
cvt_color: str = None,
|
462 |
+
format: str = ".png",
|
463 |
+
to_uint8: bool = True,
|
464 |
+
verbose: bool = False,
|
465 |
+
) -> List[str]:
|
466 |
+
# NOTE: images in [0, 1]
|
467 |
+
os.makedirs(output_dir, exist_ok=True)
|
468 |
+
save_paths = []
|
469 |
+
for idx, image in enumerate(images):
|
470 |
+
if isinstance(image, torch.Tensor):
|
471 |
+
image = image.detach().cpu().numpy()
|
472 |
+
if to_uint8:
|
473 |
+
image = image.clip(min=0, max=1)
|
474 |
+
image = (255.0 * image).astype(np.uint8)
|
475 |
+
if cvt_color is not None:
|
476 |
+
image = cv2.cvtColor(image, cvt_color)
|
477 |
+
save_path = os.path.join(output_dir, f"{idx:04d}{format}")
|
478 |
+
save_paths.append(save_path)
|
479 |
+
|
480 |
+
cv2.imwrite(save_path, image)
|
481 |
+
|
482 |
+
if verbose:
|
483 |
+
logger.info(f"Images saved in {output_dir}")
|
484 |
+
|
485 |
+
return save_paths
|
486 |
+
|
487 |
+
|
488 |
+
def current_lighting(
|
489 |
+
azimuths: List[float],
|
490 |
+
elevations: List[float],
|
491 |
+
light_factor: float = 1.0,
|
492 |
+
device: str = "cuda",
|
493 |
+
):
|
494 |
+
# azimuths, elevations in degress.
|
495 |
+
directions = []
|
496 |
+
for az, el in zip(azimuths, elevations):
|
497 |
+
az, el = math.radians(az), math.radians(el)
|
498 |
+
direction = kal.render.lighting.sg_direction_from_azimuth_elevation(
|
499 |
+
az, el
|
500 |
+
)
|
501 |
+
directions.append(direction)
|
502 |
+
directions = torch.cat(directions, dim=0)
|
503 |
+
|
504 |
+
amplitude = torch.ones_like(directions) * light_factor
|
505 |
+
light_condition = kal.render.lighting.SgLightingParameters(
|
506 |
+
amplitude=amplitude,
|
507 |
+
direction=directions,
|
508 |
+
sharpness=3,
|
509 |
+
).to(device)
|
510 |
+
|
511 |
+
# light_condition = kal.render.lighting.SgLightingParameters.from_sun(
|
512 |
+
# directions, strength=1, angle=90, color=None
|
513 |
+
# ).to(device)
|
514 |
+
|
515 |
+
return light_condition
|
516 |
+
|
517 |
+
|
518 |
+
def render_pbr(
|
519 |
+
mesh,
|
520 |
+
camera,
|
521 |
+
device="cuda",
|
522 |
+
cxt=None,
|
523 |
+
custom_materials=None,
|
524 |
+
light_factor=1.0,
|
525 |
+
):
|
526 |
+
if cxt is None:
|
527 |
+
cxt = dr.RasterizeCudaContext()
|
528 |
+
|
529 |
+
light_condition = current_lighting(
|
530 |
+
azimuths=[0, 90, 180, 270],
|
531 |
+
elevations=[90, 60, 30, 20],
|
532 |
+
light_factor=light_factor,
|
533 |
+
device=device,
|
534 |
+
)
|
535 |
+
render_res = kal.render.easy_render.render_mesh(
|
536 |
+
camera,
|
537 |
+
mesh,
|
538 |
+
lighting=light_condition,
|
539 |
+
nvdiffrast_context=cxt,
|
540 |
+
custom_materials=custom_materials,
|
541 |
+
)
|
542 |
+
|
543 |
+
image = render_res[kal.render.easy_render.RenderPass.render]
|
544 |
+
image = image.clip(0, 1)
|
545 |
+
|
546 |
+
albedo = render_res[kal.render.easy_render.RenderPass.albedo]
|
547 |
+
albedo = albedo.clip(0, 1)
|
548 |
+
|
549 |
+
diffuse = render_res[kal.render.easy_render.RenderPass.diffuse]
|
550 |
+
diffuse = diffuse.clip(0, 1)
|
551 |
+
|
552 |
+
normal = render_res[kal.render.easy_render.RenderPass.normals]
|
553 |
+
normal = normal.clip(-1, 1)
|
554 |
+
|
555 |
+
return image, albedo, diffuse, normal
|
556 |
+
|
557 |
+
|
558 |
+
def load_saved_normal(path: str) -> np.ndarray:
|
559 |
+
image_paths = glob(os.path.join(path, "*.jpg"))
|
560 |
+
images = []
|
561 |
+
for path in sorted(image_paths):
|
562 |
+
image = cv2.imread(path)
|
563 |
+
image = image[..., ::-1] # rgb -> bgr
|
564 |
+
images.append(image)
|
565 |
+
images = np.stack(images, axis=0)
|
566 |
+
|
567 |
+
return images
|
568 |
+
|
569 |
+
|
570 |
+
def _move_to_target_device(data, device: str):
|
571 |
+
if isinstance(data, dict):
|
572 |
+
for key, value in data.items():
|
573 |
+
data[key] = _move_to_target_device(value, device)
|
574 |
+
elif isinstance(data, torch.Tensor):
|
575 |
+
return data.to(device)
|
576 |
+
|
577 |
+
return data
|
578 |
+
|
579 |
+
|
580 |
+
def _encode_prompt(
|
581 |
+
prompt_batch,
|
582 |
+
text_encoders,
|
583 |
+
tokenizers,
|
584 |
+
proportion_empty_prompts=0,
|
585 |
+
is_train=True,
|
586 |
+
):
|
587 |
+
prompt_embeds_list = []
|
588 |
+
|
589 |
+
captions = []
|
590 |
+
for caption in prompt_batch:
|
591 |
+
if random.random() < proportion_empty_prompts:
|
592 |
+
captions.append("")
|
593 |
+
elif isinstance(caption, str):
|
594 |
+
captions.append(caption)
|
595 |
+
elif isinstance(caption, (list, np.ndarray)):
|
596 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
597 |
+
|
598 |
+
with torch.no_grad():
|
599 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
600 |
+
text_inputs = tokenizer(
|
601 |
+
captions,
|
602 |
+
padding="max_length",
|
603 |
+
max_length=256,
|
604 |
+
truncation=True,
|
605 |
+
return_tensors="pt",
|
606 |
+
).to(text_encoder.device)
|
607 |
+
|
608 |
+
output = text_encoder(
|
609 |
+
input_ids=text_inputs.input_ids,
|
610 |
+
attention_mask=text_inputs.attention_mask,
|
611 |
+
position_ids=text_inputs.position_ids,
|
612 |
+
output_hidden_states=True,
|
613 |
+
)
|
614 |
+
|
615 |
+
# We are only interested in the pooled output of the text encoder.
|
616 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
617 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
|
618 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
619 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
620 |
+
prompt_embeds_list.append(prompt_embeds)
|
621 |
+
|
622 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
623 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
624 |
+
|
625 |
+
return prompt_embeds, pooled_prompt_embeds
|
626 |
+
|
627 |
+
|
628 |
+
def load_llm_models(pretrained_model_name_or_path: str, device: str):
|
629 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(
|
630 |
+
pretrained_model_name_or_path,
|
631 |
+
subfolder="text_encoder",
|
632 |
+
)
|
633 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
634 |
+
pretrained_model_name_or_path,
|
635 |
+
subfolder="text_encoder",
|
636 |
+
).to(device)
|
637 |
+
|
638 |
+
text_encoders = [
|
639 |
+
text_encoder,
|
640 |
+
]
|
641 |
+
tokenizers = [
|
642 |
+
tokenizer,
|
643 |
+
]
|
644 |
+
|
645 |
+
logger.info(f"Load model from {pretrained_model_name_or_path} done.")
|
646 |
+
|
647 |
+
return tokenizers, text_encoders
|
648 |
+
|
649 |
+
|
650 |
+
def prelabel_text_feature(
|
651 |
+
prompt_batch: List[str],
|
652 |
+
output_dir: str,
|
653 |
+
tokenizers: nn.Module,
|
654 |
+
text_encoders: nn.Module,
|
655 |
+
) -> List[str]:
|
656 |
+
os.makedirs(output_dir, exist_ok=True)
|
657 |
+
|
658 |
+
# prompt_batch ["text..."]
|
659 |
+
prompt_embeds, pooled_prompt_embeds = _encode_prompt(
|
660 |
+
prompt_batch, text_encoders, tokenizers
|
661 |
+
)
|
662 |
+
|
663 |
+
prompt_embeds = _move_to_target_device(prompt_embeds, device="cpu")
|
664 |
+
pooled_prompt_embeds = _move_to_target_device(
|
665 |
+
pooled_prompt_embeds, device="cpu"
|
666 |
+
)
|
667 |
+
|
668 |
+
data_dict = dict(
|
669 |
+
prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds
|
670 |
+
)
|
671 |
+
|
672 |
+
save_path = os.path.join(output_dir, "text_feat.pth")
|
673 |
+
torch.save(data_dict, save_path)
|
674 |
+
|
675 |
+
return save_path
|
676 |
+
|
677 |
+
|
678 |
+
def calc_face_normals(
|
679 |
+
vertices: torch.Tensor, # V,3 first vertex may be unreferenced
|
680 |
+
faces: torch.Tensor, # F,3 long, first face may be all zero
|
681 |
+
normalize: bool = False,
|
682 |
+
) -> torch.Tensor: # F,3
|
683 |
+
full_vertices = vertices[faces] # F,C=3,3
|
684 |
+
v0, v1, v2 = full_vertices.unbind(dim=1) # F,3
|
685 |
+
face_normals = torch.cross(v1 - v0, v2 - v0, dim=1) # F,3
|
686 |
+
if normalize:
|
687 |
+
face_normals = F.normalize(
|
688 |
+
face_normals, eps=1e-6, dim=1
|
689 |
+
) # TODO inplace?
|
690 |
+
return face_normals # F,3
|
691 |
+
|
692 |
+
|
693 |
+
def calc_vertex_normals(
|
694 |
+
vertices: torch.Tensor, # V,3 first vertex may be unreferenced
|
695 |
+
faces: torch.Tensor, # F,3 long, first face may be all zero
|
696 |
+
face_normals: torch.Tensor = None, # F,3, not normalized
|
697 |
+
) -> torch.Tensor: # F,3
|
698 |
+
_F = faces.shape[0]
|
699 |
+
|
700 |
+
if face_normals is None:
|
701 |
+
face_normals = calc_face_normals(vertices, faces)
|
702 |
+
|
703 |
+
vertex_normals = torch.zeros(
|
704 |
+
(vertices.shape[0], 3, 3), dtype=vertices.dtype, device=vertices.device
|
705 |
+
) # V,C=3,3
|
706 |
+
vertex_normals.scatter_add_(
|
707 |
+
dim=0,
|
708 |
+
index=faces[:, :, None].expand(_F, 3, 3),
|
709 |
+
src=face_normals[:, None, :].expand(_F, 3, 3),
|
710 |
+
)
|
711 |
+
vertex_normals = vertex_normals.sum(dim=1) # V,3
|
712 |
+
return F.normalize(vertex_normals, eps=1e-6, dim=1)
|
713 |
+
|
714 |
+
|
715 |
+
def normalize_vertices_array(
|
716 |
+
vertices: Union[torch.Tensor, np.ndarray],
|
717 |
+
mesh_scale: float = 1.0,
|
718 |
+
exec_norm: bool = True,
|
719 |
+
):
|
720 |
+
if isinstance(vertices, torch.Tensor):
|
721 |
+
bbmin, bbmax = vertices.min(0)[0], vertices.max(0)[0]
|
722 |
+
else:
|
723 |
+
bbmin, bbmax = vertices.min(0), vertices.max(0) # (3,)
|
724 |
+
center = (bbmin + bbmax) * 0.5
|
725 |
+
bbsize = bbmax - bbmin
|
726 |
+
scale = 2 * mesh_scale / bbsize.max()
|
727 |
+
if exec_norm:
|
728 |
+
vertices = (vertices - center) * scale
|
729 |
+
|
730 |
+
return vertices, scale, center
|
731 |
+
|
732 |
+
|
733 |
+
def load_mesh_to_unit_cube(
|
734 |
+
mesh_file: str,
|
735 |
+
mesh_scale: float = 1.0,
|
736 |
+
) -> tuple[trimesh.Trimesh, float, list[float]]:
|
737 |
+
if not os.path.exists(mesh_file):
|
738 |
+
raise FileNotFoundError(f"mesh_file path {mesh_file} not exists.")
|
739 |
+
|
740 |
+
mesh = trimesh.load(mesh_file)
|
741 |
+
if isinstance(mesh, trimesh.Scene):
|
742 |
+
mesh = trimesh.utils.concatenate(mesh)
|
743 |
+
|
744 |
+
vertices, scale, center = normalize_vertices_array(
|
745 |
+
mesh.vertices, mesh_scale
|
746 |
+
)
|
747 |
+
mesh.vertices = vertices
|
748 |
+
|
749 |
+
return mesh, scale, center
|
750 |
+
|
751 |
+
|
752 |
+
def as_list(obj):
|
753 |
+
if isinstance(obj, (list, tuple)):
|
754 |
+
return obj
|
755 |
+
elif isinstance(obj, set):
|
756 |
+
return list(obj)
|
757 |
+
else:
|
758 |
+
return [obj]
|
759 |
+
|
760 |
+
|
761 |
+
@dataclass
|
762 |
+
class CameraSetting:
|
763 |
+
"""Camera settings for images rendering."""
|
764 |
+
|
765 |
+
num_images: int
|
766 |
+
elevation: list[float]
|
767 |
+
distance: float
|
768 |
+
resolution_hw: tuple[int, int]
|
769 |
+
fov: float
|
770 |
+
at: tuple[float, float, float] = field(
|
771 |
+
default_factory=lambda: (0.0, 0.0, 0.0)
|
772 |
+
)
|
773 |
+
up: tuple[float, float, float] = field(
|
774 |
+
default_factory=lambda: (0.0, 1.0, 0.0)
|
775 |
+
)
|
776 |
+
device: str = "cuda"
|
777 |
+
near: float = 1e-2
|
778 |
+
far: float = 1e2
|
779 |
+
|
780 |
+
def __post_init__(
|
781 |
+
self,
|
782 |
+
):
|
783 |
+
h = self.resolution_hw[0]
|
784 |
+
f = (h / 2) / math.tan(self.fov / 2)
|
785 |
+
cx = self.resolution_hw[1] / 2
|
786 |
+
cy = self.resolution_hw[0] / 2
|
787 |
+
Ks = [
|
788 |
+
[f, 0, cx],
|
789 |
+
[0, f, cy],
|
790 |
+
[0, 0, 1],
|
791 |
+
]
|
792 |
+
|
793 |
+
self.Ks = Ks
|
794 |
+
|
795 |
+
|
796 |
+
@dataclass
|
797 |
+
class RenderItems(str, Enum):
|
798 |
+
IMAGE = "image_color"
|
799 |
+
ALPHA = "image_mask"
|
800 |
+
VIEW_NORMAL = "image_view_normal"
|
801 |
+
GLOBAL_NORMAL = "image_global_normal"
|
802 |
+
POSITION_MAP = "image_position"
|
803 |
+
DEPTH = "image_depth"
|
804 |
+
ALBEDO = "image_albedo"
|
805 |
+
DIFFUSE = "image_diffuse"
|
806 |
+
|
807 |
+
|
808 |
+
def compute_az_el_by_camera_params(
|
809 |
+
camera_params: CameraSetting, flip_az: bool = False
|
810 |
+
):
|
811 |
+
num_view = camera_params.num_images // len(camera_params.elevation)
|
812 |
+
view_interval = 2 * np.pi / num_view / 2
|
813 |
+
azimuths = []
|
814 |
+
elevations = []
|
815 |
+
for idx, el in enumerate(camera_params.elevation):
|
816 |
+
azs = np.arange(num_view) / num_view * np.pi * 2 + idx * view_interval
|
817 |
+
if flip_az:
|
818 |
+
azs *= -1
|
819 |
+
els = np.deg2rad(np.array([el] * num_view))
|
820 |
+
azimuths.append(azs)
|
821 |
+
elevations.append(els)
|
822 |
+
|
823 |
+
azimuths = np.concatenate(azimuths, axis=0)
|
824 |
+
elevations = np.concatenate(elevations, axis=0)
|
825 |
+
|
826 |
+
return azimuths, elevations
|
827 |
+
|
828 |
+
|
829 |
+
def init_kal_camera(camera_params: CameraSetting) -> Camera:
|
830 |
+
azimuths, elevations = compute_az_el_by_camera_params(camera_params)
|
831 |
+
cam_pts = compute_cam_pts_by_az_el(
|
832 |
+
azimuths, elevations, camera_params.distance
|
833 |
+
)
|
834 |
+
|
835 |
+
up = torch.cat(
|
836 |
+
[
|
837 |
+
torch.tensor(camera_params.up).repeat(camera_params.num_images, 1),
|
838 |
+
],
|
839 |
+
dim=0,
|
840 |
+
)
|
841 |
+
|
842 |
+
camera = Camera.from_args(
|
843 |
+
eye=torch.tensor(cam_pts),
|
844 |
+
at=torch.tensor(camera_params.at),
|
845 |
+
up=up,
|
846 |
+
fov=camera_params.fov,
|
847 |
+
height=camera_params.resolution_hw[0],
|
848 |
+
width=camera_params.resolution_hw[1],
|
849 |
+
near=camera_params.near,
|
850 |
+
far=camera_params.far,
|
851 |
+
device=camera_params.device,
|
852 |
+
)
|
853 |
+
|
854 |
+
return camera
|
855 |
+
|
856 |
+
|
857 |
+
def import_kaolin_mesh(mesh_path: str, with_mtl: bool = False):
|
858 |
+
if mesh_path.endswith(".glb"):
|
859 |
+
mesh = kal.io.gltf.import_mesh(mesh_path)
|
860 |
+
elif mesh_path.endswith(".obj"):
|
861 |
+
with_material = True if with_mtl else False
|
862 |
+
mesh = kal.io.obj.import_mesh(mesh_path, with_materials=with_material)
|
863 |
+
if with_mtl and mesh.materials and len(mesh.materials) > 0:
|
864 |
+
material = kal.render.materials.PBRMaterial()
|
865 |
+
assert (
|
866 |
+
"map_Kd" in mesh.materials[0]
|
867 |
+
), "'map_Kd' not found in materials."
|
868 |
+
material.diffuse_texture = mesh.materials[0]["map_Kd"] / 255.0
|
869 |
+
mesh.materials = [material]
|
870 |
+
elif mesh_path.endswith(".ply"):
|
871 |
+
mesh = trimesh.load(mesh_path)
|
872 |
+
mesh_path = mesh_path.replace(".ply", ".obj")
|
873 |
+
mesh.export(mesh_path)
|
874 |
+
mesh = kal.io.obj.import_mesh(mesh_path)
|
875 |
+
elif mesh_path.endswith(".off"):
|
876 |
+
mesh = kal.io.off.import_mesh(mesh_path)
|
877 |
+
else:
|
878 |
+
raise RuntimeError(
|
879 |
+
f"{mesh_path} mesh type not supported, "
|
880 |
+
"supported mesh type `.glb`, `.obj`, `.ply`, `.off`."
|
881 |
+
)
|
882 |
+
|
883 |
+
return mesh
|
884 |
+
|
885 |
+
|
886 |
+
def save_mesh_with_mtl(
|
887 |
+
vertices: np.ndarray,
|
888 |
+
faces: np.ndarray,
|
889 |
+
uvs: np.ndarray,
|
890 |
+
texture: Union[Image.Image, np.ndarray],
|
891 |
+
output_path: str,
|
892 |
+
material_base=(250, 250, 250, 255),
|
893 |
+
) -> trimesh.Trimesh:
|
894 |
+
if isinstance(texture, np.ndarray):
|
895 |
+
texture = Image.fromarray(texture)
|
896 |
+
|
897 |
+
mesh = trimesh.Trimesh(
|
898 |
+
vertices,
|
899 |
+
faces,
|
900 |
+
visual=trimesh.visual.TextureVisuals(uv=uvs, image=texture),
|
901 |
+
)
|
902 |
+
mesh.visual.material = trimesh.visual.material.SimpleMaterial(
|
903 |
+
image=texture,
|
904 |
+
diffuse=material_base,
|
905 |
+
ambient=material_base,
|
906 |
+
specular=material_base,
|
907 |
+
)
|
908 |
+
|
909 |
+
dir_name = os.path.dirname(output_path)
|
910 |
+
os.makedirs(dir_name, exist_ok=True)
|
911 |
+
|
912 |
+
_ = mesh.export(output_path)
|
913 |
+
# texture.save(os.path.join(dir_name, f"{file_name}_texture.png"))
|
914 |
+
|
915 |
+
logger.info(f"Saved mesh with texture to {output_path}")
|
916 |
+
|
917 |
+
return mesh
|
918 |
+
|
919 |
+
|
920 |
+
def get_images_from_grid(
|
921 |
+
image: Union[str, Image.Image], img_size: int
|
922 |
+
) -> list[Image.Image]:
|
923 |
+
if isinstance(image, str):
|
924 |
+
image = Image.open(image)
|
925 |
+
|
926 |
+
view_images = np.array(image)
|
927 |
+
view_images = np.concatenate(
|
928 |
+
[view_images[:img_size, ...], view_images[img_size:, ...]], axis=1
|
929 |
+
)
|
930 |
+
images = np.split(view_images, view_images.shape[1] // img_size, axis=1)
|
931 |
+
images = [Image.fromarray(img) for img in images]
|
932 |
+
|
933 |
+
return images
|
934 |
+
|
935 |
+
|
936 |
+
def post_process_texture(texture: np.ndarray, iter: int = 2) -> np.ndarray:
|
937 |
+
for _ in range(iter):
|
938 |
+
texture = cv2.fastNlMeansDenoisingColored(texture, None, 13, 13, 9, 27)
|
939 |
+
texture = cv2.bilateralFilter(
|
940 |
+
texture, d=9, sigmaColor=80, sigmaSpace=80
|
941 |
+
)
|
942 |
+
|
943 |
+
return texture
|
asset3d_gen/models/delight.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import (
|
8 |
+
EulerAncestralDiscreteScheduler,
|
9 |
+
StableDiffusionInstructPix2PixPipeline,
|
10 |
+
)
|
11 |
+
from huggingface_hub import snapshot_download
|
12 |
+
from PIL import Image
|
13 |
+
from asset3d_gen.models.segment import RembgRemover
|
14 |
+
|
15 |
+
os.environ["https_proxy"] = "http://10.9.0.31:8838"
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
"DelightingModel",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
class DelightingModel(object):
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
model_path: str = None,
|
27 |
+
num_infer_step: int = 50,
|
28 |
+
mask_erosion_size: int = 3,
|
29 |
+
image_guide_scale: float = 1.5,
|
30 |
+
text_guide_scale: float = 1.0,
|
31 |
+
device: str = "cuda",
|
32 |
+
seed: int = 0,
|
33 |
+
) -> None:
|
34 |
+
self.image_guide_scale = image_guide_scale
|
35 |
+
self.text_guide_scale = text_guide_scale
|
36 |
+
self.num_infer_step = num_infer_step
|
37 |
+
self.mask_erosion_size = mask_erosion_size
|
38 |
+
self.kernel = np.ones(
|
39 |
+
(self.mask_erosion_size, self.mask_erosion_size), np.uint8
|
40 |
+
)
|
41 |
+
self.seed = seed
|
42 |
+
self.device = device
|
43 |
+
self.bg_remover = RembgRemover()
|
44 |
+
|
45 |
+
if model_path is None:
|
46 |
+
suffix = "hunyuan3d-delight-v2-0"
|
47 |
+
model_path = snapshot_download(
|
48 |
+
repo_id="tencent/Hunyuan3D-2", allow_patterns=f"{suffix}/*"
|
49 |
+
)
|
50 |
+
model_path = os.path.join(model_path, suffix)
|
51 |
+
|
52 |
+
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
53 |
+
model_path,
|
54 |
+
torch_dtype=torch.float16,
|
55 |
+
safety_checker=None,
|
56 |
+
)
|
57 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
58 |
+
pipeline.scheduler.config
|
59 |
+
)
|
60 |
+
pipeline.set_progress_bar_config(disable=True)
|
61 |
+
|
62 |
+
pipeline.to(self.device, torch.float16)
|
63 |
+
pipeline.enable_model_cpu_offload()
|
64 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
65 |
+
self.pipeline = pipeline
|
66 |
+
|
67 |
+
def recenter_image(
|
68 |
+
self, image: Image.Image, border_ratio: float = 0.2
|
69 |
+
) -> Image.Image:
|
70 |
+
if image.mode == "RGB":
|
71 |
+
return image
|
72 |
+
elif image.mode == "L":
|
73 |
+
image = image.convert("RGB")
|
74 |
+
return image
|
75 |
+
|
76 |
+
alpha_channel = np.array(image)[:, :, 3]
|
77 |
+
non_zero_indices = np.argwhere(alpha_channel > 0)
|
78 |
+
if non_zero_indices.size == 0:
|
79 |
+
raise ValueError("Image is fully transparent")
|
80 |
+
|
81 |
+
min_row, min_col = non_zero_indices.min(axis=0)
|
82 |
+
max_row, max_col = non_zero_indices.max(axis=0)
|
83 |
+
|
84 |
+
cropped_image = image.crop(
|
85 |
+
(min_col, min_row, max_col + 1, max_row + 1)
|
86 |
+
)
|
87 |
+
|
88 |
+
width, height = cropped_image.size
|
89 |
+
border_width = int(width * border_ratio)
|
90 |
+
border_height = int(height * border_ratio)
|
91 |
+
|
92 |
+
new_width = width + 2 * border_width
|
93 |
+
new_height = height + 2 * border_height
|
94 |
+
|
95 |
+
square_size = max(new_width, new_height)
|
96 |
+
|
97 |
+
new_image = Image.new(
|
98 |
+
"RGBA", (square_size, square_size), (255, 255, 255, 0)
|
99 |
+
)
|
100 |
+
|
101 |
+
paste_x = (square_size - new_width) // 2 + border_width
|
102 |
+
paste_y = (square_size - new_height) // 2 + border_height
|
103 |
+
|
104 |
+
new_image.paste(cropped_image, (paste_x, paste_y))
|
105 |
+
|
106 |
+
return new_image
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def __call__(
|
110 |
+
self,
|
111 |
+
image: Union[str, np.ndarray, Image.Image],
|
112 |
+
preprocess: bool = False,
|
113 |
+
target_wh: tuple[int, int] = None,
|
114 |
+
) -> Image.Image:
|
115 |
+
if isinstance(image, str):
|
116 |
+
image = Image.open(image)
|
117 |
+
elif isinstance(image, np.ndarray):
|
118 |
+
image = Image.fromarray(image)
|
119 |
+
|
120 |
+
if preprocess:
|
121 |
+
image = self.bg_remover(image)
|
122 |
+
image = self.recenter_image(image)
|
123 |
+
|
124 |
+
if target_wh is not None:
|
125 |
+
image = image.resize(target_wh)
|
126 |
+
else:
|
127 |
+
target_wh = image.size
|
128 |
+
|
129 |
+
image_array = np.array(image)
|
130 |
+
assert image_array.shape[-1] == 4, "Image must have alpha channel"
|
131 |
+
|
132 |
+
raw_alpha_channel = image_array[:, :, 3]
|
133 |
+
alpha_channel = cv2.erode(raw_alpha_channel, self.kernel, iterations=1)
|
134 |
+
image_array[alpha_channel == 0, :3] = 255 # must be white background
|
135 |
+
image_array[:, :, 3] = alpha_channel
|
136 |
+
|
137 |
+
image = self.pipeline(
|
138 |
+
prompt="",
|
139 |
+
image=Image.fromarray(image_array).convert("RGB"),
|
140 |
+
generator=torch.manual_seed(self.seed),
|
141 |
+
num_inference_steps=self.num_infer_step,
|
142 |
+
image_guidance_scale=self.image_guide_scale,
|
143 |
+
guidance_scale=self.text_guide_scale,
|
144 |
+
).images[0]
|
145 |
+
|
146 |
+
alpha_channel = Image.fromarray(alpha_channel)
|
147 |
+
rgba_image = image.convert("RGBA").resize(target_wh)
|
148 |
+
rgba_image.putalpha(alpha_channel)
|
149 |
+
|
150 |
+
return rgba_image
|
151 |
+
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
delighting_model = DelightingModel(
|
155 |
+
# model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/hunyuan3d-delight-v2-0" # noqa
|
156 |
+
)
|
157 |
+
image_path = "scripts/apps/assets/example_image/room_bottle_002.jpeg"
|
158 |
+
image = delighting_model(
|
159 |
+
image_path, preprocess=True, target_wh=(512, 512)
|
160 |
+
) # noqa
|
161 |
+
image.save("delight.png")
|
162 |
+
|
163 |
+
# image_path = "asset3d_gen/scripts/test_robot.png"
|
164 |
+
# image = delighting_model(image_path)
|
165 |
+
# image.save("delighting_image_a2.png")
|
asset3d_gen/models/gs_model.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import struct
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from typing import Optional, Union
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from gsplat.cuda._wrapper import spherical_harmonics
|
11 |
+
from gsplat.rendering import rasterization
|
12 |
+
from plyfile import PlyData
|
13 |
+
from scipy.spatial.transform import Rotation
|
14 |
+
from torch.nn import functional as F
|
15 |
+
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
"RenderResult",
|
22 |
+
"GaussianOperator",
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
def quat_mult(q1, q2):
|
27 |
+
# NOTE:
|
28 |
+
# Q1 is the quaternion that rotates the vector from the original position to the final position # noqa
|
29 |
+
# Q2 is the quaternion that been rotated
|
30 |
+
w1, x1, y1, z1 = q1.T
|
31 |
+
w2, x2, y2, z2 = q2.T
|
32 |
+
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
|
33 |
+
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
|
34 |
+
y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
|
35 |
+
z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
|
36 |
+
return torch.stack([w, x, y, z]).T
|
37 |
+
|
38 |
+
|
39 |
+
def quat_to_rotmat(quats: torch.Tensor, mode="wxyz") -> torch.Tensor:
|
40 |
+
"""Convert quaternion to rotation matrix."""
|
41 |
+
quats = F.normalize(quats, p=2, dim=-1)
|
42 |
+
|
43 |
+
if mode == "xyzw":
|
44 |
+
x, y, z, w = torch.unbind(quats, dim=-1)
|
45 |
+
elif mode == "wxyz":
|
46 |
+
w, x, y, z = torch.unbind(quats, dim=-1)
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Invalid mode: {mode}.")
|
49 |
+
|
50 |
+
R = torch.stack(
|
51 |
+
[
|
52 |
+
1 - 2 * (y**2 + z**2),
|
53 |
+
2 * (x * y - w * z),
|
54 |
+
2 * (x * z + w * y),
|
55 |
+
2 * (x * y + w * z),
|
56 |
+
1 - 2 * (x**2 + z**2),
|
57 |
+
2 * (y * z - w * x),
|
58 |
+
2 * (x * z - w * y),
|
59 |
+
2 * (y * z + w * x),
|
60 |
+
1 - 2 * (x**2 + y**2),
|
61 |
+
],
|
62 |
+
dim=-1,
|
63 |
+
)
|
64 |
+
|
65 |
+
return R.reshape(quats.shape[:-1] + (3, 3))
|
66 |
+
|
67 |
+
|
68 |
+
def gamma_shs(shs: torch.Tensor, gamma: float) -> torch.Tensor:
|
69 |
+
C0 = 0.28209479177387814 # Constant for normalization in spherical harmonics # noqa
|
70 |
+
# Clip to the range [0.0, 1.0], apply gamma correction, and then un-clip back # noqa
|
71 |
+
new_shs = torch.clip(shs * C0 + 0.5, 0.0, 1.0)
|
72 |
+
new_shs = (torch.pow(new_shs, gamma) - 0.5) / C0
|
73 |
+
return new_shs
|
74 |
+
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class RenderResult:
|
78 |
+
rgb: np.ndarray
|
79 |
+
depth: np.ndarray
|
80 |
+
opacity: np.ndarray
|
81 |
+
mask_threshold: float = 10
|
82 |
+
mask: Optional[np.ndarray] = None
|
83 |
+
rgba: Optional[np.ndarray] = None
|
84 |
+
|
85 |
+
def __post_init__(self):
|
86 |
+
if isinstance(self.rgb, torch.Tensor):
|
87 |
+
rgb = self.rgb.detach().cpu().numpy()
|
88 |
+
rgb = (rgb * 255).astype(np.uint8)
|
89 |
+
self.rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
|
90 |
+
if isinstance(self.depth, torch.Tensor):
|
91 |
+
self.depth = self.depth.detach().cpu().numpy()
|
92 |
+
if isinstance(self.opacity, torch.Tensor):
|
93 |
+
opacity = self.opacity.detach().cpu().numpy()
|
94 |
+
opacity = (opacity * 255).astype(np.uint8)
|
95 |
+
self.opacity = cv2.cvtColor(opacity, cv2.COLOR_GRAY2RGB)
|
96 |
+
mask = np.where(self.opacity > self.mask_threshold, 255, 0)
|
97 |
+
self.mask = mask[..., 0:1].astype(np.uint8)
|
98 |
+
self.rgba = np.concatenate([self.rgb, self.mask], axis=-1)
|
99 |
+
|
100 |
+
|
101 |
+
@dataclass
|
102 |
+
class GaussianBase:
|
103 |
+
_opacities: torch.Tensor
|
104 |
+
_means: torch.Tensor
|
105 |
+
_scales: torch.Tensor
|
106 |
+
_quats: torch.Tensor
|
107 |
+
_rgbs: Optional[torch.Tensor] = None
|
108 |
+
_features_dc: Optional[torch.Tensor] = None
|
109 |
+
_features_rest: Optional[torch.Tensor] = None
|
110 |
+
sh_degree: Optional[int] = 0
|
111 |
+
device: str = "cuda"
|
112 |
+
|
113 |
+
def __post_init__(self):
|
114 |
+
self.active_sh_degree: int = self.sh_degree
|
115 |
+
self.to(self.device)
|
116 |
+
|
117 |
+
def to(self, device: str) -> None:
|
118 |
+
for k, v in self.__dict__.items():
|
119 |
+
if not isinstance(v, torch.Tensor):
|
120 |
+
continue
|
121 |
+
self.__dict__[k] = v.to(device)
|
122 |
+
|
123 |
+
def get_numpy_data(self):
|
124 |
+
data = {}
|
125 |
+
for k, v in self.__dict__.items():
|
126 |
+
if not isinstance(v, torch.Tensor):
|
127 |
+
continue
|
128 |
+
data[k] = v.detach().cpu().numpy()
|
129 |
+
|
130 |
+
return data
|
131 |
+
|
132 |
+
def quat_norm(self, x: torch.Tensor) -> torch.Tensor:
|
133 |
+
return x / x.norm(dim=-1, keepdim=True)
|
134 |
+
|
135 |
+
@classmethod
|
136 |
+
def load_from_ply(
|
137 |
+
cls,
|
138 |
+
path: str,
|
139 |
+
gamma: float = 1.0,
|
140 |
+
) -> "GaussianBase":
|
141 |
+
plydata = PlyData.read(path)
|
142 |
+
xyz = torch.stack(
|
143 |
+
(
|
144 |
+
torch.tensor(plydata.elements[0]["x"], dtype=torch.float32),
|
145 |
+
torch.tensor(plydata.elements[0]["y"], dtype=torch.float32),
|
146 |
+
torch.tensor(plydata.elements[0]["z"], dtype=torch.float32),
|
147 |
+
),
|
148 |
+
dim=1,
|
149 |
+
)
|
150 |
+
|
151 |
+
opacities = torch.tensor(
|
152 |
+
plydata.elements[0]["opacity"], dtype=torch.float32
|
153 |
+
).unsqueeze(-1)
|
154 |
+
features_dc = torch.zeros((xyz.shape[0], 3), dtype=torch.float32)
|
155 |
+
features_dc[:, 0] = torch.tensor(
|
156 |
+
plydata.elements[0]["f_dc_0"], dtype=torch.float32
|
157 |
+
)
|
158 |
+
features_dc[:, 1] = torch.tensor(
|
159 |
+
plydata.elements[0]["f_dc_1"], dtype=torch.float32
|
160 |
+
)
|
161 |
+
features_dc[:, 2] = torch.tensor(
|
162 |
+
plydata.elements[0]["f_dc_2"], dtype=torch.float32
|
163 |
+
)
|
164 |
+
|
165 |
+
scale_names = [
|
166 |
+
p.name
|
167 |
+
for p in plydata.elements[0].properties
|
168 |
+
if p.name.startswith("scale_")
|
169 |
+
]
|
170 |
+
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
|
171 |
+
scales = torch.zeros(
|
172 |
+
(xyz.shape[0], len(scale_names)), dtype=torch.float32
|
173 |
+
)
|
174 |
+
for idx, attr_name in enumerate(scale_names):
|
175 |
+
scales[:, idx] = torch.tensor(
|
176 |
+
plydata.elements[0][attr_name], dtype=torch.float32
|
177 |
+
)
|
178 |
+
|
179 |
+
rot_names = [
|
180 |
+
p.name
|
181 |
+
for p in plydata.elements[0].properties
|
182 |
+
if p.name.startswith("rot_")
|
183 |
+
]
|
184 |
+
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
|
185 |
+
rots = torch.zeros((xyz.shape[0], len(rot_names)), dtype=torch.float32)
|
186 |
+
for idx, attr_name in enumerate(rot_names):
|
187 |
+
rots[:, idx] = torch.tensor(
|
188 |
+
plydata.elements[0][attr_name], dtype=torch.float32
|
189 |
+
)
|
190 |
+
|
191 |
+
rots = rots / torch.norm(rots, dim=-1, keepdim=True)
|
192 |
+
|
193 |
+
# extra features
|
194 |
+
extra_f_names = [
|
195 |
+
p.name
|
196 |
+
for p in plydata.elements[0].properties
|
197 |
+
if p.name.startswith("f_rest_")
|
198 |
+
]
|
199 |
+
extra_f_names = sorted(
|
200 |
+
extra_f_names, key=lambda x: int(x.split("_")[-1])
|
201 |
+
)
|
202 |
+
|
203 |
+
max_sh_degree = int(np.sqrt((len(extra_f_names) + 3) / 3) - 1)
|
204 |
+
if max_sh_degree != 0:
|
205 |
+
features_extra = torch.zeros(
|
206 |
+
(xyz.shape[0], len(extra_f_names)), dtype=torch.float32
|
207 |
+
)
|
208 |
+
for idx, attr_name in enumerate(extra_f_names):
|
209 |
+
features_extra[:, idx] = torch.tensor(
|
210 |
+
plydata.elements[0][attr_name], dtype=torch.float32
|
211 |
+
)
|
212 |
+
|
213 |
+
features_extra = features_extra.view(
|
214 |
+
(features_extra.shape[0], 3, (max_sh_degree + 1) ** 2 - 1)
|
215 |
+
)
|
216 |
+
features_extra = features_extra.permute(0, 2, 1)
|
217 |
+
|
218 |
+
if abs(gamma - 1.0) > 1e-3:
|
219 |
+
features_dc = gamma_shs(features_dc, gamma)
|
220 |
+
features_extra[..., :] = 0.0
|
221 |
+
opacities *= 0.8
|
222 |
+
|
223 |
+
shs = torch.cat(
|
224 |
+
[
|
225 |
+
features_dc.reshape(-1, 3),
|
226 |
+
features_extra.reshape(len(features_dc), -1),
|
227 |
+
],
|
228 |
+
dim=-1,
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
# sh_dim is 0, only dc features
|
232 |
+
shs = features_dc
|
233 |
+
features_extra = None
|
234 |
+
|
235 |
+
return cls(
|
236 |
+
sh_degree=max_sh_degree,
|
237 |
+
_means=xyz,
|
238 |
+
_opacities=opacities,
|
239 |
+
_rgbs=shs,
|
240 |
+
_scales=scales,
|
241 |
+
_quats=rots,
|
242 |
+
_features_dc=features_dc,
|
243 |
+
_features_rest=features_extra,
|
244 |
+
)
|
245 |
+
|
246 |
+
def save_to_ply(
|
247 |
+
self, path: str, colors: torch.Tensor = None, enable_mask: bool = False
|
248 |
+
):
|
249 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
250 |
+
numpy_data = self.get_numpy_data()
|
251 |
+
means = numpy_data["_means"]
|
252 |
+
scales = numpy_data["_scales"]
|
253 |
+
quats = numpy_data["_quats"]
|
254 |
+
opacities = numpy_data["_opacities"]
|
255 |
+
sh0 = numpy_data["_features_dc"]
|
256 |
+
shN = numpy_data.get("_features_rest", np.zeros((means.shape[0], 0)))
|
257 |
+
|
258 |
+
# Create a mask to identify rows with NaN or Inf in any of the numpy_data arrays # noqa
|
259 |
+
if enable_mask:
|
260 |
+
invalid_mask = (
|
261 |
+
np.isnan(means).any(axis=1)
|
262 |
+
| np.isinf(means).any(axis=1)
|
263 |
+
| np.isnan(scales).any(axis=1)
|
264 |
+
| np.isinf(scales).any(axis=1)
|
265 |
+
| np.isnan(quats).any(axis=1)
|
266 |
+
| np.isinf(quats).any(axis=1)
|
267 |
+
| np.isnan(opacities).any(axis=0)
|
268 |
+
| np.isinf(opacities).any(axis=0)
|
269 |
+
| np.isnan(sh0).any(axis=1)
|
270 |
+
| np.isinf(sh0).any(axis=1)
|
271 |
+
| np.isnan(shN).any(axis=1)
|
272 |
+
| np.isinf(shN).any(axis=1)
|
273 |
+
)
|
274 |
+
|
275 |
+
# Filter out rows with NaNs or Infs from all data arrays
|
276 |
+
means = means[~invalid_mask]
|
277 |
+
scales = scales[~invalid_mask]
|
278 |
+
quats = quats[~invalid_mask]
|
279 |
+
opacities = opacities[~invalid_mask]
|
280 |
+
sh0 = sh0[~invalid_mask]
|
281 |
+
shN = shN[~invalid_mask]
|
282 |
+
|
283 |
+
num_points = means.shape[0]
|
284 |
+
|
285 |
+
with open(path, "wb") as f:
|
286 |
+
# Write PLY header
|
287 |
+
f.write(b"ply\n")
|
288 |
+
f.write(b"format binary_little_endian 1.0\n")
|
289 |
+
f.write(f"element vertex {num_points}\n".encode())
|
290 |
+
f.write(b"property float x\n")
|
291 |
+
f.write(b"property float y\n")
|
292 |
+
f.write(b"property float z\n")
|
293 |
+
f.write(b"property float nx\n")
|
294 |
+
f.write(b"property float ny\n")
|
295 |
+
f.write(b"property float nz\n")
|
296 |
+
|
297 |
+
if colors is not None:
|
298 |
+
for j in range(colors.shape[1]):
|
299 |
+
f.write(f"property float f_dc_{j}\n".encode())
|
300 |
+
else:
|
301 |
+
for i, data in enumerate([sh0, shN]):
|
302 |
+
prefix = "f_dc" if i == 0 else "f_rest"
|
303 |
+
for j in range(data.shape[1]):
|
304 |
+
f.write(f"property float {prefix}_{j}\n".encode())
|
305 |
+
|
306 |
+
f.write(b"property float opacity\n")
|
307 |
+
|
308 |
+
for i in range(scales.shape[1]):
|
309 |
+
f.write(f"property float scale_{i}\n".encode())
|
310 |
+
for i in range(quats.shape[1]):
|
311 |
+
f.write(f"property float rot_{i}\n".encode())
|
312 |
+
|
313 |
+
f.write(b"end_header\n")
|
314 |
+
|
315 |
+
# Write vertex data
|
316 |
+
for i in range(num_points):
|
317 |
+
f.write(struct.pack("<fff", *means[i])) # x, y, z
|
318 |
+
f.write(struct.pack("<fff", 0, 0, 0)) # nx, ny, nz (zeros)
|
319 |
+
|
320 |
+
if colors is not None:
|
321 |
+
color = colors.detach().cpu().numpy()
|
322 |
+
for j in range(color.shape[1]):
|
323 |
+
f_dc = (color[i, j] - 0.5) / 0.2820947917738781
|
324 |
+
f.write(struct.pack("<f", f_dc))
|
325 |
+
else:
|
326 |
+
for data in [sh0, shN]:
|
327 |
+
for j in range(data.shape[1]):
|
328 |
+
f.write(struct.pack("<f", data[i, j]))
|
329 |
+
|
330 |
+
f.write(struct.pack("<f", opacities[i])) # opacity
|
331 |
+
|
332 |
+
for data in [scales, quats]:
|
333 |
+
for j in range(data.shape[1]):
|
334 |
+
f.write(struct.pack("<f", data[i, j]))
|
335 |
+
|
336 |
+
|
337 |
+
@dataclass
|
338 |
+
class GaussianOperator(GaussianBase):
|
339 |
+
|
340 |
+
def _compute_transform(
|
341 |
+
self,
|
342 |
+
means: torch.Tensor,
|
343 |
+
quats: torch.Tensor,
|
344 |
+
instance_pose: torch.Tensor,
|
345 |
+
):
|
346 |
+
"""Compute the transform of the GS models.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
means: tensor of gs means.
|
350 |
+
quats: tensor of gs quaternions.
|
351 |
+
instance_pose: instances poses in [x y z qx qy qz qw] format.
|
352 |
+
|
353 |
+
"""
|
354 |
+
# (x y z qx qy qz qw) -> (x y z qw qx qy qz)
|
355 |
+
instance_pose = instance_pose[[0, 1, 2, 6, 3, 4, 5]]
|
356 |
+
cur_instances_quats = self.quat_norm(instance_pose[3:])
|
357 |
+
rot_cur = quat_to_rotmat(cur_instances_quats, mode="wxyz")
|
358 |
+
|
359 |
+
# update the means
|
360 |
+
num_gs = means.shape[0]
|
361 |
+
trans_per_pts = torch.stack([instance_pose[:3]] * num_gs, dim=0)
|
362 |
+
quat_per_pts = torch.stack([instance_pose[3:]] * num_gs, dim=0)
|
363 |
+
rot_per_pts = torch.stack([rot_cur] * num_gs, dim=0) # (num_gs, 3, 3)
|
364 |
+
|
365 |
+
# update the means
|
366 |
+
cur_means = (
|
367 |
+
torch.bmm(rot_per_pts, means.unsqueeze(-1)).squeeze(-1)
|
368 |
+
+ trans_per_pts
|
369 |
+
)
|
370 |
+
|
371 |
+
# update the quats
|
372 |
+
_quats = self.quat_norm(quats)
|
373 |
+
cur_quats = quat_mult(quat_per_pts, _quats)
|
374 |
+
|
375 |
+
return cur_means, cur_quats
|
376 |
+
|
377 |
+
def get_gaussians(
|
378 |
+
self,
|
379 |
+
c2w: torch.Tensor = None,
|
380 |
+
instance_pose: torch.Tensor = None,
|
381 |
+
apply_activate: bool = False,
|
382 |
+
) -> "GaussianBase":
|
383 |
+
"""Get Gaussian data under the given instance_pose."""
|
384 |
+
if c2w is None:
|
385 |
+
c2w = torch.eye(4).to(self.device)
|
386 |
+
|
387 |
+
if instance_pose is not None:
|
388 |
+
# compute the transformed gs means and quats
|
389 |
+
world_means, world_quats = self._compute_transform(
|
390 |
+
self._means, self._quats, instance_pose.float().to(self.device)
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
world_means, world_quats = self._means, self._quats
|
394 |
+
|
395 |
+
# get colors of gaussians
|
396 |
+
if self._features_rest is not None:
|
397 |
+
colors = torch.cat(
|
398 |
+
(self._features_dc[:, None, :], self._features_rest), dim=1
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
colors = self._features_dc[:, None, :]
|
402 |
+
|
403 |
+
if self.sh_degree > 0:
|
404 |
+
viewdirs = world_means.detach() - c2w[..., :3, 3] # (N, 3)
|
405 |
+
viewdirs = viewdirs / viewdirs.norm(dim=-1, keepdim=True)
|
406 |
+
rgbs = spherical_harmonics(self.sh_degree, viewdirs, colors)
|
407 |
+
rgbs = torch.clamp(rgbs + 0.5, 0.0, 1.0)
|
408 |
+
else:
|
409 |
+
rgbs = torch.sigmoid(colors[:, 0, :])
|
410 |
+
|
411 |
+
gs_dict = dict(
|
412 |
+
_means=world_means,
|
413 |
+
_opacities=(
|
414 |
+
torch.sigmoid(self._opacities)
|
415 |
+
if apply_activate
|
416 |
+
else self._opacities
|
417 |
+
),
|
418 |
+
_rgbs=rgbs,
|
419 |
+
_scales=(
|
420 |
+
torch.exp(self._scales) if apply_activate else self._scales
|
421 |
+
),
|
422 |
+
_quats=self.quat_norm(world_quats),
|
423 |
+
_features_dc=self._features_dc,
|
424 |
+
_features_rest=self._features_rest,
|
425 |
+
sh_degree=self.sh_degree,
|
426 |
+
)
|
427 |
+
|
428 |
+
return GaussianOperator(**gs_dict)
|
429 |
+
|
430 |
+
def rescale(self, scale: float):
|
431 |
+
if scale != 1.0:
|
432 |
+
self._means *= scale
|
433 |
+
self._scales += torch.log(self._scales.new_tensor(scale))
|
434 |
+
|
435 |
+
def set_scale_by_height(self, real_height: float) -> None:
|
436 |
+
def _ptp(tensor, dim):
|
437 |
+
val = tensor.max(dim=dim).values - tensor.min(dim=dim).values
|
438 |
+
return val.tolist()
|
439 |
+
|
440 |
+
xyz_scale = max(_ptp(self._means, dim=0))
|
441 |
+
self.rescale(1 / (xyz_scale + 1e-6)) # Normalize to [-0.5, 0.5]
|
442 |
+
raw_height = _ptp(self._means, dim=0)[1]
|
443 |
+
scale = real_height / raw_height
|
444 |
+
|
445 |
+
self.rescale(scale)
|
446 |
+
|
447 |
+
return
|
448 |
+
|
449 |
+
@staticmethod
|
450 |
+
def resave_ply(
|
451 |
+
in_ply: str,
|
452 |
+
out_ply: str,
|
453 |
+
real_height: float = None,
|
454 |
+
instance_pose: np.ndarray = None,
|
455 |
+
sh_degree: int = 0,
|
456 |
+
) -> None:
|
457 |
+
gs_model = GaussianOperator.load_from_ply(in_ply, sh_degree)
|
458 |
+
|
459 |
+
if instance_pose is not None:
|
460 |
+
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
|
461 |
+
|
462 |
+
if real_height is not None:
|
463 |
+
gs_model.set_scale_by_height(real_height)
|
464 |
+
|
465 |
+
gs_model.save_to_ply(out_ply)
|
466 |
+
|
467 |
+
return
|
468 |
+
|
469 |
+
@staticmethod
|
470 |
+
def trans_to_quatpose(
|
471 |
+
rot_matrix: list[list[float]],
|
472 |
+
trans_matrix: list[float] = [0, 0, 0],
|
473 |
+
) -> torch.Tensor:
|
474 |
+
if isinstance(rot_matrix, list):
|
475 |
+
rot_matrix = np.array(rot_matrix)
|
476 |
+
|
477 |
+
rot = Rotation.from_matrix(rot_matrix)
|
478 |
+
qx, qy, qz, qw = rot.as_quat()
|
479 |
+
instance_pose = torch.tensor([*trans_matrix, qx, qy, qz, qw])
|
480 |
+
|
481 |
+
return instance_pose
|
482 |
+
|
483 |
+
def render(
|
484 |
+
self,
|
485 |
+
c2w: torch.Tensor,
|
486 |
+
Ks: torch.Tensor,
|
487 |
+
image_width: int,
|
488 |
+
image_height: int,
|
489 |
+
) -> RenderResult:
|
490 |
+
gs = self.get_gaussians(c2w, apply_activate=True)
|
491 |
+
renders, alphas, _ = rasterization(
|
492 |
+
means=gs._means,
|
493 |
+
quats=gs._quats,
|
494 |
+
scales=gs._scales,
|
495 |
+
opacities=gs._opacities.squeeze(),
|
496 |
+
colors=gs._rgbs,
|
497 |
+
viewmats=torch.linalg.inv(c2w)[None, ...],
|
498 |
+
Ks=Ks[None, ...],
|
499 |
+
width=image_width,
|
500 |
+
height=image_height,
|
501 |
+
packed=False,
|
502 |
+
absgrad=True,
|
503 |
+
sparse_grad=False,
|
504 |
+
# rasterize_mode="classic",
|
505 |
+
rasterize_mode="antialiased",
|
506 |
+
**{
|
507 |
+
"near_plane": 0.01,
|
508 |
+
"far_plane": 1000000000,
|
509 |
+
"radius_clip": 0.0,
|
510 |
+
"render_mode": "RGB+ED",
|
511 |
+
},
|
512 |
+
)
|
513 |
+
renders = renders[0]
|
514 |
+
alphas = alphas[0].squeeze(-1)
|
515 |
+
|
516 |
+
assert renders.shape[-1] == 4, f"Must render rgb, depth and alpha"
|
517 |
+
rendered_rgb, rendered_depth = torch.split(renders, [3, 1], dim=-1)
|
518 |
+
|
519 |
+
return RenderResult(
|
520 |
+
torch.clamp(rendered_rgb, min=0, max=1),
|
521 |
+
rendered_depth,
|
522 |
+
alphas[..., None],
|
523 |
+
)
|
524 |
+
|
525 |
+
|
526 |
+
if __name__ == "__main__":
|
527 |
+
input_gs = "outputs/test/debug.ply"
|
528 |
+
output_gs = "./debug_v3.ply"
|
529 |
+
gs_model: GaussianOperator = GaussianOperator.load_from_ply(input_gs)
|
530 |
+
|
531 |
+
# 绕 x 轴旋转 180°
|
532 |
+
R_x = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
|
533 |
+
instance_pose = gs_model.trans_to_quatpose(R_x)
|
534 |
+
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
|
535 |
+
|
536 |
+
gs_model.rescale(2)
|
537 |
+
|
538 |
+
gs_model.set_scale_by_height(1.3)
|
539 |
+
|
540 |
+
gs_model.save_to_ply(output_gs)
|
asset3d_gen/models/segment.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from typing import Literal, Union
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import rembg
|
8 |
+
import torch
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
from PIL import Image
|
11 |
+
from segment_anything import (
|
12 |
+
SamAutomaticMaskGenerator,
|
13 |
+
SamPredictor,
|
14 |
+
sam_model_registry,
|
15 |
+
)
|
16 |
+
from asset3d_gen.utils.process_media import filter_small_connected_components
|
17 |
+
from asset3d_gen.validators.quality_checkers import ImageSegChecker
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
os.environ["https_proxy"] = "http://10.9.0.31:8838"
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"resize_pil",
|
26 |
+
"trellis_preprocess",
|
27 |
+
"SAMRemover",
|
28 |
+
"SAMPredictor",
|
29 |
+
"RembgRemover",
|
30 |
+
"get_segmented_image",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def resize_pil(image: Image.Image, max_size: int = 1024) -> Image.Image:
|
35 |
+
max_size = max(image.size)
|
36 |
+
scale = min(1, 1024 / max_size)
|
37 |
+
if scale < 1:
|
38 |
+
new_size = (int(image.width * scale), int(image.height * scale))
|
39 |
+
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
40 |
+
|
41 |
+
return image
|
42 |
+
|
43 |
+
|
44 |
+
def trellis_preprocess(image: Image.Image) -> Image.Image:
|
45 |
+
"""Process the input image as trellis done."""
|
46 |
+
image_np = np.array(image)
|
47 |
+
alpha = image_np[:, :, 3]
|
48 |
+
bbox = np.argwhere(alpha > 0.8 * 255)
|
49 |
+
bbox = (
|
50 |
+
np.min(bbox[:, 1]),
|
51 |
+
np.min(bbox[:, 0]),
|
52 |
+
np.max(bbox[:, 1]),
|
53 |
+
np.max(bbox[:, 0]),
|
54 |
+
)
|
55 |
+
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
56 |
+
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
|
57 |
+
size = int(size * 1.2)
|
58 |
+
bbox = (
|
59 |
+
center[0] - size // 2,
|
60 |
+
center[1] - size // 2,
|
61 |
+
center[0] + size // 2,
|
62 |
+
center[1] + size // 2,
|
63 |
+
)
|
64 |
+
image = image.crop(bbox)
|
65 |
+
image = image.resize((518, 518), Image.Resampling.LANCZOS)
|
66 |
+
image = np.array(image).astype(np.float32) / 255
|
67 |
+
image = image[:, :, :3] * image[:, :, 3:4]
|
68 |
+
image = Image.fromarray((image * 255).astype(np.uint8))
|
69 |
+
|
70 |
+
return image
|
71 |
+
|
72 |
+
|
73 |
+
class SAMRemover(object):
|
74 |
+
"""Loading SAM models and performing background removal on images.
|
75 |
+
|
76 |
+
Attributes:
|
77 |
+
checkpoint (str): Path to the model checkpoint.
|
78 |
+
model_type (str): Type of the SAM model to load (default: "vit_h").
|
79 |
+
area_ratio (float): Area ratio filtering small connected components.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
checkpoint: str = None,
|
85 |
+
model_type: str = "vit_h",
|
86 |
+
area_ratio: float = 15,
|
87 |
+
):
|
88 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
89 |
+
self.model_type = model_type
|
90 |
+
self.area_ratio = area_ratio
|
91 |
+
|
92 |
+
if checkpoint is None:
|
93 |
+
suffix = "sam"
|
94 |
+
model_path = snapshot_download(
|
95 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
|
96 |
+
)
|
97 |
+
checkpoint = os.path.join(
|
98 |
+
model_path, suffix, "sam_vit_h_4b8939.pth"
|
99 |
+
)
|
100 |
+
|
101 |
+
self.mask_generator = self._load_sam_model(checkpoint)
|
102 |
+
|
103 |
+
def _load_sam_model(self, checkpoint: str) -> SamAutomaticMaskGenerator:
|
104 |
+
sam = sam_model_registry[self.model_type](checkpoint=checkpoint)
|
105 |
+
sam.to(device=self.device)
|
106 |
+
|
107 |
+
return SamAutomaticMaskGenerator(sam)
|
108 |
+
|
109 |
+
def __call__(
|
110 |
+
self, image: Union[str, Image.Image, np.ndarray], save_path: str = None
|
111 |
+
) -> Image.Image:
|
112 |
+
"""Removes the background from an image using the SAM model.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
image (Union[str, Image.Image, np.ndarray]): Input image,
|
116 |
+
can be a file path, PIL Image, or numpy array.
|
117 |
+
save_path (str): Path to save the output image (default: None).
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
Image.Image: The image with background removed,
|
121 |
+
including an alpha channel.
|
122 |
+
"""
|
123 |
+
# Convert input to numpy array
|
124 |
+
if isinstance(image, str):
|
125 |
+
image = Image.open(image)
|
126 |
+
elif isinstance(image, np.ndarray):
|
127 |
+
image = Image.fromarray(image).convert("RGB")
|
128 |
+
image = resize_pil(image)
|
129 |
+
image = np.array(image.convert("RGB"))
|
130 |
+
|
131 |
+
# Generate masks
|
132 |
+
masks = self.mask_generator.generate(image)
|
133 |
+
masks = sorted(masks, key=lambda x: x["area"], reverse=True)
|
134 |
+
|
135 |
+
if not masks:
|
136 |
+
logger.warning(
|
137 |
+
"Segmentation failed: No mask generated, return raw image."
|
138 |
+
)
|
139 |
+
output_image = Image.fromarray(image, mode="RGB")
|
140 |
+
else:
|
141 |
+
# Use the largest mask
|
142 |
+
best_mask = masks[0]["segmentation"]
|
143 |
+
mask = (best_mask * 255).astype(np.uint8)
|
144 |
+
mask = filter_small_connected_components(
|
145 |
+
mask, area_ratio=self.area_ratio
|
146 |
+
)
|
147 |
+
# Apply the mask to remove the background
|
148 |
+
background_removed = cv2.bitwise_and(image, image, mask=mask)
|
149 |
+
output_image = np.dstack((background_removed, mask))
|
150 |
+
output_image = Image.fromarray(output_image, mode="RGBA")
|
151 |
+
|
152 |
+
if save_path is not None:
|
153 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
154 |
+
output_image.save(save_path)
|
155 |
+
|
156 |
+
return output_image
|
157 |
+
|
158 |
+
|
159 |
+
class SAMPredictor(object):
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
checkpoint: str = None,
|
163 |
+
model_type: str = "vit_h",
|
164 |
+
binary_thresh: float = 0.1,
|
165 |
+
device: str = "cuda"
|
166 |
+
):
|
167 |
+
self.device = device
|
168 |
+
self.model_type = model_type
|
169 |
+
|
170 |
+
if checkpoint is None:
|
171 |
+
suffix = "sam"
|
172 |
+
model_path = snapshot_download(
|
173 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
|
174 |
+
)
|
175 |
+
checkpoint = os.path.join(
|
176 |
+
model_path, suffix, "sam_vit_h_4b8939.pth"
|
177 |
+
)
|
178 |
+
|
179 |
+
self.predictor = self._load_sam_model(checkpoint)
|
180 |
+
self.binary_thresh = binary_thresh
|
181 |
+
|
182 |
+
def _load_sam_model(self, checkpoint: str) -> SamPredictor:
|
183 |
+
sam = sam_model_registry[self.model_type](checkpoint=checkpoint)
|
184 |
+
sam.to(device=self.device)
|
185 |
+
|
186 |
+
return SamPredictor(sam)
|
187 |
+
|
188 |
+
def preprocess_image(self, image: Image.Image) -> np.ndarray:
|
189 |
+
if isinstance(image, str):
|
190 |
+
image = Image.open(image)
|
191 |
+
elif isinstance(image, np.ndarray):
|
192 |
+
image = Image.fromarray(image).convert("RGB")
|
193 |
+
|
194 |
+
image = resize_pil(image)
|
195 |
+
image = np.array(image.convert("RGB"))
|
196 |
+
|
197 |
+
return image
|
198 |
+
|
199 |
+
def generate_masks(
|
200 |
+
self,
|
201 |
+
image: np.ndarray,
|
202 |
+
selected_points: list[list[int]],
|
203 |
+
) -> np.ndarray:
|
204 |
+
if len(selected_points) == 0:
|
205 |
+
return []
|
206 |
+
|
207 |
+
points = (
|
208 |
+
torch.Tensor([p for p, _ in selected_points])
|
209 |
+
.to(self.predictor.device)
|
210 |
+
.unsqueeze(1)
|
211 |
+
)
|
212 |
+
|
213 |
+
labels = (
|
214 |
+
torch.Tensor([int(l) for _, l in selected_points])
|
215 |
+
.to(self.predictor.device)
|
216 |
+
.unsqueeze(1)
|
217 |
+
)
|
218 |
+
|
219 |
+
transformed_points = self.predictor.transform.apply_coords_torch(
|
220 |
+
points, image.shape[:2]
|
221 |
+
)
|
222 |
+
|
223 |
+
masks, scores, _ = self.predictor.predict_torch(
|
224 |
+
point_coords=transformed_points,
|
225 |
+
point_labels=labels,
|
226 |
+
multimask_output=True,
|
227 |
+
)
|
228 |
+
valid_mask = masks[:, torch.argmax(scores, dim=1)]
|
229 |
+
masks_pos = valid_mask[labels[:, 0] == 1, 0].cpu().detach().numpy()
|
230 |
+
masks_neg = valid_mask[labels[:, 0] == 0, 0].cpu().detach().numpy()
|
231 |
+
if len(masks_neg) == 0:
|
232 |
+
masks_neg = np.zeros_like(masks_pos)
|
233 |
+
if len(masks_pos) == 0:
|
234 |
+
masks_pos = np.zeros_like(masks_neg)
|
235 |
+
masks_neg = masks_neg.max(axis=0, keepdims=True)
|
236 |
+
masks_pos = masks_pos.max(axis=0, keepdims=True)
|
237 |
+
valid_mask = (masks_pos.astype(int) - masks_neg.astype(int)).clip(0, 1)
|
238 |
+
|
239 |
+
binary_mask = (valid_mask > self.binary_thresh).astype(np.int32)
|
240 |
+
|
241 |
+
return [(mask, f"mask_{i}") for i, mask in enumerate(binary_mask)]
|
242 |
+
|
243 |
+
def get_segmented_image(
|
244 |
+
self, image: np.ndarray, masks: list[tuple[np.ndarray, str]]
|
245 |
+
) -> Image.Image:
|
246 |
+
seg_image = Image.fromarray(image, mode="RGB")
|
247 |
+
alpha_channel = np.zeros(
|
248 |
+
(seg_image.height, seg_image.width), dtype=np.uint8
|
249 |
+
)
|
250 |
+
for mask, _ in masks:
|
251 |
+
# Use the maximum to combine multiple masks
|
252 |
+
alpha_channel = np.maximum(alpha_channel, mask)
|
253 |
+
|
254 |
+
alpha_channel = np.clip(alpha_channel, 0, 1)
|
255 |
+
alpha_channel = (alpha_channel * 255).astype(np.uint8)
|
256 |
+
alpha_image = Image.fromarray(alpha_channel, mode="L")
|
257 |
+
r, g, b = seg_image.split()
|
258 |
+
seg_image = Image.merge("RGBA", (r, g, b, alpha_image))
|
259 |
+
|
260 |
+
return seg_image
|
261 |
+
|
262 |
+
def __call__(
|
263 |
+
self,
|
264 |
+
image: Union[str, Image.Image, np.ndarray],
|
265 |
+
selected_points: list[list[int]],
|
266 |
+
) -> Image.Image:
|
267 |
+
image = self.preprocess_image(image)
|
268 |
+
self.predictor.set_image(image)
|
269 |
+
masks = self.generate_masks(image, selected_points)
|
270 |
+
|
271 |
+
return self.get_segmented_image(image, masks)
|
272 |
+
|
273 |
+
|
274 |
+
class RembgRemover(object):
|
275 |
+
def __init__(self):
|
276 |
+
self.rembg_session = rembg.new_session("u2net")
|
277 |
+
|
278 |
+
def __call__(
|
279 |
+
self, image: Union[str, Image.Image, np.ndarray], save_path: str = None
|
280 |
+
) -> Image.Image:
|
281 |
+
if isinstance(image, str):
|
282 |
+
image = Image.open(image)
|
283 |
+
elif isinstance(image, np.ndarray):
|
284 |
+
image = Image.fromarray(image)
|
285 |
+
|
286 |
+
image = resize_pil(image)
|
287 |
+
output_image = rembg.remove(image, session=self.rembg_session)
|
288 |
+
|
289 |
+
if save_path is not None:
|
290 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
291 |
+
output_image.save(save_path)
|
292 |
+
|
293 |
+
return output_image
|
294 |
+
|
295 |
+
|
296 |
+
def invert_rgba_pil(
|
297 |
+
image: Image.Image, mask: Image.Image, save_path: str = None
|
298 |
+
) -> Image.Image:
|
299 |
+
mask = (255 - np.array(mask))[..., None]
|
300 |
+
image_array = np.concatenate([np.array(image), mask], axis=-1)
|
301 |
+
inverted_image = Image.fromarray(image_array, "RGBA")
|
302 |
+
|
303 |
+
if save_path is not None:
|
304 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
305 |
+
inverted_image.save(save_path)
|
306 |
+
|
307 |
+
return inverted_image
|
308 |
+
|
309 |
+
|
310 |
+
def get_segmented_image(
|
311 |
+
image: Image.Image,
|
312 |
+
sam_remover: SAMRemover,
|
313 |
+
rbg_remover: RembgRemover,
|
314 |
+
seg_checker: ImageSegChecker = None,
|
315 |
+
save_path: str = None,
|
316 |
+
mode: Literal["loose", "strict"] = "loose",
|
317 |
+
) -> Image.Image:
|
318 |
+
def _is_valid_seg(raw_img: Image.Image, seg_img: Image.Image) -> bool:
|
319 |
+
if seg_checker is None:
|
320 |
+
return True
|
321 |
+
return raw_img.mode == "RGBA" and seg_checker([raw_img, seg_img])[0]
|
322 |
+
|
323 |
+
out_sam = f"{save_path}_sam.png" if save_path else None
|
324 |
+
out_sam_inv = f"{save_path}_sam_inv.png" if save_path else None
|
325 |
+
out_rbg = f"{save_path}_rbg.png" if save_path else None
|
326 |
+
|
327 |
+
seg_image = sam_remover(image, out_sam)
|
328 |
+
seg_image = seg_image.convert("RGBA")
|
329 |
+
_, _, _, alpha = seg_image.split()
|
330 |
+
seg_image_inv = invert_rgba_pil(image.convert("RGB"), alpha, out_sam_inv)
|
331 |
+
seg_image_rbg = rbg_remover(image, out_rbg)
|
332 |
+
|
333 |
+
final_image = None
|
334 |
+
if _is_valid_seg(image, seg_image):
|
335 |
+
final_image = seg_image
|
336 |
+
elif _is_valid_seg(image, seg_image_inv):
|
337 |
+
final_image = seg_image_inv
|
338 |
+
elif _is_valid_seg(image, seg_image_rbg):
|
339 |
+
logger.warning(f"Failed to segment by `SAM`, retry with `rembg`.")
|
340 |
+
final_image = seg_image_rbg
|
341 |
+
else:
|
342 |
+
if mode == "strict":
|
343 |
+
raise RuntimeError(
|
344 |
+
f"Failed to segment by `SAM` or `rembg`, abort."
|
345 |
+
)
|
346 |
+
logger.warning("Failed to segment by SAM or rembg, use raw image.")
|
347 |
+
final_image = image.convert("RGBA")
|
348 |
+
|
349 |
+
if save_path:
|
350 |
+
final_image.save(save_path)
|
351 |
+
|
352 |
+
final_image = trellis_preprocess(final_image)
|
353 |
+
|
354 |
+
return final_image
|
355 |
+
|
356 |
+
|
357 |
+
if __name__ == "__main__":
|
358 |
+
input_image = "outputs/text2image/demo_objects/electrical/sample_0.jpg"
|
359 |
+
output_image = "sample_0_seg2.png"
|
360 |
+
|
361 |
+
# input_image = "outputs/text2image/tmp/coffee_machine.jpeg"
|
362 |
+
# output_image = "outputs/text2image/tmp/coffee_machine_seg.png"
|
363 |
+
|
364 |
+
# input_image = "outputs/text2image/tmp/bucket.jpeg"
|
365 |
+
# output_image = "outputs/text2image/tmp/bucket_seg.png"
|
366 |
+
|
367 |
+
remover = SAMRemover(
|
368 |
+
# checkpoint="/horizon-bucket/robot_lab/users/xinjie.wang/weights/sam/sam_vit_h_4b8939.pth", # noqa
|
369 |
+
model_type="vit_h",
|
370 |
+
)
|
371 |
+
remover = RembgRemover()
|
372 |
+
# clean_image = remover(input_image)
|
373 |
+
# clean_image.save(output_image)
|
374 |
+
get_segmented_image(
|
375 |
+
Image.open(input_image), remover, remover, None, "./test_seg.png"
|
376 |
+
)
|
asset3d_gen/models/super_resolution.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
8 |
+
from PIL import Image
|
9 |
+
from asset3d_gen.data.utils import get_images_from_grid
|
10 |
+
|
11 |
+
os.environ["https_proxy"] = "http://10.9.0.31:8838"
|
12 |
+
|
13 |
+
logging.basicConfig(
|
14 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
15 |
+
)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
"ImageStableSR",
|
21 |
+
"ImageRealESRGAN",
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
class ImageStableSR:
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
model_path: str = "stabilityai/stable-diffusion-x4-upscaler",
|
29 |
+
device="cuda",
|
30 |
+
) -> None:
|
31 |
+
from diffusers import StableDiffusionUpscalePipeline
|
32 |
+
|
33 |
+
self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
|
34 |
+
model_path,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
).to(device)
|
37 |
+
self.up_pipeline_x4.set_progress_bar_config(disable=True)
|
38 |
+
self.up_pipeline_x4.enable_model_cpu_offload()
|
39 |
+
|
40 |
+
def __call__(
|
41 |
+
self,
|
42 |
+
image: Union[Image.Image, np.ndarray],
|
43 |
+
prompt: str = "",
|
44 |
+
infer_step: int = 20,
|
45 |
+
) -> Image.Image:
|
46 |
+
if isinstance(image, np.ndarray):
|
47 |
+
image = Image.fromarray(image)
|
48 |
+
|
49 |
+
image = image.convert("RGB")
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
upscaled_image = self.up_pipeline_x4(
|
53 |
+
image=image,
|
54 |
+
prompt=[prompt],
|
55 |
+
num_inference_steps=infer_step,
|
56 |
+
).images[0]
|
57 |
+
|
58 |
+
return upscaled_image
|
59 |
+
|
60 |
+
|
61 |
+
class ImageRealESRGAN:
|
62 |
+
def __init__(self, outscale: int, model_path: str = None) -> None:
|
63 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
64 |
+
from realesrgan import RealESRGANer
|
65 |
+
|
66 |
+
self.outscale = outscale
|
67 |
+
model = RRDBNet(
|
68 |
+
num_in_ch=3,
|
69 |
+
num_out_ch=3,
|
70 |
+
num_feat=64,
|
71 |
+
num_block=23,
|
72 |
+
num_grow_ch=32,
|
73 |
+
scale=4,
|
74 |
+
)
|
75 |
+
if model_path is None:
|
76 |
+
suffix = "super_resolution"
|
77 |
+
model_path = snapshot_download(
|
78 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
|
79 |
+
)
|
80 |
+
model_path = os.path.join(
|
81 |
+
model_path, suffix, "RealESRGAN_x4plus.pth"
|
82 |
+
)
|
83 |
+
|
84 |
+
self.upsampler = RealESRGANer(
|
85 |
+
scale=4,
|
86 |
+
model_path=model_path,
|
87 |
+
model=model,
|
88 |
+
pre_pad=0,
|
89 |
+
half=True,
|
90 |
+
)
|
91 |
+
|
92 |
+
def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
|
93 |
+
if isinstance(image, Image.Image):
|
94 |
+
image = np.array(image)
|
95 |
+
|
96 |
+
with torch.no_grad():
|
97 |
+
output, _ = self.upsampler.enhance(image, outscale=self.outscale)
|
98 |
+
|
99 |
+
return Image.fromarray(output)
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"
|
104 |
+
|
105 |
+
# Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
|
106 |
+
# model_path = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/super_resolution/RealESRGAN_x4plus.pth" # noqa
|
107 |
+
super_model = ImageRealESRGAN(outscale=4)
|
108 |
+
multiviews = get_images_from_grid(color_path, img_size=512)
|
109 |
+
multiviews = [super_model(img.convert("RGB")) for img in multiviews]
|
110 |
+
for idx, img in enumerate(multiviews):
|
111 |
+
img.save(f"sr{idx}.png")
|
112 |
+
|
113 |
+
# # Use stable diffusion for x4 (512->2048) image super resolution.
|
114 |
+
# super_model = ImageStableSR()
|
115 |
+
# multiviews = get_images_from_grid(color_path, img_size=512)
|
116 |
+
# multiviews = [super_model(img) for img in multiviews]
|
117 |
+
# for idx, img in enumerate(multiviews):
|
118 |
+
# img.save(f"sr_stable{idx}.png")
|
asset3d_gen/models/text_model.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import (
|
5 |
+
AutoencoderKL,
|
6 |
+
EulerDiscreteScheduler,
|
7 |
+
UNet2DConditionModel,
|
8 |
+
)
|
9 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
10 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
11 |
+
from kolors.models.unet_2d_condition import (
|
12 |
+
UNet2DConditionModel as UNet2DConditionModelIP,
|
13 |
+
)
|
14 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
|
15 |
+
StableDiffusionXLPipeline,
|
16 |
+
)
|
17 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import ( # noqa
|
18 |
+
StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
|
19 |
+
)
|
20 |
+
from PIL import Image
|
21 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
22 |
+
|
23 |
+
logging.basicConfig(level=logging.INFO)
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
"build_text2img_ip_pipeline",
|
29 |
+
"build_text2img_pipeline",
|
30 |
+
"text2img_gen",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def build_text2img_ip_pipeline(
|
35 |
+
ckpt_dir: str,
|
36 |
+
ref_scale: float,
|
37 |
+
device: str = "cuda",
|
38 |
+
) -> StableDiffusionXLPipelineIP:
|
39 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
40 |
+
f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
|
41 |
+
).half()
|
42 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
|
43 |
+
vae = AutoencoderKL.from_pretrained(
|
44 |
+
f"{ckpt_dir}/vae", revision=None
|
45 |
+
).half()
|
46 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
47 |
+
unet = UNet2DConditionModelIP.from_pretrained(
|
48 |
+
f"{ckpt_dir}/unet", revision=None
|
49 |
+
).half()
|
50 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
51 |
+
f"{ckpt_dir}/../Kolors-IP-Adapter-Plus/image_encoder",
|
52 |
+
ignore_mismatched_sizes=True,
|
53 |
+
).to(dtype=torch.float16)
|
54 |
+
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
|
55 |
+
|
56 |
+
pipe = StableDiffusionXLPipelineIP(
|
57 |
+
vae=vae,
|
58 |
+
text_encoder=text_encoder,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
unet=unet,
|
61 |
+
scheduler=scheduler,
|
62 |
+
image_encoder=image_encoder,
|
63 |
+
feature_extractor=clip_image_processor,
|
64 |
+
force_zeros_for_empty_prompt=False,
|
65 |
+
)
|
66 |
+
|
67 |
+
if hasattr(pipe.unet, "encoder_hid_proj"):
|
68 |
+
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
|
69 |
+
|
70 |
+
pipe.load_ip_adapter(
|
71 |
+
f"{ckpt_dir}/../Kolors-IP-Adapter-Plus",
|
72 |
+
subfolder="",
|
73 |
+
weight_name=["ip_adapter_plus_general.bin"],
|
74 |
+
)
|
75 |
+
pipe.set_ip_adapter_scale([ref_scale])
|
76 |
+
|
77 |
+
pipe = pipe.to(device)
|
78 |
+
pipe.enable_model_cpu_offload()
|
79 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
80 |
+
# pipe.enable_vae_slicing()
|
81 |
+
|
82 |
+
return pipe
|
83 |
+
|
84 |
+
|
85 |
+
def build_text2img_pipeline(
|
86 |
+
ckpt_dir: str,
|
87 |
+
device: str = "cuda",
|
88 |
+
) -> StableDiffusionXLPipeline:
|
89 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
90 |
+
f"{ckpt_dir}/text_encoder", torch_dtype=torch.float16
|
91 |
+
).half()
|
92 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f"{ckpt_dir}/text_encoder")
|
93 |
+
vae = AutoencoderKL.from_pretrained(
|
94 |
+
f"{ckpt_dir}/vae", revision=None
|
95 |
+
).half()
|
96 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
97 |
+
unet = UNet2DConditionModel.from_pretrained(
|
98 |
+
f"{ckpt_dir}/unet", revision=None
|
99 |
+
).half()
|
100 |
+
pipe = StableDiffusionXLPipeline(
|
101 |
+
vae=vae,
|
102 |
+
text_encoder=text_encoder,
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
unet=unet,
|
105 |
+
scheduler=scheduler,
|
106 |
+
force_zeros_for_empty_prompt=False,
|
107 |
+
)
|
108 |
+
pipe = pipe.to(device)
|
109 |
+
pipe.enable_model_cpu_offload()
|
110 |
+
pipe.enable_xformers_memory_efficient_attention()
|
111 |
+
|
112 |
+
return pipe
|
113 |
+
|
114 |
+
|
115 |
+
def text2img_gen(
|
116 |
+
prompt: str,
|
117 |
+
n_sample: int,
|
118 |
+
guidance_scale: float,
|
119 |
+
pipeline: StableDiffusionXLPipeline | StableDiffusionXLPipelineIP,
|
120 |
+
ip_image: Image.Image | str = None,
|
121 |
+
image_wh: tuple[int, int] = [1024, 1024],
|
122 |
+
infer_step: int = 50,
|
123 |
+
ip_image_size: int = 512,
|
124 |
+
) -> list[Image.Image]:
|
125 |
+
prompt = "Single " + prompt + ", in the center of the image"
|
126 |
+
prompt += ", high quality, high resolution, best quality, white background, 3D style," # noqa
|
127 |
+
logger.info(f"Processing prompt: {prompt}")
|
128 |
+
|
129 |
+
kwargs = dict(
|
130 |
+
prompt=prompt,
|
131 |
+
height=image_wh[1],
|
132 |
+
width=image_wh[0],
|
133 |
+
num_inference_steps=infer_step,
|
134 |
+
guidance_scale=guidance_scale,
|
135 |
+
num_images_per_prompt=n_sample,
|
136 |
+
)
|
137 |
+
if ip_image is not None:
|
138 |
+
if isinstance(ip_image, str):
|
139 |
+
ip_image = Image.open(ip_image)
|
140 |
+
ip_image = ip_image.resize((ip_image_size, ip_image_size))
|
141 |
+
kwargs.update(ip_adapter_image=[ip_image])
|
142 |
+
|
143 |
+
return pipeline(**kwargs).images
|
asset3d_gen/models/texture_model.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from kolors.models.controlnet import ControlNetModel
|
7 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
8 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
9 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
10 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import (
|
11 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
12 |
+
)
|
13 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
"build_texture_gen_pipe",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def build_texture_gen_pipe(
|
21 |
+
base_ckpt_dir: str,
|
22 |
+
controlnet_ckpt: str = None,
|
23 |
+
ip_adapt_scale: float = 0,
|
24 |
+
device: str = "cuda",
|
25 |
+
) -> DiffusionPipeline:
|
26 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(
|
27 |
+
f"{base_ckpt_dir}/Kolors/text_encoder"
|
28 |
+
)
|
29 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
30 |
+
f"{base_ckpt_dir}/Kolors/text_encoder", torch_dtype=torch.float16
|
31 |
+
).half()
|
32 |
+
vae = AutoencoderKL.from_pretrained(
|
33 |
+
f"{base_ckpt_dir}/Kolors/vae", revision=None
|
34 |
+
).half()
|
35 |
+
unet = UNet2DConditionModel.from_pretrained(
|
36 |
+
f"{base_ckpt_dir}/Kolors/unet", revision=None
|
37 |
+
).half()
|
38 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(
|
39 |
+
f"{base_ckpt_dir}/Kolors/scheduler"
|
40 |
+
)
|
41 |
+
|
42 |
+
if controlnet_ckpt is None:
|
43 |
+
suffix = "geo_cond_mv"
|
44 |
+
model_path = snapshot_download(
|
45 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
|
46 |
+
)
|
47 |
+
controlnet_ckpt = os.path.join(model_path, suffix)
|
48 |
+
|
49 |
+
controlnet = ControlNetModel.from_pretrained(
|
50 |
+
controlnet_ckpt, use_safetensors=True
|
51 |
+
).half()
|
52 |
+
|
53 |
+
# IP-Adapter model
|
54 |
+
image_encoder = None
|
55 |
+
clip_image_processor = None
|
56 |
+
if ip_adapt_scale > 0:
|
57 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
58 |
+
f"{base_ckpt_dir}/Kolors-IP-Adapter-Plus/image_encoder",
|
59 |
+
# ignore_mismatched_sizes=True,
|
60 |
+
).to(dtype=torch.float16)
|
61 |
+
ip_img_size = 336
|
62 |
+
clip_image_processor = CLIPImageProcessor(
|
63 |
+
size=ip_img_size, crop_size=ip_img_size
|
64 |
+
)
|
65 |
+
|
66 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline(
|
67 |
+
vae=vae,
|
68 |
+
controlnet=controlnet,
|
69 |
+
text_encoder=text_encoder,
|
70 |
+
tokenizer=tokenizer,
|
71 |
+
unet=unet,
|
72 |
+
scheduler=scheduler,
|
73 |
+
image_encoder=image_encoder,
|
74 |
+
feature_extractor=clip_image_processor,
|
75 |
+
force_zeros_for_empty_prompt=False,
|
76 |
+
)
|
77 |
+
|
78 |
+
if ip_adapt_scale > 0:
|
79 |
+
if hasattr(pipe.unet, "encoder_hid_proj"):
|
80 |
+
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
|
81 |
+
pipe.load_ip_adapter(
|
82 |
+
f"{base_ckpt_dir}/Kolors-IP-Adapter-Plus",
|
83 |
+
subfolder="",
|
84 |
+
weight_name=["ip_adapter_plus_general.bin"],
|
85 |
+
)
|
86 |
+
pipe.set_ip_adapter_scale([ip_adapt_scale])
|
87 |
+
|
88 |
+
pipe = pipe.to(device)
|
89 |
+
pipe.enable_model_cpu_offload()
|
90 |
+
|
91 |
+
return pipe
|
asset3d_gen/scripts/render_gs.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
from asset3d_gen.data.utils import (
|
11 |
+
CameraSetting,
|
12 |
+
init_kal_camera,
|
13 |
+
normalize_vertices_array,
|
14 |
+
)
|
15 |
+
from asset3d_gen.models.gs_model import GaussianOperator
|
16 |
+
|
17 |
+
logging.basicConfig(
|
18 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
19 |
+
)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
def parse_args():
|
24 |
+
parser = argparse.ArgumentParser(description="Render GS color images")
|
25 |
+
|
26 |
+
parser.add_argument(
|
27 |
+
"--input_gs", type=str, help="Input render GS.ply path."
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--output_path",
|
31 |
+
type=str,
|
32 |
+
help="Output grid image path for rendered GS color images.",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--num_images", type=int, default=6, help="Number of images to render."
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--elevation",
|
39 |
+
type=float,
|
40 |
+
nargs="+",
|
41 |
+
default=[20.0, -10.0],
|
42 |
+
help="Elevation angles for the camera (default: [20.0, -10.0])",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--distance",
|
46 |
+
type=float,
|
47 |
+
default=5,
|
48 |
+
help="Camera distance (default: 5)",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--resolution_hw",
|
52 |
+
type=int,
|
53 |
+
nargs=2,
|
54 |
+
default=(512, 512),
|
55 |
+
help="Resolution of the output images (default: (512, 512))",
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"--fov",
|
59 |
+
type=float,
|
60 |
+
default=30,
|
61 |
+
help="Field of view in degrees (default: 30)",
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--device",
|
65 |
+
type=str,
|
66 |
+
choices=["cpu", "cuda"],
|
67 |
+
default="cuda",
|
68 |
+
help="Device to run on (default: `cuda`)",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--image_size",
|
72 |
+
type=int,
|
73 |
+
default=512,
|
74 |
+
help="Output image size for single view in color grid (default: 512)",
|
75 |
+
)
|
76 |
+
|
77 |
+
args = parser.parse_args()
|
78 |
+
|
79 |
+
return args
|
80 |
+
|
81 |
+
|
82 |
+
def load_gs_model(
|
83 |
+
input_gs: str, pre_quat: list[float] = [0.0, 0.7071, 0.0, -0.7071]
|
84 |
+
) -> GaussianOperator:
|
85 |
+
gs_model = GaussianOperator.load_from_ply(input_gs)
|
86 |
+
# Normalize vertices to [-1, 1], center to (0, 0, 0).
|
87 |
+
_, scale, center = normalize_vertices_array(gs_model._means)
|
88 |
+
scale, center = float(scale), center.tolist()
|
89 |
+
transpose = [*[-v for v in center], *pre_quat]
|
90 |
+
instance_pose = torch.tensor(transpose).to(gs_model.device)
|
91 |
+
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
|
92 |
+
gs_model.rescale(scale)
|
93 |
+
|
94 |
+
return gs_model
|
95 |
+
|
96 |
+
|
97 |
+
def entrypoint(input_gs: str = None, output_path: str = None) -> None:
|
98 |
+
args = parse_args()
|
99 |
+
if isinstance(input_gs, str):
|
100 |
+
args.input_gs = input_gs
|
101 |
+
if isinstance(output_path, str):
|
102 |
+
args.output_path = output_path
|
103 |
+
|
104 |
+
# Setup camera parameters
|
105 |
+
camera_params = CameraSetting(
|
106 |
+
num_images=args.num_images,
|
107 |
+
elevation=args.elevation,
|
108 |
+
distance=args.distance,
|
109 |
+
resolution_hw=args.resolution_hw,
|
110 |
+
fov=math.radians(args.fov),
|
111 |
+
device=args.device,
|
112 |
+
)
|
113 |
+
camera = init_kal_camera(camera_params)
|
114 |
+
matrix_mv = camera.view_matrix() # (n_cam 4 4) world2cam
|
115 |
+
matrix_mv[:, :3, 3] = -matrix_mv[:, :3, 3]
|
116 |
+
w2cs = matrix_mv.to(camera_params.device)
|
117 |
+
c2ws = [torch.linalg.inv(matrix) for matrix in w2cs]
|
118 |
+
Ks = torch.tensor(camera_params.Ks).to(camera_params.device)
|
119 |
+
|
120 |
+
# Load GS model and normalize.
|
121 |
+
gs_model = load_gs_model(args.input_gs, pre_quat=[0.0, 0.0, 1.0, 0.0])
|
122 |
+
|
123 |
+
# Render GS color images.
|
124 |
+
images = []
|
125 |
+
for idx in tqdm(range(len(c2ws)), desc="Rendering GS"):
|
126 |
+
result = gs_model.render(
|
127 |
+
c2ws[idx],
|
128 |
+
Ks=Ks,
|
129 |
+
image_width=camera_params.resolution_hw[1],
|
130 |
+
image_height=camera_params.resolution_hw[0],
|
131 |
+
)
|
132 |
+
color = cv2.resize(
|
133 |
+
result.rgba,
|
134 |
+
(args.image_size, args.image_size),
|
135 |
+
interpolation=cv2.INTER_AREA,
|
136 |
+
)
|
137 |
+
images.append(color)
|
138 |
+
|
139 |
+
# Cat color images into grid image and save.
|
140 |
+
select_idxs = [[0, 2, 1], [5, 4, 3]] # fix order for 6 views
|
141 |
+
grid_image = []
|
142 |
+
for row_idxs in select_idxs:
|
143 |
+
row_image = []
|
144 |
+
for row_idx in row_idxs:
|
145 |
+
row_image.append(images[row_idx])
|
146 |
+
row_image = np.concatenate(row_image, axis=1)
|
147 |
+
grid_image.append(row_image)
|
148 |
+
|
149 |
+
grid_image = np.concatenate(grid_image, axis=0)
|
150 |
+
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
|
151 |
+
cv2.imwrite(args.output_path, grid_image)
|
152 |
+
logger.info(f"Saved grid image to {args.output_path}")
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
entrypoint()
|
asset3d_gen/scripts/render_mv.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
from typing import List, Tuple
|
5 |
+
|
6 |
+
import fire
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from diffusers.utils import make_image_grid
|
10 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import (
|
11 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
12 |
+
)
|
13 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
14 |
+
from torchvision import transforms
|
15 |
+
from asset3d_gen.data.datasets import Asset3dGenDataset
|
16 |
+
from asset3d_gen.models.texture_model import build_texture_gen_pipe
|
17 |
+
|
18 |
+
os.environ["https_proxy"] = "http://10.9.0.31:8838"
|
19 |
+
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def get_init_noise_image(image: Image.Image) -> Image.Image:
|
25 |
+
blurred_image = image.convert("L").filter(
|
26 |
+
ImageFilter.GaussianBlur(radius=3)
|
27 |
+
)
|
28 |
+
|
29 |
+
enhancer = ImageEnhance.Contrast(blurred_image)
|
30 |
+
image_decreased_contrast = enhancer.enhance(factor=0.5)
|
31 |
+
|
32 |
+
return image_decreased_contrast
|
33 |
+
|
34 |
+
|
35 |
+
def infer_pipe(
|
36 |
+
index_file: str,
|
37 |
+
controlnet_ckpt: str = None,
|
38 |
+
uid: str = None,
|
39 |
+
prompt: str = None,
|
40 |
+
controlnet_cond_scale: float = 0.4,
|
41 |
+
control_guidance_end: float = 0.9,
|
42 |
+
strength: float = 1.0,
|
43 |
+
num_inference_steps: int = 50,
|
44 |
+
guidance_scale: float = 10,
|
45 |
+
ip_adapt_scale: float = 0,
|
46 |
+
ip_img_path: str = None,
|
47 |
+
sub_idxs: List[List[int]] = None,
|
48 |
+
num_images_per_prompt: int = 3, # increase if want similar images.
|
49 |
+
device: str = "cuda",
|
50 |
+
save_dir: str = "infer_vis",
|
51 |
+
seed: int = None,
|
52 |
+
target_hw: tuple[int, int] = (512, 512),
|
53 |
+
pipeline: StableDiffusionXLControlNetImg2ImgPipeline = None,
|
54 |
+
) -> str:
|
55 |
+
# sub_idxs = [[0, 1, 2], [3, 4, 5]] # None for single image.
|
56 |
+
if sub_idxs is None:
|
57 |
+
sub_idxs = [[random.randint(0, 5)]] # 6 views.
|
58 |
+
target_hw = [2 * size for size in target_hw]
|
59 |
+
|
60 |
+
transform_list = [
|
61 |
+
transforms.Resize(
|
62 |
+
target_hw, interpolation=transforms.InterpolationMode.BILINEAR
|
63 |
+
),
|
64 |
+
transforms.CenterCrop(target_hw),
|
65 |
+
transforms.ToTensor(),
|
66 |
+
transforms.Normalize([0.5], [0.5]),
|
67 |
+
]
|
68 |
+
image_transform = transforms.Compose(transform_list)
|
69 |
+
control_transform = transforms.Compose(transform_list[:-1])
|
70 |
+
|
71 |
+
grid_hw = (target_hw[0] * len(sub_idxs), target_hw[1] * len(sub_idxs[0]))
|
72 |
+
dataset = Asset3dGenDataset(
|
73 |
+
index_file, target_hw=grid_hw, sub_idxs=sub_idxs
|
74 |
+
)
|
75 |
+
|
76 |
+
if uid is None:
|
77 |
+
uid = random.choice(list(dataset.meta_info.keys()))
|
78 |
+
if prompt is None:
|
79 |
+
prompt = dataset.meta_info[uid]["capture"]
|
80 |
+
if isinstance(prompt, List) or isinstance(prompt, Tuple):
|
81 |
+
prompt = ", ".join(map(str, prompt))
|
82 |
+
# prompt += "high quality, ultra-clear, high resolution, best quality, 4k"
|
83 |
+
# prompt += "高品质,清晰,细节"
|
84 |
+
prompt += ", high quality, high resolution, best quality"
|
85 |
+
# prompt += ", with diffuse lighting, showing no reflections."
|
86 |
+
logger.info(f"Inference with prompt: {prompt}")
|
87 |
+
|
88 |
+
negative_prompt = (
|
89 |
+
"nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯,高光,镜面反射"
|
90 |
+
)
|
91 |
+
|
92 |
+
control_image = dataset.fetch_sample_grid_images(
|
93 |
+
uid,
|
94 |
+
attrs=["image_view_normal", "image_position", "image_mask"],
|
95 |
+
sub_idxs=sub_idxs,
|
96 |
+
transform=control_transform,
|
97 |
+
)
|
98 |
+
|
99 |
+
color_image = dataset.fetch_sample_grid_images(
|
100 |
+
uid,
|
101 |
+
attrs=["image_color"],
|
102 |
+
sub_idxs=sub_idxs,
|
103 |
+
transform=image_transform,
|
104 |
+
)
|
105 |
+
|
106 |
+
normal_pil, position_pil, mask_pil, color_pil = dataset.visualize_item(
|
107 |
+
control_image,
|
108 |
+
color_image,
|
109 |
+
save_dir=save_dir,
|
110 |
+
)
|
111 |
+
|
112 |
+
if pipeline is None:
|
113 |
+
pipeline = build_texture_gen_pipe(
|
114 |
+
base_ckpt_dir="./weights",
|
115 |
+
controlnet_ckpt=controlnet_ckpt,
|
116 |
+
ip_adapt_scale=ip_adapt_scale,
|
117 |
+
device=device,
|
118 |
+
)
|
119 |
+
|
120 |
+
if ip_adapt_scale > 0 and ip_img_path is not None and len(ip_img_path) > 0:
|
121 |
+
ip_image = Image.open(ip_img_path).convert("RGB")
|
122 |
+
ip_image = ip_image.resize(target_hw[::-1])
|
123 |
+
ip_image = [ip_image]
|
124 |
+
pipeline.set_ip_adapter_scale([ip_adapt_scale])
|
125 |
+
else:
|
126 |
+
ip_image = None
|
127 |
+
|
128 |
+
generator = None
|
129 |
+
if seed is not None:
|
130 |
+
generator = torch.Generator(device).manual_seed(seed)
|
131 |
+
torch.manual_seed(seed)
|
132 |
+
np.random.seed(seed)
|
133 |
+
random.seed(seed)
|
134 |
+
|
135 |
+
init_image = get_init_noise_image(normal_pil)
|
136 |
+
# init_image = get_init_noise_image(color_pil)
|
137 |
+
|
138 |
+
images = []
|
139 |
+
row_num, col_num = 2, 3
|
140 |
+
img_save_paths = []
|
141 |
+
while len(images) < col_num:
|
142 |
+
image = pipeline(
|
143 |
+
prompt=prompt,
|
144 |
+
image=init_image,
|
145 |
+
controlnet_conditioning_scale=controlnet_cond_scale,
|
146 |
+
control_guidance_end=control_guidance_end,
|
147 |
+
strength=strength,
|
148 |
+
control_image=control_image[None, ...],
|
149 |
+
negative_prompt=negative_prompt,
|
150 |
+
num_inference_steps=num_inference_steps,
|
151 |
+
guidance_scale=guidance_scale,
|
152 |
+
num_images_per_prompt=num_images_per_prompt,
|
153 |
+
ip_adapter_image=ip_image,
|
154 |
+
generator=generator,
|
155 |
+
).images
|
156 |
+
images.extend(image)
|
157 |
+
|
158 |
+
grid_image = [normal_pil, position_pil, color_pil] + images[:col_num]
|
159 |
+
# save_dir = os.path.join(save_dir, uid)
|
160 |
+
os.makedirs(save_dir, exist_ok=True)
|
161 |
+
|
162 |
+
for idx in range(col_num):
|
163 |
+
rgba_image = Image.merge("RGBA", (*images[idx].split(), mask_pil))
|
164 |
+
img_save_path = os.path.join(save_dir, f"color_sample{idx}.png")
|
165 |
+
rgba_image.save(img_save_path)
|
166 |
+
img_save_paths.append(img_save_path)
|
167 |
+
|
168 |
+
sub_idxs = "_".join(
|
169 |
+
[str(item) for sublist in sub_idxs for item in sublist]
|
170 |
+
)
|
171 |
+
save_path = os.path.join(
|
172 |
+
save_dir, f"sample_idx{str(sub_idxs)}_ip{ip_adapt_scale}.jpg"
|
173 |
+
)
|
174 |
+
make_image_grid(grid_image, row_num, col_num).save(save_path)
|
175 |
+
logger.info(f"Visualize in {save_path}")
|
176 |
+
|
177 |
+
return img_save_paths
|
178 |
+
|
179 |
+
|
180 |
+
def entrypoint() -> None:
|
181 |
+
fire.Fire(infer_pipe)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
entrypoint()
|
asset3d_gen/scripts/text2image.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
|
6 |
+
StableDiffusionXLPipeline,
|
7 |
+
)
|
8 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import ( # noqa
|
9 |
+
StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
|
10 |
+
)
|
11 |
+
from tqdm import tqdm
|
12 |
+
from asset3d_gen.models.text_model import (
|
13 |
+
build_text2img_ip_pipeline,
|
14 |
+
build_text2img_pipeline,
|
15 |
+
text2img_gen,
|
16 |
+
)
|
17 |
+
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def parse_args():
|
23 |
+
parser = argparse.ArgumentParser(description="Text to Image.")
|
24 |
+
parser.add_argument(
|
25 |
+
"--prompts",
|
26 |
+
type=str,
|
27 |
+
nargs="+",
|
28 |
+
help="List of prompts (space-separated).",
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--ref_image",
|
32 |
+
type=str,
|
33 |
+
nargs="+",
|
34 |
+
help="List of ref_image paths (space-separated).",
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--output_root",
|
38 |
+
type=str,
|
39 |
+
help="Root directory for saving outputs.",
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--guidance_scale",
|
43 |
+
type=float,
|
44 |
+
default=12.0,
|
45 |
+
help="Guidance scale for the diffusion model.",
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"--ref_scale",
|
49 |
+
type=float,
|
50 |
+
default=0.3,
|
51 |
+
help="Reference image scale for the IP adapter.",
|
52 |
+
)
|
53 |
+
parser.add_argument(
|
54 |
+
"--n_sample",
|
55 |
+
type=int,
|
56 |
+
default=1,
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--resolution",
|
60 |
+
type=int,
|
61 |
+
default=1024,
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--infer_step",
|
65 |
+
type=int,
|
66 |
+
default=50,
|
67 |
+
)
|
68 |
+
args = parser.parse_args()
|
69 |
+
|
70 |
+
return args
|
71 |
+
|
72 |
+
|
73 |
+
def entrypoint(
|
74 |
+
pipeline: StableDiffusionXLPipeline | StableDiffusionXLPipelineIP = None,
|
75 |
+
**kwargs,
|
76 |
+
) -> list[str]:
|
77 |
+
args = parse_args()
|
78 |
+
for k, v in kwargs.items():
|
79 |
+
if hasattr(args, k) and v is not None:
|
80 |
+
setattr(args, k, v)
|
81 |
+
|
82 |
+
prompts = args.prompts
|
83 |
+
if len(prompts) == 1 and prompts[0].endswith(".txt"):
|
84 |
+
with open(prompts[0], "r") as f:
|
85 |
+
prompts = f.readlines()
|
86 |
+
prompts = [
|
87 |
+
prompt.strip() for prompt in prompts if prompt.strip() != ""
|
88 |
+
]
|
89 |
+
|
90 |
+
os.makedirs(args.output_root, exist_ok=True)
|
91 |
+
|
92 |
+
ip_img_paths = args.ref_image
|
93 |
+
if ip_img_paths is None or len(ip_img_paths) == 0:
|
94 |
+
args.ref_scale = 0
|
95 |
+
ip_img_paths = [None] * len(prompts)
|
96 |
+
elif isinstance(ip_img_paths, str):
|
97 |
+
ip_img_paths = [ip_img_paths] * len(prompts)
|
98 |
+
elif isinstance(ip_img_paths, list):
|
99 |
+
if len(ip_img_paths) == 1:
|
100 |
+
ip_img_paths = ip_img_paths * len(prompts)
|
101 |
+
else:
|
102 |
+
raise ValueError("Invalid ref_image paths.")
|
103 |
+
assert len(ip_img_paths) == len(
|
104 |
+
prompts
|
105 |
+
), f"Number of ref images does not match prompts, {len(ip_img_paths)} != {len(prompts)}" # noqa
|
106 |
+
|
107 |
+
if pipeline is None:
|
108 |
+
if args.ref_scale > 0:
|
109 |
+
pipeline = build_text2img_ip_pipeline(
|
110 |
+
"weights/Kolors",
|
111 |
+
ref_scale=args.ref_scale,
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
pipeline = build_text2img_pipeline("weights/Kolors")
|
115 |
+
|
116 |
+
for idx, (prompt, ip_img_path) in tqdm(
|
117 |
+
enumerate(zip(prompts, ip_img_paths)),
|
118 |
+
desc="Generating images",
|
119 |
+
total=len(prompts),
|
120 |
+
):
|
121 |
+
images = text2img_gen(
|
122 |
+
prompt=prompt,
|
123 |
+
n_sample=args.n_sample,
|
124 |
+
guidance_scale=args.guidance_scale,
|
125 |
+
pipeline=pipeline,
|
126 |
+
ip_image=ip_img_path,
|
127 |
+
image_wh=[args.resolution, args.resolution],
|
128 |
+
infer_step=args.infer_step,
|
129 |
+
)
|
130 |
+
|
131 |
+
save_paths = []
|
132 |
+
for sub_idx, image in enumerate(images):
|
133 |
+
save_path = (
|
134 |
+
f"{args.output_root}/sample_{idx*args.n_sample+sub_idx}.png"
|
135 |
+
)
|
136 |
+
image.save(save_path)
|
137 |
+
save_paths.append(save_path)
|
138 |
+
|
139 |
+
logger.info(f"Images saved to {args.output_root}")
|
140 |
+
|
141 |
+
return save_paths
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
entrypoint()
|
asset3d_gen/utils/gpt_clients.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from io import BytesIO
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
from openai import AzureOpenAI, OpenAI # pip install openai
|
8 |
+
from PIL import Image
|
9 |
+
from tenacity import (
|
10 |
+
retry,
|
11 |
+
stop_after_attempt,
|
12 |
+
stop_after_delay,
|
13 |
+
wait_random_exponential,
|
14 |
+
)
|
15 |
+
from asset3d_gen.utils.process_media import combine_images_to_base64
|
16 |
+
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
os.environ["https_proxy"] = "10.9.0.31:8838"
|
20 |
+
|
21 |
+
|
22 |
+
class GPTclient:
|
23 |
+
"""A client to interact with the GPT model via OpenAI or Azure API."""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
endpoint: str,
|
28 |
+
api_key: str,
|
29 |
+
model_name: str = "yfb-gpt-4o",
|
30 |
+
api_version: str = None,
|
31 |
+
verbose: bool = False,
|
32 |
+
):
|
33 |
+
if api_version is not None:
|
34 |
+
self.client = AzureOpenAI(
|
35 |
+
azure_endpoint=endpoint,
|
36 |
+
api_key=api_key,
|
37 |
+
api_version=api_version,
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
self.client = OpenAI(
|
41 |
+
base_url=endpoint,
|
42 |
+
api_key=api_key,
|
43 |
+
)
|
44 |
+
|
45 |
+
self.endpoint = endpoint
|
46 |
+
self.model_name = model_name
|
47 |
+
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
|
48 |
+
self.verbose = verbose
|
49 |
+
|
50 |
+
@retry(
|
51 |
+
wait=wait_random_exponential(min=1, max=20),
|
52 |
+
stop=(stop_after_attempt(10) | stop_after_delay(30)),
|
53 |
+
)
|
54 |
+
def completion_with_backoff(self, **kwargs):
|
55 |
+
return self.client.chat.completions.create(**kwargs)
|
56 |
+
|
57 |
+
def query(
|
58 |
+
self,
|
59 |
+
text_prompt: str,
|
60 |
+
image_base64: Optional[list[str | Image.Image]] = None,
|
61 |
+
system_role: Optional[str] = None,
|
62 |
+
) -> Optional[str]:
|
63 |
+
"""Queries the GPT model with a text and optional image prompts.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text_prompt (str): The main text input that the model responds to.
|
67 |
+
image_base64 (Optional[List[str]]): A list of image base64 strings
|
68 |
+
or local image paths or PIL.Image to accompany the text prompt.
|
69 |
+
system_role (Optional[str]): Optional system-level instructions
|
70 |
+
that specify the behavior of the assistant.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
Optional[str]: The response content generated by the model based on
|
74 |
+
the prompt. Returns `None` if an error occurs.
|
75 |
+
"""
|
76 |
+
if system_role is None:
|
77 |
+
system_role = "You are a highly knowledgeable assistant specializing in physics, engineering, and object properties." # noqa
|
78 |
+
|
79 |
+
content_user = [
|
80 |
+
{
|
81 |
+
"type": "text",
|
82 |
+
"text": text_prompt,
|
83 |
+
},
|
84 |
+
]
|
85 |
+
|
86 |
+
# Process images if provided
|
87 |
+
if image_base64 is not None:
|
88 |
+
image_base64 = (
|
89 |
+
image_base64
|
90 |
+
if isinstance(image_base64, list)
|
91 |
+
else [image_base64]
|
92 |
+
)
|
93 |
+
for img in image_base64:
|
94 |
+
if isinstance(img, Image.Image):
|
95 |
+
buffer = BytesIO()
|
96 |
+
img.save(buffer, format=img.format or "PNG")
|
97 |
+
buffer.seek(0)
|
98 |
+
image_binary = buffer.read()
|
99 |
+
img = base64.b64encode(image_binary).decode("utf-8")
|
100 |
+
elif (
|
101 |
+
len(os.path.splitext(img)) > 1
|
102 |
+
and os.path.splitext(img)[-1].lower() in self.image_formats
|
103 |
+
):
|
104 |
+
if not os.path.exists(img):
|
105 |
+
raise FileNotFoundError(f"Image file not found: {img}")
|
106 |
+
with open(img, "rb") as f:
|
107 |
+
img = base64.b64encode(f.read()).decode("utf-8")
|
108 |
+
|
109 |
+
content_user.append(
|
110 |
+
{
|
111 |
+
"type": "image_url",
|
112 |
+
"image_url": {"url": f"data:image/png;base64,{img}"},
|
113 |
+
}
|
114 |
+
)
|
115 |
+
|
116 |
+
payload = {
|
117 |
+
"messages": [
|
118 |
+
{"role": "system", "content": system_role},
|
119 |
+
{"role": "user", "content": content_user},
|
120 |
+
],
|
121 |
+
"temperature": 0.1,
|
122 |
+
"max_tokens": 500,
|
123 |
+
"top_p": 0.1,
|
124 |
+
"frequency_penalty": 0,
|
125 |
+
"presence_penalty": 0,
|
126 |
+
"stop": None,
|
127 |
+
}
|
128 |
+
payload.update({"model": self.model_name})
|
129 |
+
|
130 |
+
response = None
|
131 |
+
try:
|
132 |
+
response = self.completion_with_backoff(**payload)
|
133 |
+
response = response.choices[0].message.content
|
134 |
+
except Exception as e:
|
135 |
+
logger.error(f"Error GPTclint {self.endpoint} API call: {e}")
|
136 |
+
response = None
|
137 |
+
|
138 |
+
if self.verbose:
|
139 |
+
logger.info(f"Prompt: {text_prompt}")
|
140 |
+
logger.info(f"Response: {response}")
|
141 |
+
|
142 |
+
return response
|
143 |
+
|
144 |
+
|
145 |
+
endpoint = os.environ.get("endpoint", None)
|
146 |
+
api_key = os.environ.get("api_key", None)
|
147 |
+
api_version = os.environ.get("api_version", None)
|
148 |
+
if endpoint and api_key and api_version:
|
149 |
+
GPT_CLIENT = GPTclient(
|
150 |
+
endpoint=endpoint,
|
151 |
+
api_key=api_key,
|
152 |
+
api_version=api_version,
|
153 |
+
model_name="yfb-gpt-4o-sweden" if "sweden" in endpoint else None,
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
GPT_CLIENT = GPTclient(
|
157 |
+
endpoint="https://openrouter.ai/api/v1",
|
158 |
+
api_key="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", # noqa
|
159 |
+
model_name="qwen/qwen2.5-vl-72b-instruct:free",
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
if "openrouter" in GPT_CLIENT.endpoint:
|
165 |
+
response = GPT_CLIENT.query(
|
166 |
+
text_prompt="What is the content in each image?",
|
167 |
+
image_base64=combine_images_to_base64(
|
168 |
+
[
|
169 |
+
"outputs/text2image/demo_objects/bed/sample_0.jpg",
|
170 |
+
"outputs/imageto3d/v2/cups/sample_69/URDF_sample_69/qa_renders/image_color/003.png", # noqa
|
171 |
+
"outputs/text2image/demo_objects/cardboard/sample_1.jpg",
|
172 |
+
]
|
173 |
+
), # input raw image_path if only one image
|
174 |
+
)
|
175 |
+
print(response)
|
176 |
+
else:
|
177 |
+
response = GPT_CLIENT.query(
|
178 |
+
text_prompt="What is the content in the images?",
|
179 |
+
image_base64=[
|
180 |
+
Image.open("outputs/text2image/demo_objects/bed/sample_0.jpg"),
|
181 |
+
Image.open(
|
182 |
+
"outputs/imageto3d/v2/cups/sample_69/URDF_sample_69/qa_renders/image_color/003.png" # noqa
|
183 |
+
),
|
184 |
+
],
|
185 |
+
)
|
186 |
+
print(response)
|
187 |
+
|
188 |
+
# test2: text prompt
|
189 |
+
response = GPT_CLIENT.query(text_prompt="What is the capital of China?")
|
190 |
+
print(response)
|
asset3d_gen/utils/process_media.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
from glob import glob
|
7 |
+
from io import BytesIO
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import imageio
|
12 |
+
import numpy as np
|
13 |
+
import PIL.Image as Image
|
14 |
+
from moviepy.editor import VideoFileClip, clips_array
|
15 |
+
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
"render_asset3d",
|
22 |
+
"merge_images_video",
|
23 |
+
"filter_small_connected_components",
|
24 |
+
"filter_image_small_connected_components",
|
25 |
+
"combine_images_to_base64",
|
26 |
+
]
|
27 |
+
|
28 |
+
|
29 |
+
def render_asset3d(
|
30 |
+
mesh_path: str,
|
31 |
+
output_root: str,
|
32 |
+
distance: float = 5.0,
|
33 |
+
num_images: int = 1,
|
34 |
+
elevation: list[float] = (0.0,),
|
35 |
+
pbr_light_factor: float = 1.5,
|
36 |
+
return_key: str = "image_color/*",
|
37 |
+
output_subdir: str = "renders",
|
38 |
+
gen_color_mp4: bool = False,
|
39 |
+
gen_viewnormal_mp4: bool = False,
|
40 |
+
gen_glonormal_mp4: bool = False,
|
41 |
+
device: str = "cpu",
|
42 |
+
) -> list[str]:
|
43 |
+
command = [
|
44 |
+
"python3",
|
45 |
+
"asset3d_gen/data/differentiable_render.py",
|
46 |
+
"--mesh_path",
|
47 |
+
mesh_path,
|
48 |
+
"--output_root",
|
49 |
+
output_root,
|
50 |
+
"--uuid",
|
51 |
+
output_subdir,
|
52 |
+
"--distance",
|
53 |
+
str(distance),
|
54 |
+
"--num_images",
|
55 |
+
str(num_images),
|
56 |
+
"--elevation",
|
57 |
+
*map(str, elevation),
|
58 |
+
"--pbr_light_factor",
|
59 |
+
str(pbr_light_factor),
|
60 |
+
"--with_mtl",
|
61 |
+
"--device",
|
62 |
+
device,
|
63 |
+
]
|
64 |
+
if gen_color_mp4:
|
65 |
+
command.append("--gen_color_mp4")
|
66 |
+
if gen_viewnormal_mp4:
|
67 |
+
command.append("--gen_viewnormal_mp4")
|
68 |
+
if gen_glonormal_mp4:
|
69 |
+
command.append("--gen_glonormal_mp4")
|
70 |
+
try:
|
71 |
+
subprocess.run(command, check=True)
|
72 |
+
except subprocess.CalledProcessError as e:
|
73 |
+
logger.error(f"Error occurred during rendering: {e}.")
|
74 |
+
|
75 |
+
dst_paths = glob(os.path.join(output_root, output_subdir, return_key))
|
76 |
+
|
77 |
+
return dst_paths
|
78 |
+
|
79 |
+
|
80 |
+
def merge_images_video(color_images, normal_images, output_path) -> None:
|
81 |
+
width = color_images[0].shape[1]
|
82 |
+
combined_video = [
|
83 |
+
np.hstack([rgb_img[:, : width // 2], normal_img[:, width // 2 :]])
|
84 |
+
for rgb_img, normal_img in zip(color_images, normal_images)
|
85 |
+
]
|
86 |
+
imageio.mimsave(output_path, combined_video, fps=50)
|
87 |
+
|
88 |
+
return
|
89 |
+
|
90 |
+
|
91 |
+
def merge_video_video(
|
92 |
+
video_path1: str, video_path2: str, output_path: str
|
93 |
+
) -> None:
|
94 |
+
"""Merge two videos by the left half and the right half of the videos."""
|
95 |
+
clip1 = VideoFileClip(video_path1)
|
96 |
+
clip2 = VideoFileClip(video_path2)
|
97 |
+
|
98 |
+
if clip1.size != clip2.size:
|
99 |
+
raise ValueError("The resolutions of the two videos do not match.")
|
100 |
+
|
101 |
+
width, height = clip1.size
|
102 |
+
clip1_half = clip1.crop(x1=0, y1=0, x2=width // 2, y2=height)
|
103 |
+
clip2_half = clip2.crop(x1=width // 2, y1=0, x2=width, y2=height)
|
104 |
+
final_clip = clips_array([[clip1_half, clip2_half]])
|
105 |
+
final_clip.write_videofile(output_path, codec="libx264")
|
106 |
+
|
107 |
+
|
108 |
+
def filter_small_connected_components(
|
109 |
+
mask: Union[Image.Image, np.ndarray],
|
110 |
+
area_ratio: float,
|
111 |
+
connectivity: int = 8,
|
112 |
+
) -> np.ndarray:
|
113 |
+
if isinstance(mask, Image.Image):
|
114 |
+
mask = np.array(mask)
|
115 |
+
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(
|
116 |
+
mask,
|
117 |
+
connectivity=connectivity,
|
118 |
+
)
|
119 |
+
|
120 |
+
small_components = np.zeros_like(mask, dtype=np.uint8)
|
121 |
+
mask_area = (mask != 0).sum()
|
122 |
+
min_area = mask_area // area_ratio
|
123 |
+
for label in range(1, num_labels):
|
124 |
+
area = stats[label, cv2.CC_STAT_AREA]
|
125 |
+
if area < min_area:
|
126 |
+
small_components[labels == label] = 255
|
127 |
+
|
128 |
+
mask = cv2.bitwise_and(mask, cv2.bitwise_not(small_components))
|
129 |
+
|
130 |
+
return mask
|
131 |
+
|
132 |
+
|
133 |
+
def filter_image_small_connected_components(
|
134 |
+
image: Union[Image.Image, np.ndarray],
|
135 |
+
area_ratio: float = 10,
|
136 |
+
connectivity: int = 8,
|
137 |
+
) -> np.ndarray:
|
138 |
+
if isinstance(image, Image.Image):
|
139 |
+
image = image.convert("RGBA")
|
140 |
+
image = np.array(image)
|
141 |
+
|
142 |
+
mask = image[..., 3]
|
143 |
+
mask = filter_small_connected_components(mask, area_ratio, connectivity)
|
144 |
+
image[..., 3] = mask
|
145 |
+
|
146 |
+
return image
|
147 |
+
|
148 |
+
|
149 |
+
def combine_images_to_base64(
|
150 |
+
images: list[str | Image.Image],
|
151 |
+
cat_row_col: tuple[int, int] = None,
|
152 |
+
target_wh: tuple[int, int] = (512, 512),
|
153 |
+
) -> str:
|
154 |
+
n_images = len(images)
|
155 |
+
if cat_row_col is None:
|
156 |
+
n_col = math.ceil(math.sqrt(n_images))
|
157 |
+
n_row = math.ceil(n_images / n_col)
|
158 |
+
else:
|
159 |
+
n_row, n_col = cat_row_col
|
160 |
+
|
161 |
+
images = [
|
162 |
+
Image.open(p).convert("RGB") if isinstance(p, str) else p
|
163 |
+
for p in images[: n_row * n_col]
|
164 |
+
]
|
165 |
+
images = [img.resize(target_wh) for img in images]
|
166 |
+
|
167 |
+
grid_w, grid_h = n_col * target_wh[0], n_row * target_wh[1]
|
168 |
+
grid = Image.new("RGB", (grid_w, grid_h), (255, 255, 255))
|
169 |
+
|
170 |
+
for idx, img in enumerate(images):
|
171 |
+
row, col = divmod(idx, n_col)
|
172 |
+
grid.paste(img, (col * target_wh[0], row * target_wh[1]))
|
173 |
+
|
174 |
+
buffer = BytesIO()
|
175 |
+
grid.save(buffer, format="PNG")
|
176 |
+
|
177 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
# Example usage:
|
182 |
+
merge_video_video(
|
183 |
+
"outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh_glo_normal.mp4", # noqa
|
184 |
+
"outputs/imageto3d/room_bottle7/room_bottle_007/URDF_room_bottle_007/mesh.mp4", # noqa
|
185 |
+
"merge.mp4",
|
186 |
+
)
|
187 |
+
|
188 |
+
image_base64 = combine_images_to_base64(
|
189 |
+
[
|
190 |
+
"outputs/text2image/demo_objects/bed/sample_0.jpg",
|
191 |
+
"outputs/imageto3d/v2/cups/sample_69/URDF_sample_69/qa_renders/image_color/003.png", # noqa
|
192 |
+
"outputs/text2image/demo_objects/cardboard/sample_1.jpg",
|
193 |
+
]
|
194 |
+
)
|
asset3d_gen/utils/tags.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
VERSION = "v0.0.2"
|
asset3d_gen/validators/aesthetic_predictor.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import clip
|
4 |
+
import numpy as np
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from huggingface_hub import snapshot_download
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
os.environ["https_proxy"] = "http://10.9.0.31:8838"
|
12 |
+
|
13 |
+
|
14 |
+
class AestheticPredictor:
|
15 |
+
"""Aesthetic Score Predictor.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
clip_model_dir (str): Path to the directory of the CLIP model.
|
19 |
+
sac_model_path (str): Path to the pre-trained SAC model.
|
20 |
+
device (str): Device to use for computation ("cuda" or "cpu").
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, clip_model_dir=None, sac_model_path=None, device=None):
|
24 |
+
|
25 |
+
self.device = device or (
|
26 |
+
"cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
)
|
28 |
+
|
29 |
+
if clip_model_dir is None:
|
30 |
+
model_path = snapshot_download(
|
31 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns="aesthetic/*"
|
32 |
+
)
|
33 |
+
suffix = "aesthetic"
|
34 |
+
model_path = snapshot_download(
|
35 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
|
36 |
+
)
|
37 |
+
clip_model_dir = os.path.join(model_path, suffix)
|
38 |
+
|
39 |
+
if sac_model_path is None:
|
40 |
+
model_path = snapshot_download(
|
41 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns="aesthetic/*"
|
42 |
+
)
|
43 |
+
suffix = "aesthetic"
|
44 |
+
model_path = snapshot_download(
|
45 |
+
repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
|
46 |
+
)
|
47 |
+
sac_model_path = os.path.join(
|
48 |
+
model_path, suffix, "sac+logos+ava1-l14-linearMSE.pth"
|
49 |
+
)
|
50 |
+
|
51 |
+
self.clip_model, self.preprocess = self._load_clip_model(
|
52 |
+
clip_model_dir
|
53 |
+
)
|
54 |
+
self.sac_model = self._load_sac_model(sac_model_path, input_size=768)
|
55 |
+
|
56 |
+
class MLP(pl.LightningModule): # noqa
|
57 |
+
def __init__(self, input_size):
|
58 |
+
super().__init__()
|
59 |
+
self.layers = nn.Sequential(
|
60 |
+
nn.Linear(input_size, 1024),
|
61 |
+
nn.Dropout(0.2),
|
62 |
+
nn.Linear(1024, 128),
|
63 |
+
nn.Dropout(0.2),
|
64 |
+
nn.Linear(128, 64),
|
65 |
+
nn.Dropout(0.1),
|
66 |
+
nn.Linear(64, 16),
|
67 |
+
nn.Linear(16, 1),
|
68 |
+
)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return self.layers(x)
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def normalized(a, axis=-1, order=2):
|
75 |
+
"""Normalize the array to unit norm."""
|
76 |
+
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
|
77 |
+
l2[l2 == 0] = 1
|
78 |
+
return a / np.expand_dims(l2, axis)
|
79 |
+
|
80 |
+
def _load_clip_model(self, model_dir: str, model_name: str = "ViT-L/14"):
|
81 |
+
"""Load the CLIP model."""
|
82 |
+
model, preprocess = clip.load(
|
83 |
+
model_name, download_root=model_dir, device=self.device
|
84 |
+
)
|
85 |
+
return model, preprocess
|
86 |
+
|
87 |
+
def _load_sac_model(self, model_path, input_size):
|
88 |
+
"""Load the SAC model."""
|
89 |
+
model = self.MLP(input_size)
|
90 |
+
ckpt = torch.load(model_path)
|
91 |
+
model.load_state_dict(ckpt)
|
92 |
+
model.to(self.device)
|
93 |
+
model.eval()
|
94 |
+
return model
|
95 |
+
|
96 |
+
def predict(self, image_path):
|
97 |
+
"""Predict the aesthetic score for a given image.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
image_path (str): Path to the image file.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
float: Predicted aesthetic score.
|
104 |
+
"""
|
105 |
+
pil_image = Image.open(image_path)
|
106 |
+
image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
# Extract CLIP features
|
110 |
+
image_features = self.clip_model.encode_image(image)
|
111 |
+
# Normalize features
|
112 |
+
normalized_features = self.normalized(
|
113 |
+
image_features.cpu().detach().numpy()
|
114 |
+
)
|
115 |
+
# Predict score
|
116 |
+
prediction = self.sac_model(
|
117 |
+
torch.from_numpy(normalized_features)
|
118 |
+
.type(torch.FloatTensor)
|
119 |
+
.to(self.device)
|
120 |
+
)
|
121 |
+
|
122 |
+
return prediction.item()
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
# Configuration
|
127 |
+
img_path = "/home/users/xinjie.wang/xinjie/asset3d-gen/outputs/imageto3d/demo_objects/bed/sample_0/sample_0_raw.png" # noqa
|
128 |
+
# clip_model_dir = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/clip" # noqa
|
129 |
+
# sac_model_path = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/sac/sac+logos+ava1-l14-linearMSE.pth" # noqa
|
130 |
+
|
131 |
+
# Initialize the predictor
|
132 |
+
predictor = AestheticPredictor()
|
133 |
+
|
134 |
+
# Predict the aesthetic score
|
135 |
+
score = predictor.predict(img_path)
|
136 |
+
print("Aesthetic score predicted by the model:", score)
|
asset3d_gen/validators/quality_checkers.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
from tqdm import tqdm
|
5 |
+
from asset3d_gen.utils.gpt_clients import GPT_CLIENT, GPTclient
|
6 |
+
from asset3d_gen.utils.process_media import render_asset3d
|
7 |
+
from asset3d_gen.validators.aesthetic_predictor import AestheticPredictor
|
8 |
+
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
class BaseChecker:
|
14 |
+
def __init__(self, prompt: str = None, verbose: bool = False) -> None:
|
15 |
+
self.prompt = prompt
|
16 |
+
self.verbose = verbose
|
17 |
+
|
18 |
+
def query(self, *args, **kwargs):
|
19 |
+
raise NotImplementedError(
|
20 |
+
"Subclasses must implement the query method."
|
21 |
+
)
|
22 |
+
|
23 |
+
def __call__(self, *args, **kwargs) -> bool:
|
24 |
+
response = self.query(*args, **kwargs)
|
25 |
+
if response is None:
|
26 |
+
response = "Error when calling gpt api."
|
27 |
+
|
28 |
+
if self.verbose and response != "YES":
|
29 |
+
logger.info(response)
|
30 |
+
|
31 |
+
flag = "YES" in response
|
32 |
+
response = "YES" if flag else response
|
33 |
+
|
34 |
+
return flag, response
|
35 |
+
|
36 |
+
@staticmethod
|
37 |
+
def validate(
|
38 |
+
checkers: list["BaseChecker"], images_list: list[list[str]]
|
39 |
+
) -> list:
|
40 |
+
assert len(checkers) == len(images_list)
|
41 |
+
results = []
|
42 |
+
overall_result = True
|
43 |
+
for checker, images in zip(checkers, images_list):
|
44 |
+
qa_flag, qa_info = checker(images)
|
45 |
+
if isinstance(qa_info, str):
|
46 |
+
qa_info = qa_info.replace("\n", ".")
|
47 |
+
results.append([checker.__class__.__name__, qa_info])
|
48 |
+
if qa_flag is False:
|
49 |
+
overall_result = False
|
50 |
+
|
51 |
+
results.append(["overall", "YES" if overall_result else "NO"])
|
52 |
+
|
53 |
+
return results
|
54 |
+
|
55 |
+
|
56 |
+
class MeshGeoChecker(BaseChecker):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
gpt_client: GPTclient,
|
60 |
+
prompt: str = None,
|
61 |
+
verbose: bool = False,
|
62 |
+
) -> None:
|
63 |
+
super().__init__(prompt, verbose)
|
64 |
+
self.gpt_client = gpt_client
|
65 |
+
if self.prompt is None:
|
66 |
+
self.prompt = """
|
67 |
+
Refer to the provided multi-view rendering images to evaluate
|
68 |
+
whether the geometry of the 3D object asset is complete and
|
69 |
+
whether the asset can be placed stably on the ground.
|
70 |
+
Return "YES" only if reach the requirments,
|
71 |
+
otherwise "NO" and explain the reason very briefly.
|
72 |
+
"""
|
73 |
+
|
74 |
+
def query(self, image_paths: str) -> str:
|
75 |
+
# Hardcode tmp because of the openrouter can't input multi images.
|
76 |
+
if "openrouter" in self.gpt_client.endpoint:
|
77 |
+
from asset3d_gen.utils.process_media import (
|
78 |
+
combine_images_to_base64,
|
79 |
+
)
|
80 |
+
|
81 |
+
image_paths = combine_images_to_base64(image_paths)
|
82 |
+
|
83 |
+
return self.gpt_client.query(
|
84 |
+
text_prompt=self.prompt,
|
85 |
+
image_base64=image_paths,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
class ImageSegChecker(BaseChecker):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
gpt_client: GPTclient,
|
93 |
+
prompt: str = None,
|
94 |
+
verbose: bool = False,
|
95 |
+
) -> None:
|
96 |
+
super().__init__(prompt, verbose)
|
97 |
+
self.gpt_client = gpt_client
|
98 |
+
if self.prompt is None:
|
99 |
+
self.prompt = """
|
100 |
+
The first image is the original, and the second image is the
|
101 |
+
result after segmenting the main object. Evaluate the segmentation
|
102 |
+
quality to ensure the main object is clearly segmented without
|
103 |
+
significant truncation. Note that the foreground of the object
|
104 |
+
needs to be extracted instead of the background.
|
105 |
+
Minor imperfections can be ignored. If segmentation is acceptable,
|
106 |
+
return "YES" only; otherwise, return "NO" with
|
107 |
+
very brief explanation.
|
108 |
+
"""
|
109 |
+
|
110 |
+
def query(self, image_paths: list[str]) -> str:
|
111 |
+
if len(image_paths) != 2:
|
112 |
+
raise ValueError(
|
113 |
+
"ImageSegChecker requires exactly two images: [raw_image, seg_image]." # noqa
|
114 |
+
)
|
115 |
+
# Hardcode tmp because of the openrouter can't input multi images.
|
116 |
+
if "openrouter" in self.gpt_client.endpoint:
|
117 |
+
from asset3d_gen.utils.process_media import (
|
118 |
+
combine_images_to_base64,
|
119 |
+
)
|
120 |
+
|
121 |
+
image_paths = combine_images_to_base64(image_paths)
|
122 |
+
|
123 |
+
return self.gpt_client.query(
|
124 |
+
text_prompt=self.prompt,
|
125 |
+
image_base64=image_paths,
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class ImageAestheticChecker(BaseChecker):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
clip_model_dir: str = None,
|
133 |
+
sac_model_path: str = None,
|
134 |
+
thresh: float = 4.50,
|
135 |
+
verbose: bool = False,
|
136 |
+
) -> None:
|
137 |
+
super().__init__(verbose=verbose)
|
138 |
+
self.clip_model_dir = clip_model_dir
|
139 |
+
self.sac_model_path = sac_model_path
|
140 |
+
self.thresh = thresh
|
141 |
+
self.predictor = AestheticPredictor(clip_model_dir, sac_model_path)
|
142 |
+
|
143 |
+
def query(self, image_paths: list[str]) -> float:
|
144 |
+
scores = [self.predictor.predict(img_path) for img_path in image_paths]
|
145 |
+
return sum(scores) / len(scores)
|
146 |
+
|
147 |
+
def __call__(self, image_paths: list[str], **kwargs) -> bool:
|
148 |
+
avg_score = self.query(image_paths)
|
149 |
+
if self.verbose:
|
150 |
+
logger.info(f"Average aesthetic score: {avg_score}")
|
151 |
+
return avg_score > self.thresh, avg_score
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
geo_checker = MeshGeoChecker(GPT_CLIENT)
|
156 |
+
seg_checker = ImageSegChecker(GPT_CLIENT)
|
157 |
+
aesthetic_checker = ImageAestheticChecker(
|
158 |
+
"/horizon-bucket/robot_lab/users/xinjie.wang/weights/clip",
|
159 |
+
"/horizon-bucket/robot_lab/users/xinjie.wang/weights/sac/sac+logos+ava1-l14-linearMSE.pth", # noqa
|
160 |
+
)
|
161 |
+
|
162 |
+
checkers = [geo_checker, seg_checker, aesthetic_checker]
|
163 |
+
|
164 |
+
output_root = "outputs/test_gpt"
|
165 |
+
|
166 |
+
fails = []
|
167 |
+
for idx in tqdm(range(150)):
|
168 |
+
mesh_path = f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}.obj" # noqa
|
169 |
+
if not os.path.exists(mesh_path):
|
170 |
+
continue
|
171 |
+
image_paths = render_asset3d(
|
172 |
+
mesh_path,
|
173 |
+
f"{output_root}/{idx}",
|
174 |
+
num_images=8,
|
175 |
+
elevation=(30, -30),
|
176 |
+
distance=5.5,
|
177 |
+
)
|
178 |
+
|
179 |
+
for cid, checker in enumerate(checkers):
|
180 |
+
if isinstance(checker, ImageSegChecker):
|
181 |
+
images = [
|
182 |
+
f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}_raw.png", # noqa
|
183 |
+
f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}_cond.png", # noqa
|
184 |
+
]
|
185 |
+
else:
|
186 |
+
images = image_paths
|
187 |
+
result, info = checker(images)
|
188 |
+
logger.info(
|
189 |
+
f"Checker {checker.__class__.__name__}: {result}, {info}, mesh {mesh_path}" # noqa
|
190 |
+
)
|
191 |
+
|
192 |
+
if result is False:
|
193 |
+
fails.append((idx, cid, info))
|
194 |
+
|
195 |
+
break
|
asset3d_gen/validators/urdf_convertor.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import xml.etree.ElementTree as ET
|
5 |
+
import zipfile
|
6 |
+
from datetime import datetime
|
7 |
+
from xml.dom.minidom import parseString
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import trimesh
|
11 |
+
from asset3d_gen.utils.gpt_clients import GPT_CLIENT, GPTclient
|
12 |
+
from asset3d_gen.utils.process_media import render_asset3d
|
13 |
+
from asset3d_gen.utils.tags import VERSION
|
14 |
+
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
__all__ = ["URDFGenerator"]
|
20 |
+
|
21 |
+
|
22 |
+
URDF_TEMPLATE = """
|
23 |
+
<robot name="template_robot">
|
24 |
+
<link name="template_link">
|
25 |
+
<visual>
|
26 |
+
<geometry>
|
27 |
+
<mesh filename="mesh.obj" scale="1.0 1.0 1.0"/>
|
28 |
+
</geometry>
|
29 |
+
</visual>
|
30 |
+
<collision>
|
31 |
+
<geometry>
|
32 |
+
<mesh filename="mesh.obj" scale="1.0 1.0 1.0"/>
|
33 |
+
</geometry>
|
34 |
+
<gazebo>
|
35 |
+
<mu1>0.8</mu1> <!-- 主摩擦系数 -->
|
36 |
+
<mu2>0.6</mu2> <!-- 次摩擦系数 -->
|
37 |
+
</gazebo>
|
38 |
+
</collision>
|
39 |
+
<inertial>
|
40 |
+
<mass value="1.0"/>
|
41 |
+
<origin xyz="0 0 0"/>
|
42 |
+
<inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>
|
43 |
+
</inertial>
|
44 |
+
<extra_info>
|
45 |
+
<scale>1.0</scale>
|
46 |
+
<version>"0.0.0"</version>
|
47 |
+
<category>"unknown"</category>
|
48 |
+
<description>"unknown"</description>
|
49 |
+
<min_height>0.0</min_height>
|
50 |
+
<max_height>0.0</max_height>
|
51 |
+
<real_height>0.0</real_height>
|
52 |
+
<min_mass>0.0</min_mass>
|
53 |
+
<max_mass>0.0</max_mass>
|
54 |
+
<generate_time>"-1"</generate_time>
|
55 |
+
<gs_model>""</gs_model>
|
56 |
+
</extra_info>
|
57 |
+
</link>
|
58 |
+
</robot>
|
59 |
+
"""
|
60 |
+
|
61 |
+
|
62 |
+
def zip_files(input_paths: list[str], output_zip: str) -> str:
|
63 |
+
with zipfile.ZipFile(output_zip, "w", zipfile.ZIP_DEFLATED) as zipf:
|
64 |
+
for input_path in input_paths:
|
65 |
+
if not os.path.exists(input_path):
|
66 |
+
raise FileNotFoundError(f"File not found: {input_path}")
|
67 |
+
|
68 |
+
if os.path.isdir(input_path):
|
69 |
+
for root, _, files in os.walk(input_path):
|
70 |
+
for file in files:
|
71 |
+
file_path = os.path.join(root, file)
|
72 |
+
arcname = os.path.relpath(
|
73 |
+
file_path, start=os.path.commonpath(input_paths)
|
74 |
+
)
|
75 |
+
zipf.write(file_path, arcname=arcname)
|
76 |
+
else:
|
77 |
+
arcname = os.path.relpath(
|
78 |
+
input_path, start=os.path.commonpath(input_paths)
|
79 |
+
)
|
80 |
+
zipf.write(input_path, arcname=arcname)
|
81 |
+
|
82 |
+
return output_zip
|
83 |
+
|
84 |
+
|
85 |
+
class URDFGenerator(object):
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
gpt_client: GPTclient,
|
89 |
+
mesh_file_list: list[str] = ["material_0.png", "material.mtl"],
|
90 |
+
prompt_template: str = None,
|
91 |
+
attrs_name: list[str] = None,
|
92 |
+
render_dir: str = "urdf_renders",
|
93 |
+
render_view_num: int = 4,
|
94 |
+
) -> None:
|
95 |
+
if mesh_file_list is None:
|
96 |
+
mesh_file_list = []
|
97 |
+
self.mesh_file_list = mesh_file_list
|
98 |
+
self.output_mesh_dir = "mesh"
|
99 |
+
self.output_render_dir = render_dir
|
100 |
+
self.gpt_client = gpt_client
|
101 |
+
self.render_view_num = render_view_num
|
102 |
+
if render_view_num == 4:
|
103 |
+
view_desc = "This is orthographic projection showing the front, left, right and back views " # noqa
|
104 |
+
else:
|
105 |
+
view_desc = "This is the rendered views "
|
106 |
+
|
107 |
+
if prompt_template is None:
|
108 |
+
prompt_template = (
|
109 |
+
view_desc
|
110 |
+
+ """of the 3D object asset,
|
111 |
+
category: {category}.
|
112 |
+
Give the category of this object asset (within 3 words),
|
113 |
+
(if category is already provided, use it directly),
|
114 |
+
accurately describe this 3D object asset (within 15 words),
|
115 |
+
and give the recommended geometric height range (unit: meter),
|
116 |
+
weight range (unit: kilogram), the average static friction
|
117 |
+
coefficient of the object relative to rubber and the average
|
118 |
+
dynamic friction coefficient of the object relative to rubber.
|
119 |
+
Return response format as shown in Example.
|
120 |
+
|
121 |
+
Example:
|
122 |
+
Category: cup
|
123 |
+
Description: shiny golden cup with floral design
|
124 |
+
Height: 0.1-0.15 m
|
125 |
+
Weight: 0.3-0.6 kg
|
126 |
+
Static friction coefficient: 1.1
|
127 |
+
Dynamic friction coefficient: 0.9
|
128 |
+
"""
|
129 |
+
)
|
130 |
+
|
131 |
+
self.prompt_template = prompt_template
|
132 |
+
if attrs_name is None:
|
133 |
+
attrs_name = [
|
134 |
+
"category",
|
135 |
+
"description",
|
136 |
+
"min_height",
|
137 |
+
"max_height",
|
138 |
+
"real_height",
|
139 |
+
"min_mass",
|
140 |
+
"max_mass",
|
141 |
+
"version",
|
142 |
+
"generate_time",
|
143 |
+
"gs_model",
|
144 |
+
]
|
145 |
+
self.attrs_name = attrs_name
|
146 |
+
|
147 |
+
def parse_response(self, response: str) -> dict[str, any]:
|
148 |
+
lines = response.split("\n")
|
149 |
+
lines = [line.strip() for line in lines if line]
|
150 |
+
category = lines[0].split(": ")[1]
|
151 |
+
description = lines[1].split(": ")[1]
|
152 |
+
min_height, max_height = map(
|
153 |
+
lambda x: float(x.strip().replace(",", "").split()[0]),
|
154 |
+
lines[2].split(": ")[1].split("-"),
|
155 |
+
)
|
156 |
+
min_mass, max_mass = map(
|
157 |
+
lambda x: float(x.strip().replace(",", "").split()[0]),
|
158 |
+
lines[3].split(": ")[1].split("-"),
|
159 |
+
)
|
160 |
+
mu1 = float(lines[4].split(": ")[1].replace(",", ""))
|
161 |
+
mu2 = float(lines[5].split(": ")[1].replace(",", ""))
|
162 |
+
|
163 |
+
return {
|
164 |
+
"category": category.lower(),
|
165 |
+
"description": description.lower(),
|
166 |
+
"min_height": round(min_height, 4),
|
167 |
+
"max_height": round(max_height, 4),
|
168 |
+
"real_height": round((min_height + max_height) / 2, 4),
|
169 |
+
"min_mass": round(min_mass, 4),
|
170 |
+
"max_mass": round(max_mass, 4),
|
171 |
+
"mu1": round(mu1, 2),
|
172 |
+
"mu2": round(mu2, 2),
|
173 |
+
"version": VERSION,
|
174 |
+
"generate_time": datetime.now().strftime("%Y%m%d%H%M%S"),
|
175 |
+
}
|
176 |
+
|
177 |
+
def generate_urdf(
|
178 |
+
self,
|
179 |
+
input_mesh: str,
|
180 |
+
output_dir: str,
|
181 |
+
attr_dict: dict,
|
182 |
+
output_name: str = None,
|
183 |
+
) -> str:
|
184 |
+
"""Generate a URDF file for a given mesh with specified attributes.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
input_mesh (str): Path to the input mesh file.
|
188 |
+
output_dir (str): Directory to store the generated URDF
|
189 |
+
and processed mesh.
|
190 |
+
attr_dict (dict): Dictionary containing attributes like height,
|
191 |
+
mass, and friction coefficients.
|
192 |
+
output_name (str, optional): Name for the generated URDF and robot.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
str: Path to the generated URDF file.
|
196 |
+
"""
|
197 |
+
|
198 |
+
# 1. Load and normalize the mesh
|
199 |
+
mesh = trimesh.load(input_mesh)
|
200 |
+
mesh_scale = np.ptp(mesh.vertices, axis=0).max()
|
201 |
+
mesh.vertices /= mesh_scale # Normalize to [-0.5, 0.5]
|
202 |
+
raw_height = np.ptp(mesh.vertices, axis=0)[1]
|
203 |
+
|
204 |
+
# 2. Scale the mesh to real height
|
205 |
+
real_height = attr_dict["real_height"]
|
206 |
+
scale = round(real_height / raw_height, 6)
|
207 |
+
mesh = mesh.apply_scale(scale)
|
208 |
+
|
209 |
+
# 3. Prepare output directories and save scaled mesh
|
210 |
+
mesh_folder = os.path.join(output_dir, self.output_mesh_dir)
|
211 |
+
os.makedirs(mesh_folder, exist_ok=True)
|
212 |
+
|
213 |
+
obj_name = os.path.basename(input_mesh)
|
214 |
+
mesh_output_path = os.path.join(mesh_folder, obj_name)
|
215 |
+
mesh.export(mesh_output_path)
|
216 |
+
|
217 |
+
# 4. Copy additional mesh files, if any
|
218 |
+
input_dir = os.path.dirname(input_mesh)
|
219 |
+
for file in self.mesh_file_list:
|
220 |
+
src_file = os.path.join(input_dir, file)
|
221 |
+
dest_file = os.path.join(mesh_folder, file)
|
222 |
+
if os.path.isfile(src_file):
|
223 |
+
shutil.copy(src_file, dest_file)
|
224 |
+
|
225 |
+
# 5. Determine output name
|
226 |
+
if output_name is None:
|
227 |
+
output_name = os.path.splitext(obj_name)[0]
|
228 |
+
|
229 |
+
# 6. Load URDF template and update attributes
|
230 |
+
robot = ET.fromstring(URDF_TEMPLATE)
|
231 |
+
robot.set("name", output_name)
|
232 |
+
|
233 |
+
link = robot.find("link")
|
234 |
+
if link is None:
|
235 |
+
raise ValueError("URDF template is missing 'link' element.")
|
236 |
+
link.set("name", output_name)
|
237 |
+
|
238 |
+
# Update visual geometry
|
239 |
+
visual = link.find("visual/geometry/mesh")
|
240 |
+
if visual is not None:
|
241 |
+
visual.set(
|
242 |
+
"filename", os.path.join(self.output_mesh_dir, obj_name)
|
243 |
+
)
|
244 |
+
visual.set("scale", "1.0 1.0 1.0")
|
245 |
+
|
246 |
+
# Update collision geometry
|
247 |
+
collision = link.find("collision/geometry/mesh")
|
248 |
+
if collision is not None:
|
249 |
+
collision.set(
|
250 |
+
"filename", os.path.join(self.output_mesh_dir, obj_name)
|
251 |
+
)
|
252 |
+
collision.set("scale", "1.0 1.0 1.0")
|
253 |
+
|
254 |
+
# Update friction coefficients
|
255 |
+
gazebo = link.find("collision/gazebo")
|
256 |
+
if gazebo is not None:
|
257 |
+
for param, key in zip(["mu1", "mu2"], ["mu1", "mu2"]):
|
258 |
+
element = gazebo.find(param)
|
259 |
+
if element is not None:
|
260 |
+
element.text = f"{attr_dict[key]:.2f}"
|
261 |
+
|
262 |
+
# Update mass
|
263 |
+
inertial = link.find("inertial/mass")
|
264 |
+
if inertial is not None:
|
265 |
+
mass_value = (attr_dict["min_mass"] + attr_dict["max_mass"]) / 2
|
266 |
+
inertial.set("value", f"{mass_value:.4f}")
|
267 |
+
|
268 |
+
# Add extra_info element to the link
|
269 |
+
extra_info = link.find("extra_info/scale")
|
270 |
+
if extra_info is not None:
|
271 |
+
extra_info.text = f"{scale:.6f}"
|
272 |
+
|
273 |
+
for key in self.attrs_name:
|
274 |
+
extra_info = link.find(f"extra_info/{key}")
|
275 |
+
if extra_info is not None and key in attr_dict:
|
276 |
+
extra_info.text = f"{attr_dict[key]}"
|
277 |
+
|
278 |
+
# 7. Write URDF to file
|
279 |
+
os.makedirs(output_dir, exist_ok=True)
|
280 |
+
urdf_path = os.path.join(output_dir, f"{output_name}.urdf")
|
281 |
+
tree = ET.ElementTree(robot)
|
282 |
+
tree.write(urdf_path, encoding="utf-8", xml_declaration=True)
|
283 |
+
|
284 |
+
logger.info(f"URDF file saved to {urdf_path}")
|
285 |
+
|
286 |
+
return urdf_path
|
287 |
+
|
288 |
+
@staticmethod
|
289 |
+
def get_attr_from_urdf(
|
290 |
+
urdf_path: str,
|
291 |
+
attr_root: str = ".//link/extra_info",
|
292 |
+
attr_name: str = "scale",
|
293 |
+
) -> float:
|
294 |
+
if not os.path.exists(urdf_path):
|
295 |
+
raise FileNotFoundError(f"URDF file not found: {urdf_path}")
|
296 |
+
|
297 |
+
mesh_scale = 1.0
|
298 |
+
tree = ET.parse(urdf_path)
|
299 |
+
root = tree.getroot()
|
300 |
+
extra_info = root.find(attr_root)
|
301 |
+
if extra_info is not None:
|
302 |
+
scale_element = extra_info.find(attr_name)
|
303 |
+
if scale_element is not None:
|
304 |
+
mesh_scale = float(scale_element.text)
|
305 |
+
|
306 |
+
return mesh_scale
|
307 |
+
|
308 |
+
@staticmethod
|
309 |
+
def add_quality_tag(
|
310 |
+
urdf_path: str, results, output_path: str = None
|
311 |
+
) -> None:
|
312 |
+
if output_path is None:
|
313 |
+
output_path = urdf_path
|
314 |
+
|
315 |
+
tree = ET.parse(urdf_path)
|
316 |
+
root = tree.getroot()
|
317 |
+
custom_data = ET.SubElement(root, "custom_data")
|
318 |
+
quality = ET.SubElement(custom_data, "quality")
|
319 |
+
for key, value in results:
|
320 |
+
checker_tag = ET.SubElement(quality, key)
|
321 |
+
checker_tag.text = str(value)
|
322 |
+
|
323 |
+
rough_string = ET.tostring(root, encoding="utf-8")
|
324 |
+
formatted_string = parseString(rough_string).toprettyxml(indent=" ")
|
325 |
+
cleaned_string = "\n".join(
|
326 |
+
[line for line in formatted_string.splitlines() if line.strip()]
|
327 |
+
)
|
328 |
+
|
329 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
330 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
331 |
+
f.write(cleaned_string)
|
332 |
+
|
333 |
+
logger.info(f"URDF files saved to {output_path}")
|
334 |
+
|
335 |
+
def get_estimated_attributes(self, asset_attrs: dict):
|
336 |
+
estimated_attrs = {
|
337 |
+
"height": round(
|
338 |
+
(asset_attrs["min_height"] + asset_attrs["max_height"]) / 2, 4
|
339 |
+
),
|
340 |
+
"mass": round(
|
341 |
+
(asset_attrs["min_mass"] + asset_attrs["max_mass"]) / 2, 4
|
342 |
+
),
|
343 |
+
"mu": round((asset_attrs["mu1"] + asset_attrs["mu2"]) / 2, 4),
|
344 |
+
"category": asset_attrs["category"],
|
345 |
+
}
|
346 |
+
|
347 |
+
return estimated_attrs
|
348 |
+
|
349 |
+
def __call__(
|
350 |
+
self,
|
351 |
+
mesh_path: str,
|
352 |
+
output_root: str,
|
353 |
+
text_prompt: str = None,
|
354 |
+
category: str = "unknown",
|
355 |
+
**kwargs,
|
356 |
+
):
|
357 |
+
if text_prompt is None or len(text_prompt) == 0:
|
358 |
+
text_prompt = self.prompt_template
|
359 |
+
text_prompt = text_prompt.format(category=category.lower())
|
360 |
+
|
361 |
+
image_path = render_asset3d(
|
362 |
+
mesh_path,
|
363 |
+
output_root,
|
364 |
+
num_images=self.render_view_num,
|
365 |
+
output_subdir=self.output_render_dir,
|
366 |
+
)
|
367 |
+
|
368 |
+
# Hardcode tmp because of the openrouter can't input multi images.
|
369 |
+
if "openrouter" in self.gpt_client.endpoint:
|
370 |
+
from asset3d_gen.utils.process_media import (
|
371 |
+
combine_images_to_base64,
|
372 |
+
)
|
373 |
+
|
374 |
+
image_path = combine_images_to_base64(image_path)
|
375 |
+
|
376 |
+
response = self.gpt_client.query(text_prompt, image_path)
|
377 |
+
if response is None:
|
378 |
+
asset_attrs = {
|
379 |
+
"category": "unknown",
|
380 |
+
"description": "unknown",
|
381 |
+
"min_height": 1,
|
382 |
+
"max_height": 1,
|
383 |
+
"real_height": 1,
|
384 |
+
"min_mass": 1,
|
385 |
+
"max_mass": 1,
|
386 |
+
"mu1": 0.8,
|
387 |
+
"mu2": 0.6,
|
388 |
+
"version": VERSION,
|
389 |
+
"generate_time": datetime.now().strftime("%Y%m%d%H%M%S"),
|
390 |
+
}
|
391 |
+
else:
|
392 |
+
asset_attrs = self.parse_response(response)
|
393 |
+
for key in self.attrs_name:
|
394 |
+
if key in kwargs:
|
395 |
+
asset_attrs[key] = kwargs[key]
|
396 |
+
|
397 |
+
self.estimated_attrs = self.get_estimated_attributes(asset_attrs)
|
398 |
+
|
399 |
+
urdf_path = self.generate_urdf(mesh_path, output_root, asset_attrs)
|
400 |
+
|
401 |
+
logger.info(f"response: {response}")
|
402 |
+
|
403 |
+
return urdf_path
|
404 |
+
|
405 |
+
|
406 |
+
if __name__ == "__main__":
|
407 |
+
urdf_gen = URDFGenerator(GPT_CLIENT, render_view_num=4)
|
408 |
+
urdf_path = urdf_gen(
|
409 |
+
mesh_path="scripts/apps/assets/example_texture/meshes/robot.obj",
|
410 |
+
output_root="outputs/test_urdf",
|
411 |
+
# category="coffee machine",
|
412 |
+
# min_height=1.0,
|
413 |
+
# max_height=1.2,
|
414 |
+
version=VERSION,
|
415 |
+
)
|
416 |
+
|
417 |
+
# zip_files(
|
418 |
+
# input_paths=[
|
419 |
+
# "scripts/apps/tmp/2umpdum3e5n/URDF_sample/mesh",
|
420 |
+
# "scripts/apps/tmp/2umpdum3e5n/URDF_sample/sample.urdf"
|
421 |
+
# ],
|
422 |
+
# output_zip="zip.zip"
|
423 |
+
# )
|
common.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from glob import glob
|
6 |
+
from typing import Union
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import trimesh
|
13 |
+
from easydict import EasyDict as edict
|
14 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import (
|
15 |
+
StableDiffusionXLPipeline,
|
16 |
+
)
|
17 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import ( # noqa
|
18 |
+
StableDiffusionXLPipeline as StableDiffusionXLPipelineIP,
|
19 |
+
)
|
20 |
+
from PIL import Image
|
21 |
+
from tqdm import tqdm
|
22 |
+
from asset3d_gen.data.backproject_v2 import entrypoint as backproject_api
|
23 |
+
from asset3d_gen.models.delight import DelightingModel
|
24 |
+
from asset3d_gen.models.gs_model import GaussianOperator
|
25 |
+
from asset3d_gen.models.segment import (
|
26 |
+
RembgRemover,
|
27 |
+
SAMPredictor,
|
28 |
+
trellis_preprocess,
|
29 |
+
)
|
30 |
+
from asset3d_gen.models.super_resolution import ImageRealESRGAN, ImageStableSR
|
31 |
+
from asset3d_gen.scripts.render_gs import entrypoint as render_gs_api
|
32 |
+
from asset3d_gen.scripts.text2image import text2img_gen
|
33 |
+
from asset3d_gen.utils.process_media import (
|
34 |
+
filter_image_small_connected_components,
|
35 |
+
merge_images_video,
|
36 |
+
render_asset3d,
|
37 |
+
)
|
38 |
+
from asset3d_gen.utils.tags import VERSION
|
39 |
+
from asset3d_gen.validators.quality_checkers import (
|
40 |
+
BaseChecker,
|
41 |
+
ImageAestheticChecker,
|
42 |
+
ImageSegChecker,
|
43 |
+
MeshGeoChecker,
|
44 |
+
)
|
45 |
+
from asset3d_gen.validators.urdf_convertor import URDFGenerator, zip_files
|
46 |
+
|
47 |
+
current_file_path = os.path.abspath(__file__)
|
48 |
+
current_dir = os.path.dirname(current_file_path)
|
49 |
+
sys.path.append(os.path.join(current_dir, "../.."))
|
50 |
+
from thirdparty.TRELLIS.trellis.pipelines import TrellisImageTo3DPipeline
|
51 |
+
from thirdparty.TRELLIS.trellis.renderers.mesh_renderer import MeshRenderer
|
52 |
+
from thirdparty.TRELLIS.trellis.representations import (
|
53 |
+
Gaussian,
|
54 |
+
MeshExtractResult,
|
55 |
+
)
|
56 |
+
from thirdparty.TRELLIS.trellis.utils import postprocessing_utils
|
57 |
+
from thirdparty.TRELLIS.trellis.utils.render_utils import (
|
58 |
+
render_frames,
|
59 |
+
yaw_pitch_r_fov_to_extrinsics_intrinsics,
|
60 |
+
)
|
61 |
+
import spaces
|
62 |
+
|
63 |
+
|
64 |
+
logging.basicConfig(
|
65 |
+
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
66 |
+
)
|
67 |
+
logger = logging.getLogger(__name__)
|
68 |
+
|
69 |
+
|
70 |
+
MAX_SEED = 100000
|
71 |
+
|
72 |
+
|
73 |
+
@spaces.GPU
|
74 |
+
def render_mesh(sample, extrinsics, intrinsics, options={}, **kwargs):
|
75 |
+
renderer = MeshRenderer()
|
76 |
+
renderer.rendering_options.resolution = options.get("resolution", 512)
|
77 |
+
renderer.rendering_options.near = options.get("near", 1)
|
78 |
+
renderer.rendering_options.far = options.get("far", 100)
|
79 |
+
renderer.rendering_options.ssaa = options.get("ssaa", 4)
|
80 |
+
rets = {}
|
81 |
+
for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"):
|
82 |
+
res = renderer.render(sample, extr, intr)
|
83 |
+
if "normal" not in rets:
|
84 |
+
rets["normal"] = []
|
85 |
+
normal = torch.lerp(
|
86 |
+
torch.zeros_like(res["normal"]), res["normal"], res["mask"]
|
87 |
+
)
|
88 |
+
normal = np.clip(
|
89 |
+
normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
|
90 |
+
).astype(np.uint8)
|
91 |
+
rets["normal"].append(normal)
|
92 |
+
|
93 |
+
return rets
|
94 |
+
|
95 |
+
|
96 |
+
@spaces.GPU
|
97 |
+
def render_video(
|
98 |
+
sample,
|
99 |
+
resolution=512,
|
100 |
+
bg_color=(0, 0, 0),
|
101 |
+
num_frames=300,
|
102 |
+
r=2,
|
103 |
+
fov=40,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
yaws = torch.linspace(0, 2 * 3.1415, num_frames)
|
107 |
+
yaws = yaws.tolist()
|
108 |
+
pitch = [0.5] * num_frames
|
109 |
+
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(
|
110 |
+
yaws, pitch, r, fov
|
111 |
+
)
|
112 |
+
render_fn = (
|
113 |
+
render_mesh if isinstance(sample, MeshExtractResult) else render_frames
|
114 |
+
)
|
115 |
+
result = render_fn(
|
116 |
+
sample,
|
117 |
+
extrinsics,
|
118 |
+
intrinsics,
|
119 |
+
{"resolution": resolution, "bg_color": bg_color},
|
120 |
+
**kwargs,
|
121 |
+
)
|
122 |
+
|
123 |
+
return result
|
124 |
+
|
125 |
+
|
126 |
+
@spaces.GPU
|
127 |
+
def preprocess_image_fn(
|
128 |
+
image: str | np.ndarray | Image.Image,
|
129 |
+
model: DelightingModel | RembgRemover,
|
130 |
+
buffer: dict = None,
|
131 |
+
) -> Image.Image:
|
132 |
+
if isinstance(image, str):
|
133 |
+
image = Image.open(image)
|
134 |
+
elif isinstance(image, np.ndarray):
|
135 |
+
image = Image.fromarray(image)
|
136 |
+
|
137 |
+
if buffer is not None:
|
138 |
+
buffer["raw_image"] = image
|
139 |
+
|
140 |
+
if isinstance(model, DelightingModel):
|
141 |
+
image = model(image, preprocess=True, target_wh=(512, 512))
|
142 |
+
elif isinstance(model, RembgRemover):
|
143 |
+
image = model(image)
|
144 |
+
image = trellis_preprocess(image)
|
145 |
+
|
146 |
+
return image
|
147 |
+
|
148 |
+
|
149 |
+
@spaces.GPU
|
150 |
+
def preprocess_sam_image_fn(
|
151 |
+
image: Image.Image, buffer: dict, model: SAMPredictor
|
152 |
+
) -> Image.Image:
|
153 |
+
if isinstance(image, np.ndarray):
|
154 |
+
image = Image.fromarray(image)
|
155 |
+
|
156 |
+
buffer["raw_image"] = image
|
157 |
+
sam_image = model.preprocess_image(image)
|
158 |
+
model.predictor.set_image(sam_image)
|
159 |
+
|
160 |
+
return sam_image
|
161 |
+
|
162 |
+
|
163 |
+
def active_btn_by_content(content: gr.Image) -> gr.Button:
|
164 |
+
interactive = True if content is not None else False
|
165 |
+
|
166 |
+
return gr.Button(interactive=interactive)
|
167 |
+
|
168 |
+
|
169 |
+
def active_btn_by_text_content(content: gr.Textbox) -> gr.Button:
|
170 |
+
if content is not None and len(content) > 0:
|
171 |
+
interactive = True
|
172 |
+
else:
|
173 |
+
interactive = False
|
174 |
+
|
175 |
+
return gr.Button(interactive=interactive)
|
176 |
+
|
177 |
+
|
178 |
+
def get_selected_image(
|
179 |
+
choice: str, sample1: str, sample2: str, sample3: str
|
180 |
+
) -> str:
|
181 |
+
if choice == "sample1":
|
182 |
+
return sample1
|
183 |
+
elif choice == "sample2":
|
184 |
+
return sample2
|
185 |
+
elif choice == "sample3":
|
186 |
+
return sample3
|
187 |
+
else:
|
188 |
+
raise ValueError(f"Invalid choice: {choice}")
|
189 |
+
|
190 |
+
|
191 |
+
@spaces.GPU
|
192 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
193 |
+
return {
|
194 |
+
"gaussian": {
|
195 |
+
**gs.init_params,
|
196 |
+
"_xyz": gs._xyz.cpu().numpy(),
|
197 |
+
"_features_dc": gs._features_dc.cpu().numpy(),
|
198 |
+
"_scaling": gs._scaling.cpu().numpy(),
|
199 |
+
"_rotation": gs._rotation.cpu().numpy(),
|
200 |
+
"_opacity": gs._opacity.cpu().numpy(),
|
201 |
+
},
|
202 |
+
"mesh": {
|
203 |
+
"vertices": mesh.vertices.cpu().numpy(),
|
204 |
+
"faces": mesh.faces.cpu().numpy(),
|
205 |
+
},
|
206 |
+
}
|
207 |
+
|
208 |
+
|
209 |
+
@spaces.GPU
|
210 |
+
def unpack_state(state: dict) -> tuple[Gaussian, edict, str]:
|
211 |
+
gs = Gaussian(
|
212 |
+
aabb=state["gaussian"]["aabb"],
|
213 |
+
sh_degree=state["gaussian"]["sh_degree"],
|
214 |
+
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
|
215 |
+
scaling_bias=state["gaussian"]["scaling_bias"],
|
216 |
+
opacity_bias=state["gaussian"]["opacity_bias"],
|
217 |
+
scaling_activation=state["gaussian"]["scaling_activation"],
|
218 |
+
)
|
219 |
+
gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
|
220 |
+
gs._features_dc = torch.tensor(
|
221 |
+
state["gaussian"]["_features_dc"], device="cuda"
|
222 |
+
)
|
223 |
+
gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
|
224 |
+
gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
|
225 |
+
gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")
|
226 |
+
|
227 |
+
mesh = edict(
|
228 |
+
vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
|
229 |
+
faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
|
230 |
+
)
|
231 |
+
|
232 |
+
return gs, mesh
|
233 |
+
|
234 |
+
|
235 |
+
def get_seed(randomize_seed: bool, seed: int, max_seed: int = MAX_SEED) -> int:
|
236 |
+
return np.random.randint(0, max_seed) if randomize_seed else seed
|
237 |
+
|
238 |
+
|
239 |
+
@spaces.GPU
|
240 |
+
def select_point(
|
241 |
+
image: np.ndarray,
|
242 |
+
sel_pix: list,
|
243 |
+
point_type: str,
|
244 |
+
model: SAMPredictor,
|
245 |
+
evt: gr.SelectData,
|
246 |
+
):
|
247 |
+
if point_type == "foreground_point":
|
248 |
+
sel_pix.append((evt.index, 1)) # append the foreground_point
|
249 |
+
elif point_type == "background_point":
|
250 |
+
sel_pix.append((evt.index, 0)) # append the background_point
|
251 |
+
else:
|
252 |
+
sel_pix.append((evt.index, 1)) # default foreground_point
|
253 |
+
|
254 |
+
masks = model.generate_masks(image, sel_pix)
|
255 |
+
seg_image = model.get_segmented_image(image, masks)
|
256 |
+
|
257 |
+
for point, label in sel_pix:
|
258 |
+
color = (255, 0, 0) if label == 0 else (0, 255, 0)
|
259 |
+
marker_type = 1 if label == 0 else 5
|
260 |
+
cv2.drawMarker(
|
261 |
+
image,
|
262 |
+
point,
|
263 |
+
color,
|
264 |
+
markerType=marker_type,
|
265 |
+
markerSize=15,
|
266 |
+
thickness=10,
|
267 |
+
)
|
268 |
+
|
269 |
+
torch.cuda.empty_cache()
|
270 |
+
|
271 |
+
return (image, masks), seg_image
|
272 |
+
|
273 |
+
|
274 |
+
@spaces.GPU
|
275 |
+
def image_to_3d(
|
276 |
+
image: Image.Image,
|
277 |
+
seed: int,
|
278 |
+
ss_guidance_strength: float,
|
279 |
+
ss_sampling_steps: int,
|
280 |
+
slat_guidance_strength: float,
|
281 |
+
slat_sampling_steps: int,
|
282 |
+
buffer: dict,
|
283 |
+
pipeline: TrellisImageTo3DPipeline,
|
284 |
+
output_root: str,
|
285 |
+
sam_image: Image.Image = None,
|
286 |
+
is_sam_image: bool = False,
|
287 |
+
req: gr.Request = None,
|
288 |
+
) -> tuple[dict, str]:
|
289 |
+
if is_sam_image:
|
290 |
+
seg_image = filter_image_small_connected_components(sam_image)
|
291 |
+
seg_image = Image.fromarray(seg_image, mode="RGBA")
|
292 |
+
seg_image = trellis_preprocess(seg_image)
|
293 |
+
# seg_image.save(f"{TMP_DIR}/seg_image_sam.png")
|
294 |
+
else:
|
295 |
+
seg_image = image
|
296 |
+
|
297 |
+
if isinstance(seg_image, np.ndarray):
|
298 |
+
seg_image = Image.fromarray(seg_image)
|
299 |
+
buffer["seg_image"] = seg_image
|
300 |
+
|
301 |
+
pipeline.cuda()
|
302 |
+
outputs = pipeline.run(
|
303 |
+
seg_image,
|
304 |
+
seed=seed,
|
305 |
+
formats=["gaussian", "mesh"],
|
306 |
+
preprocess_image=False,
|
307 |
+
sparse_structure_sampler_params={
|
308 |
+
"steps": ss_sampling_steps,
|
309 |
+
"cfg_strength": ss_guidance_strength,
|
310 |
+
},
|
311 |
+
slat_sampler_params={
|
312 |
+
"steps": slat_sampling_steps,
|
313 |
+
"cfg_strength": slat_guidance_strength,
|
314 |
+
},
|
315 |
+
)
|
316 |
+
# Set to cpu for memory saving.
|
317 |
+
pipeline.cpu()
|
318 |
+
|
319 |
+
gs_model = outputs["gaussian"][0]
|
320 |
+
mesh_model = outputs["mesh"][0]
|
321 |
+
color_images = render_video(gs_model)["color"]
|
322 |
+
normal_images = render_video(mesh_model)["normal"]
|
323 |
+
if req is not None:
|
324 |
+
output_root = os.path.join(output_root, str(req.session_hash))
|
325 |
+
video_path = os.path.join(output_root, "gs_mesh.mp4")
|
326 |
+
merge_images_video(color_images, normal_images, video_path)
|
327 |
+
state = pack_state(gs_model, mesh_model)
|
328 |
+
|
329 |
+
gc.collect()
|
330 |
+
torch.cuda.empty_cache()
|
331 |
+
|
332 |
+
return state, video_path
|
333 |
+
|
334 |
+
|
335 |
+
@spaces.GPU
|
336 |
+
def extract_3d_representations(
|
337 |
+
state: dict, enable_delight: bool, output_root: str, req: gr.Request
|
338 |
+
):
|
339 |
+
user_dir = os.path.join(output_root, str(req.session_hash))
|
340 |
+
gs_model, mesh_model = unpack_state(state)
|
341 |
+
|
342 |
+
mesh = postprocessing_utils.to_glb(
|
343 |
+
gs_model,
|
344 |
+
mesh_model,
|
345 |
+
simplify=0.9,
|
346 |
+
texture_size=1024,
|
347 |
+
verbose=True,
|
348 |
+
)
|
349 |
+
filename = "sample"
|
350 |
+
gs_path = os.path.join(user_dir, f"{filename}_gs.ply")
|
351 |
+
gs_model.save_ply(gs_path)
|
352 |
+
|
353 |
+
# Rotate mesh and GS by 90 degrees around Z-axis.
|
354 |
+
rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
|
355 |
+
# Addtional rotation for GS to align mesh.
|
356 |
+
gs_rot = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) @ np.array(
|
357 |
+
rot_matrix
|
358 |
+
)
|
359 |
+
pose = GaussianOperator.trans_to_quatpose(gs_rot)
|
360 |
+
aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
|
361 |
+
GaussianOperator.resave_ply(
|
362 |
+
in_ply=gs_path,
|
363 |
+
out_ply=aligned_gs_path,
|
364 |
+
instance_pose=pose,
|
365 |
+
)
|
366 |
+
|
367 |
+
mesh.vertices = mesh.vertices @ np.array(rot_matrix)
|
368 |
+
mesh_obj_path = os.path.join(user_dir, f"{filename}.obj")
|
369 |
+
mesh.export(mesh_obj_path)
|
370 |
+
mesh_glb_path = os.path.join(user_dir, f"{filename}.glb")
|
371 |
+
mesh.export(mesh_glb_path)
|
372 |
+
|
373 |
+
torch.cuda.empty_cache()
|
374 |
+
|
375 |
+
return mesh_glb_path, gs_path, mesh_obj_path, aligned_gs_path
|
376 |
+
|
377 |
+
|
378 |
+
@spaces.GPU
|
379 |
+
def extract_3d_representations_v2(
|
380 |
+
state: dict,
|
381 |
+
enable_delight: bool,
|
382 |
+
output_root: str,
|
383 |
+
delight_model: DelightingModel,
|
384 |
+
sr_model: Union[ImageRealESRGAN, ImageStableSR],
|
385 |
+
req: gr.Request,
|
386 |
+
):
|
387 |
+
user_dir = os.path.join(output_root, str(req.session_hash))
|
388 |
+
gs_model, mesh_model = unpack_state(state)
|
389 |
+
|
390 |
+
filename = "sample"
|
391 |
+
gs_path = os.path.join(user_dir, f"{filename}_gs.ply")
|
392 |
+
gs_model.save_ply(gs_path)
|
393 |
+
|
394 |
+
# Rotate mesh and GS by 90 degrees around Z-axis.
|
395 |
+
rot_matrix = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
|
396 |
+
gs_add_rot = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
|
397 |
+
mesh_add_rot = [[1, 0, 0], [0, 0, -1], [0, 1, 0]]
|
398 |
+
|
399 |
+
# Addtional rotation for GS to align mesh.
|
400 |
+
gs_rot = np.array(gs_add_rot) @ np.array(rot_matrix)
|
401 |
+
pose = GaussianOperator.trans_to_quatpose(gs_rot)
|
402 |
+
aligned_gs_path = gs_path.replace(".ply", "_aligned.ply")
|
403 |
+
GaussianOperator.resave_ply(
|
404 |
+
in_ply=gs_path,
|
405 |
+
out_ply=aligned_gs_path,
|
406 |
+
instance_pose=pose,
|
407 |
+
)
|
408 |
+
color_path = os.path.join(user_dir, "color.png")
|
409 |
+
render_gs_api(aligned_gs_path, color_path)
|
410 |
+
|
411 |
+
mesh = trimesh.Trimesh(
|
412 |
+
vertices=mesh_model.vertices.cpu().numpy(),
|
413 |
+
faces=mesh_model.faces.cpu().numpy(),
|
414 |
+
)
|
415 |
+
mesh.vertices = mesh.vertices @ np.array(mesh_add_rot)
|
416 |
+
mesh.vertices = mesh.vertices @ np.array(rot_matrix)
|
417 |
+
|
418 |
+
mesh_obj_path = os.path.join(user_dir, f"{filename}.obj")
|
419 |
+
mesh.export(mesh_obj_path)
|
420 |
+
|
421 |
+
mesh = backproject_api(
|
422 |
+
delight_model=delight_model,
|
423 |
+
imagesr_model=sr_model,
|
424 |
+
color_path=color_path,
|
425 |
+
mesh_path=mesh_obj_path,
|
426 |
+
output_path=mesh_obj_path,
|
427 |
+
skip_fix_mesh=False,
|
428 |
+
delight=enable_delight,
|
429 |
+
)
|
430 |
+
|
431 |
+
mesh_glb_path = os.path.join(user_dir, f"{filename}.glb")
|
432 |
+
mesh.export(mesh_glb_path)
|
433 |
+
|
434 |
+
torch.cuda.empty_cache()
|
435 |
+
|
436 |
+
return mesh_glb_path, gs_path, mesh_obj_path, aligned_gs_path
|
437 |
+
|
438 |
+
|
439 |
+
@spaces.GPU
|
440 |
+
def extract_urdf(
|
441 |
+
gs_path: str,
|
442 |
+
mesh_obj_path: str,
|
443 |
+
asset_cat_text: str,
|
444 |
+
height_range_text: str,
|
445 |
+
mass_range_text: str,
|
446 |
+
asset_version_text: str,
|
447 |
+
output_root: str,
|
448 |
+
urdf_convertor: URDFGenerator,
|
449 |
+
buffer: dict,
|
450 |
+
checkers: list[BaseChecker],
|
451 |
+
req: gr.Request = None,
|
452 |
+
):
|
453 |
+
if req is not None:
|
454 |
+
output_root = os.path.join(output_root, str(req.session_hash))
|
455 |
+
# Convert to URDF and recover attrs by gpt4o
|
456 |
+
filename = "sample"
|
457 |
+
asset_attrs = {
|
458 |
+
"version": VERSION,
|
459 |
+
"gs_model": f"{urdf_convertor.output_mesh_dir}/{filename}_gs.ply",
|
460 |
+
}
|
461 |
+
if asset_version_text:
|
462 |
+
asset_attrs["version"] = asset_version_text
|
463 |
+
if asset_cat_text:
|
464 |
+
asset_attrs["category"] = asset_cat_text.lower()
|
465 |
+
if height_range_text:
|
466 |
+
try:
|
467 |
+
min_height, max_height = map(float, height_range_text.split("-"))
|
468 |
+
asset_attrs["min_height"] = min_height
|
469 |
+
asset_attrs["max_height"] = max_height
|
470 |
+
except ValueError:
|
471 |
+
return "Invalid height input format. Use the format: min-max."
|
472 |
+
if mass_range_text:
|
473 |
+
try:
|
474 |
+
min_mass, max_mass = map(float, mass_range_text.split("-"))
|
475 |
+
asset_attrs["min_mass"] = min_mass
|
476 |
+
asset_attrs["max_mass"] = max_mass
|
477 |
+
except ValueError:
|
478 |
+
return "Invalid mass input format. Use the format: min-max."
|
479 |
+
|
480 |
+
urdf_path = urdf_convertor(
|
481 |
+
mesh_path=mesh_obj_path,
|
482 |
+
output_root=f"{output_root}/URDF_{filename}",
|
483 |
+
**asset_attrs,
|
484 |
+
)
|
485 |
+
|
486 |
+
# Rescale GS and save to URDF/mesh folder.
|
487 |
+
real_height = urdf_convertor.get_attr_from_urdf(
|
488 |
+
urdf_path, attr_name="real_height"
|
489 |
+
)
|
490 |
+
out_gs = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}_gs.ply" # noqa
|
491 |
+
GaussianOperator.resave_ply(
|
492 |
+
in_ply=gs_path,
|
493 |
+
out_ply=out_gs,
|
494 |
+
real_height=real_height,
|
495 |
+
)
|
496 |
+
|
497 |
+
# Quality check and update .urdf file.
|
498 |
+
mesh_out = f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}/{filename}.obj" # noqa
|
499 |
+
trimesh.load(mesh_out).export(mesh_out.replace(".obj", ".glb"))
|
500 |
+
# image_paths = render_asset3d(
|
501 |
+
# mesh_path=mesh_out,
|
502 |
+
# output_root=f"{output_root}/URDF_{filename}",
|
503 |
+
# output_subdir="qa_renders",
|
504 |
+
# num_images=8,
|
505 |
+
# elevation=(30, -30),
|
506 |
+
# distance=5.5,
|
507 |
+
# )
|
508 |
+
|
509 |
+
image_dir = f"{output_root}/URDF_{filename}/{urdf_convertor.output_render_dir}/image_color" # noqa
|
510 |
+
image_paths = glob(f"{image_dir}/*.png")
|
511 |
+
images_list = []
|
512 |
+
for checker in checkers:
|
513 |
+
images = image_paths
|
514 |
+
if isinstance(checker, ImageSegChecker):
|
515 |
+
images = [buffer["raw_image"], buffer["seg_image"]]
|
516 |
+
images_list.append(images)
|
517 |
+
|
518 |
+
results = BaseChecker.validate(checkers, images_list)
|
519 |
+
urdf_convertor.add_quality_tag(urdf_path, results)
|
520 |
+
|
521 |
+
# Zip urdf files
|
522 |
+
urdf_zip = zip_files(
|
523 |
+
input_paths=[
|
524 |
+
f"{output_root}/URDF_{filename}/{urdf_convertor.output_mesh_dir}",
|
525 |
+
f"{output_root}/URDF_{filename}/{filename}.urdf",
|
526 |
+
],
|
527 |
+
output_zip=f"{output_root}/urdf_{filename}.zip",
|
528 |
+
)
|
529 |
+
|
530 |
+
torch.cuda.empty_cache()
|
531 |
+
|
532 |
+
estimated_type = urdf_convertor.estimated_attrs["category"]
|
533 |
+
estimated_height = urdf_convertor.estimated_attrs["height"]
|
534 |
+
estimated_mass = urdf_convertor.estimated_attrs["mass"]
|
535 |
+
estimated_mu = urdf_convertor.estimated_attrs["mu"]
|
536 |
+
|
537 |
+
return (
|
538 |
+
urdf_zip,
|
539 |
+
estimated_type,
|
540 |
+
estimated_height,
|
541 |
+
estimated_mass,
|
542 |
+
estimated_mu,
|
543 |
+
)
|
544 |
+
|
545 |
+
|
546 |
+
@spaces.GPU
|
547 |
+
def text2image_fn(
|
548 |
+
prompt: str,
|
549 |
+
output_root: str,
|
550 |
+
guidance_scale: float,
|
551 |
+
model_ip: StableDiffusionXLPipelineIP,
|
552 |
+
model_img: StableDiffusionXLPipeline,
|
553 |
+
bg_model: RembgRemover,
|
554 |
+
infer_step: int = 50,
|
555 |
+
ip_image: Image.Image | str = None,
|
556 |
+
ip_adapt_scale: float = 0.3,
|
557 |
+
image_wh: int | tuple[int, int] = [1024, 1024],
|
558 |
+
n_sample: int = 3,
|
559 |
+
postprocess: bool = True,
|
560 |
+
req: gr.Request = None,
|
561 |
+
):
|
562 |
+
if isinstance(image_wh, int):
|
563 |
+
image_wh = (image_wh, image_wh)
|
564 |
+
if req is not None:
|
565 |
+
output_root = os.path.join(output_root, str(req.session_hash))
|
566 |
+
os.makedirs(output_root, exist_ok=True)
|
567 |
+
|
568 |
+
pipeline = model_img if ip_image is None else model_ip
|
569 |
+
if ip_image is not None:
|
570 |
+
pipeline.set_ip_adapter_scale([ip_adapt_scale])
|
571 |
+
|
572 |
+
images = text2img_gen(
|
573 |
+
prompt=prompt,
|
574 |
+
n_sample=n_sample,
|
575 |
+
guidance_scale=guidance_scale,
|
576 |
+
pipeline=pipeline,
|
577 |
+
ip_image=ip_image,
|
578 |
+
image_wh=image_wh,
|
579 |
+
infer_step=infer_step,
|
580 |
+
)
|
581 |
+
if postprocess:
|
582 |
+
for idx in range(len(images)):
|
583 |
+
image = images[idx]
|
584 |
+
images[idx] = preprocess_image_fn(image, bg_model)
|
585 |
+
|
586 |
+
save_paths = []
|
587 |
+
for idx, image in enumerate(images):
|
588 |
+
save_path = f"{output_root}/sample_{idx}.png"
|
589 |
+
image.save(save_path)
|
590 |
+
save_paths.append(save_path)
|
591 |
+
|
592 |
+
logger.info(f"Images saved to {output_root}")
|
593 |
+
|
594 |
+
gc.collect()
|
595 |
+
torch.cuda.empty_cache()
|
596 |
+
|
597 |
+
return save_paths + save_paths
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
|
3 |
-
torch==2.1.0
|
4 |
-
torchaudio==2.1.0
|
5 |
-
torchvision==0.16.0
|
6 |
-
xformers==0.0.22.post7
|
7 |
dataclasses_json
|
8 |
easydict
|
9 |
opencv-python>4.5
|
@@ -21,7 +21,7 @@ openai==1.58.1
|
|
21 |
spconv-cu118==2.3.8
|
22 |
transformers==4.42.4
|
23 |
gradio_litmodel3d==0.0.1
|
24 |
-
|
25 |
sentencepiece==0.2.0
|
26 |
diffusers==0.31.0
|
27 |
xatlas==0.0.9
|
@@ -33,6 +33,7 @@ basicsr==1.4.2
|
|
33 |
realesrgan==0.3.0
|
34 |
pydantic==2.9.2
|
35 |
vtk==9.3.1
|
|
|
36 |
utils3d@git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
37 |
clip@git+https://github.com/openai/CLIP.git
|
38 |
kolors@git+https://github.com/Kwai-Kolors/Kolors.git#egg=038818d
|
|
|
1 |
+
# --extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
|
3 |
+
torch==2.1.0+cu118
|
4 |
+
torchaudio==2.1.0+cu118
|
5 |
+
torchvision==0.16.0+cu118
|
6 |
+
xformers==0.0.22.post7+cu118
|
7 |
dataclasses_json
|
8 |
easydict
|
9 |
opencv-python>4.5
|
|
|
21 |
spconv-cu118==2.3.8
|
22 |
transformers==4.42.4
|
23 |
gradio_litmodel3d==0.0.1
|
24 |
+
gradio==5.12.0
|
25 |
sentencepiece==0.2.0
|
26 |
diffusers==0.31.0
|
27 |
xatlas==0.0.9
|
|
|
33 |
realesrgan==0.3.0
|
34 |
pydantic==2.9.2
|
35 |
vtk==9.3.1
|
36 |
+
spaces
|
37 |
utils3d@git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
38 |
clip@git+https://github.com/openai/CLIP.git
|
39 |
kolors@git+https://github.com/Kwai-Kolors/Kolors.git#egg=038818d
|
thirdparty/TRELLIS/trellis/trellis/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import models
|
2 |
+
from . import modules
|
3 |
+
from . import pipelines
|
4 |
+
from . import renderers
|
5 |
+
from . import representations
|
6 |
+
from . import utils
|
thirdparty/TRELLIS/trellis/trellis/models/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
__attributes = {
|
4 |
+
'SparseStructureEncoder': 'sparse_structure_vae',
|
5 |
+
'SparseStructureDecoder': 'sparse_structure_vae',
|
6 |
+
'SparseStructureFlowModel': 'sparse_structure_flow',
|
7 |
+
'SLatEncoder': 'structured_latent_vae',
|
8 |
+
'SLatGaussianDecoder': 'structured_latent_vae',
|
9 |
+
'SLatRadianceFieldDecoder': 'structured_latent_vae',
|
10 |
+
'SLatMeshDecoder': 'structured_latent_vae',
|
11 |
+
'SLatFlowModel': 'structured_latent_flow',
|
12 |
+
}
|
13 |
+
|
14 |
+
__submodules = []
|
15 |
+
|
16 |
+
__all__ = list(__attributes.keys()) + __submodules
|
17 |
+
|
18 |
+
def __getattr__(name):
|
19 |
+
if name not in globals():
|
20 |
+
if name in __attributes:
|
21 |
+
module_name = __attributes[name]
|
22 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
23 |
+
globals()[name] = getattr(module, name)
|
24 |
+
elif name in __submodules:
|
25 |
+
module = importlib.import_module(f".{name}", __name__)
|
26 |
+
globals()[name] = module
|
27 |
+
else:
|
28 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
29 |
+
return globals()[name]
|
30 |
+
|
31 |
+
|
32 |
+
def from_pretrained(path: str, **kwargs):
|
33 |
+
"""
|
34 |
+
Load a model from a pretrained checkpoint.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
|
38 |
+
NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
|
39 |
+
**kwargs: Additional arguments for the model constructor.
|
40 |
+
"""
|
41 |
+
import os
|
42 |
+
import json
|
43 |
+
from safetensors.torch import load_file
|
44 |
+
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
45 |
+
|
46 |
+
if is_local:
|
47 |
+
config_file = f"{path}.json"
|
48 |
+
model_file = f"{path}.safetensors"
|
49 |
+
else:
|
50 |
+
from huggingface_hub import hf_hub_download
|
51 |
+
path_parts = path.split('/')
|
52 |
+
repo_id = f'{path_parts[0]}/{path_parts[1]}'
|
53 |
+
model_name = '/'.join(path_parts[2:])
|
54 |
+
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
55 |
+
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
56 |
+
|
57 |
+
with open(config_file, 'r') as f:
|
58 |
+
config = json.load(f)
|
59 |
+
model = __getattr__(config['name'])(**config['args'], **kwargs)
|
60 |
+
model.load_state_dict(load_file(model_file))
|
61 |
+
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
# For Pylance
|
66 |
+
if __name__ == '__main__':
|
67 |
+
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
68 |
+
from .sparse_structure_flow import SparseStructureFlowModel
|
69 |
+
from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder
|
70 |
+
from .structured_latent_flow import SLatFlowModel
|
thirdparty/TRELLIS/trellis/trellis/models/sparse_structure_flow.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
|
8 |
+
from ..modules.spatial import patchify, unpatchify
|
9 |
+
|
10 |
+
|
11 |
+
class TimestepEmbedder(nn.Module):
|
12 |
+
"""
|
13 |
+
Embeds scalar timesteps into vector representations.
|
14 |
+
"""
|
15 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
16 |
+
super().__init__()
|
17 |
+
self.mlp = nn.Sequential(
|
18 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
19 |
+
nn.SiLU(),
|
20 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
21 |
+
)
|
22 |
+
self.frequency_embedding_size = frequency_embedding_size
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def timestep_embedding(t, dim, max_period=10000):
|
26 |
+
"""
|
27 |
+
Create sinusoidal timestep embeddings.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
t: a 1-D Tensor of N indices, one per batch element.
|
31 |
+
These may be fractional.
|
32 |
+
dim: the dimension of the output.
|
33 |
+
max_period: controls the minimum frequency of the embeddings.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
an (N, D) Tensor of positional embeddings.
|
37 |
+
"""
|
38 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
39 |
+
half = dim // 2
|
40 |
+
freqs = torch.exp(
|
41 |
+
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
42 |
+
).to(device=t.device)
|
43 |
+
args = t[:, None].float() * freqs[None]
|
44 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
+
if dim % 2:
|
46 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
+
return embedding
|
48 |
+
|
49 |
+
def forward(self, t):
|
50 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
51 |
+
t_emb = self.mlp(t_freq)
|
52 |
+
return t_emb
|
53 |
+
|
54 |
+
|
55 |
+
class SparseStructureFlowModel(nn.Module):
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
resolution: int,
|
59 |
+
in_channels: int,
|
60 |
+
model_channels: int,
|
61 |
+
cond_channels: int,
|
62 |
+
out_channels: int,
|
63 |
+
num_blocks: int,
|
64 |
+
num_heads: Optional[int] = None,
|
65 |
+
num_head_channels: Optional[int] = 64,
|
66 |
+
mlp_ratio: float = 4,
|
67 |
+
patch_size: int = 2,
|
68 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
69 |
+
use_fp16: bool = False,
|
70 |
+
use_checkpoint: bool = False,
|
71 |
+
share_mod: bool = False,
|
72 |
+
qk_rms_norm: bool = False,
|
73 |
+
qk_rms_norm_cross: bool = False,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
self.resolution = resolution
|
77 |
+
self.in_channels = in_channels
|
78 |
+
self.model_channels = model_channels
|
79 |
+
self.cond_channels = cond_channels
|
80 |
+
self.out_channels = out_channels
|
81 |
+
self.num_blocks = num_blocks
|
82 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
83 |
+
self.mlp_ratio = mlp_ratio
|
84 |
+
self.patch_size = patch_size
|
85 |
+
self.pe_mode = pe_mode
|
86 |
+
self.use_fp16 = use_fp16
|
87 |
+
self.use_checkpoint = use_checkpoint
|
88 |
+
self.share_mod = share_mod
|
89 |
+
self.qk_rms_norm = qk_rms_norm
|
90 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
91 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
92 |
+
|
93 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
94 |
+
if share_mod:
|
95 |
+
self.adaLN_modulation = nn.Sequential(
|
96 |
+
nn.SiLU(),
|
97 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
98 |
+
)
|
99 |
+
|
100 |
+
if pe_mode == "ape":
|
101 |
+
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
102 |
+
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
|
103 |
+
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
104 |
+
pos_emb = pos_embedder(coords)
|
105 |
+
self.register_buffer("pos_emb", pos_emb)
|
106 |
+
|
107 |
+
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
108 |
+
|
109 |
+
self.blocks = nn.ModuleList([
|
110 |
+
ModulatedTransformerCrossBlock(
|
111 |
+
model_channels,
|
112 |
+
cond_channels,
|
113 |
+
num_heads=self.num_heads,
|
114 |
+
mlp_ratio=self.mlp_ratio,
|
115 |
+
attn_mode='full',
|
116 |
+
use_checkpoint=self.use_checkpoint,
|
117 |
+
use_rope=(pe_mode == "rope"),
|
118 |
+
share_mod=share_mod,
|
119 |
+
qk_rms_norm=self.qk_rms_norm,
|
120 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
121 |
+
)
|
122 |
+
for _ in range(num_blocks)
|
123 |
+
])
|
124 |
+
|
125 |
+
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
126 |
+
|
127 |
+
self.initialize_weights()
|
128 |
+
if use_fp16:
|
129 |
+
self.convert_to_fp16()
|
130 |
+
|
131 |
+
@property
|
132 |
+
def device(self) -> torch.device:
|
133 |
+
"""
|
134 |
+
Return the device of the model.
|
135 |
+
"""
|
136 |
+
return next(self.parameters()).device
|
137 |
+
|
138 |
+
def convert_to_fp16(self) -> None:
|
139 |
+
"""
|
140 |
+
Convert the torso of the model to float16.
|
141 |
+
"""
|
142 |
+
self.blocks.apply(convert_module_to_f16)
|
143 |
+
|
144 |
+
def convert_to_fp32(self) -> None:
|
145 |
+
"""
|
146 |
+
Convert the torso of the model to float32.
|
147 |
+
"""
|
148 |
+
self.blocks.apply(convert_module_to_f32)
|
149 |
+
|
150 |
+
def initialize_weights(self) -> None:
|
151 |
+
# Initialize transformer layers:
|
152 |
+
def _basic_init(module):
|
153 |
+
if isinstance(module, nn.Linear):
|
154 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
155 |
+
if module.bias is not None:
|
156 |
+
nn.init.constant_(module.bias, 0)
|
157 |
+
self.apply(_basic_init)
|
158 |
+
|
159 |
+
# Initialize timestep embedding MLP:
|
160 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
161 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
162 |
+
|
163 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
164 |
+
if self.share_mod:
|
165 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
166 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
167 |
+
else:
|
168 |
+
for block in self.blocks:
|
169 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
170 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
171 |
+
|
172 |
+
# Zero-out output layers:
|
173 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
174 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
|
177 |
+
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
|
178 |
+
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
|
179 |
+
|
180 |
+
h = patchify(x, self.patch_size)
|
181 |
+
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
182 |
+
|
183 |
+
h = self.input_layer(h)
|
184 |
+
h = h + self.pos_emb[None]
|
185 |
+
t_emb = self.t_embedder(t)
|
186 |
+
if self.share_mod:
|
187 |
+
t_emb = self.adaLN_modulation(t_emb)
|
188 |
+
t_emb = t_emb.type(self.dtype)
|
189 |
+
h = h.type(self.dtype)
|
190 |
+
cond = cond.type(self.dtype)
|
191 |
+
for block in self.blocks:
|
192 |
+
h = block(h, t_emb, cond)
|
193 |
+
h = h.type(x.dtype)
|
194 |
+
h = F.layer_norm(h, h.shape[-1:])
|
195 |
+
h = self.out_layer(h)
|
196 |
+
|
197 |
+
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
|
198 |
+
h = unpatchify(h, self.patch_size).contiguous()
|
199 |
+
|
200 |
+
return h
|
thirdparty/TRELLIS/trellis/trellis/models/sparse_structure_vae.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ..modules.norm import GroupNorm32, ChannelLayerNorm32
|
6 |
+
from ..modules.spatial import pixel_shuffle_3d
|
7 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
8 |
+
|
9 |
+
|
10 |
+
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
|
11 |
+
"""
|
12 |
+
Return a normalization layer.
|
13 |
+
"""
|
14 |
+
if norm_type == "group":
|
15 |
+
return GroupNorm32(32, *args, **kwargs)
|
16 |
+
elif norm_type == "layer":
|
17 |
+
return ChannelLayerNorm32(*args, **kwargs)
|
18 |
+
else:
|
19 |
+
raise ValueError(f"Invalid norm type {norm_type}")
|
20 |
+
|
21 |
+
|
22 |
+
class ResBlock3d(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
channels: int,
|
26 |
+
out_channels: Optional[int] = None,
|
27 |
+
norm_type: Literal["group", "layer"] = "layer",
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.channels = channels
|
31 |
+
self.out_channels = out_channels or channels
|
32 |
+
|
33 |
+
self.norm1 = norm_layer(norm_type, channels)
|
34 |
+
self.norm2 = norm_layer(norm_type, self.out_channels)
|
35 |
+
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
|
36 |
+
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
|
37 |
+
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
h = self.norm1(x)
|
41 |
+
h = F.silu(h)
|
42 |
+
h = self.conv1(h)
|
43 |
+
h = self.norm2(h)
|
44 |
+
h = F.silu(h)
|
45 |
+
h = self.conv2(h)
|
46 |
+
h = h + self.skip_connection(x)
|
47 |
+
return h
|
48 |
+
|
49 |
+
|
50 |
+
class DownsampleBlock3d(nn.Module):
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
in_channels: int,
|
54 |
+
out_channels: int,
|
55 |
+
mode: Literal["conv", "avgpool"] = "conv",
|
56 |
+
):
|
57 |
+
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"
|
58 |
+
|
59 |
+
super().__init__()
|
60 |
+
self.in_channels = in_channels
|
61 |
+
self.out_channels = out_channels
|
62 |
+
|
63 |
+
if mode == "conv":
|
64 |
+
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
|
65 |
+
elif mode == "avgpool":
|
66 |
+
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
69 |
+
if hasattr(self, "conv"):
|
70 |
+
return self.conv(x)
|
71 |
+
else:
|
72 |
+
return F.avg_pool3d(x, 2)
|
73 |
+
|
74 |
+
|
75 |
+
class UpsampleBlock3d(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
in_channels: int,
|
79 |
+
out_channels: int,
|
80 |
+
mode: Literal["conv", "nearest"] = "conv",
|
81 |
+
):
|
82 |
+
assert mode in ["conv", "nearest"], f"Invalid mode {mode}"
|
83 |
+
|
84 |
+
super().__init__()
|
85 |
+
self.in_channels = in_channels
|
86 |
+
self.out_channels = out_channels
|
87 |
+
|
88 |
+
if mode == "conv":
|
89 |
+
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
|
90 |
+
elif mode == "nearest":
|
91 |
+
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels"
|
92 |
+
|
93 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
94 |
+
if hasattr(self, "conv"):
|
95 |
+
x = self.conv(x)
|
96 |
+
return pixel_shuffle_3d(x, 2)
|
97 |
+
else:
|
98 |
+
return F.interpolate(x, scale_factor=2, mode="nearest")
|
99 |
+
|
100 |
+
|
101 |
+
class SparseStructureEncoder(nn.Module):
|
102 |
+
"""
|
103 |
+
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
|
104 |
+
|
105 |
+
Args:
|
106 |
+
in_channels (int): Channels of the input.
|
107 |
+
latent_channels (int): Channels of the latent representation.
|
108 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
109 |
+
channels (List[int]): Channels of the encoder blocks.
|
110 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
111 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
112 |
+
use_fp16 (bool): Whether to use FP16.
|
113 |
+
"""
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
in_channels: int,
|
117 |
+
latent_channels: int,
|
118 |
+
num_res_blocks: int,
|
119 |
+
channels: List[int],
|
120 |
+
num_res_blocks_middle: int = 2,
|
121 |
+
norm_type: Literal["group", "layer"] = "layer",
|
122 |
+
use_fp16: bool = False,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.in_channels = in_channels
|
126 |
+
self.latent_channels = latent_channels
|
127 |
+
self.num_res_blocks = num_res_blocks
|
128 |
+
self.channels = channels
|
129 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
130 |
+
self.norm_type = norm_type
|
131 |
+
self.use_fp16 = use_fp16
|
132 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
133 |
+
|
134 |
+
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)
|
135 |
+
|
136 |
+
self.blocks = nn.ModuleList([])
|
137 |
+
for i, ch in enumerate(channels):
|
138 |
+
self.blocks.extend([
|
139 |
+
ResBlock3d(ch, ch)
|
140 |
+
for _ in range(num_res_blocks)
|
141 |
+
])
|
142 |
+
if i < len(channels) - 1:
|
143 |
+
self.blocks.append(
|
144 |
+
DownsampleBlock3d(ch, channels[i+1])
|
145 |
+
)
|
146 |
+
|
147 |
+
self.middle_block = nn.Sequential(*[
|
148 |
+
ResBlock3d(channels[-1], channels[-1])
|
149 |
+
for _ in range(num_res_blocks_middle)
|
150 |
+
])
|
151 |
+
|
152 |
+
self.out_layer = nn.Sequential(
|
153 |
+
norm_layer(norm_type, channels[-1]),
|
154 |
+
nn.SiLU(),
|
155 |
+
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
|
156 |
+
)
|
157 |
+
|
158 |
+
if use_fp16:
|
159 |
+
self.convert_to_fp16()
|
160 |
+
|
161 |
+
@property
|
162 |
+
def device(self) -> torch.device:
|
163 |
+
"""
|
164 |
+
Return the device of the model.
|
165 |
+
"""
|
166 |
+
return next(self.parameters()).device
|
167 |
+
|
168 |
+
def convert_to_fp16(self) -> None:
|
169 |
+
"""
|
170 |
+
Convert the torso of the model to float16.
|
171 |
+
"""
|
172 |
+
self.use_fp16 = True
|
173 |
+
self.dtype = torch.float16
|
174 |
+
self.blocks.apply(convert_module_to_f16)
|
175 |
+
self.middle_block.apply(convert_module_to_f16)
|
176 |
+
|
177 |
+
def convert_to_fp32(self) -> None:
|
178 |
+
"""
|
179 |
+
Convert the torso of the model to float32.
|
180 |
+
"""
|
181 |
+
self.use_fp16 = False
|
182 |
+
self.dtype = torch.float32
|
183 |
+
self.blocks.apply(convert_module_to_f32)
|
184 |
+
self.middle_block.apply(convert_module_to_f32)
|
185 |
+
|
186 |
+
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor:
|
187 |
+
h = self.input_layer(x)
|
188 |
+
h = h.type(self.dtype)
|
189 |
+
|
190 |
+
for block in self.blocks:
|
191 |
+
h = block(h)
|
192 |
+
h = self.middle_block(h)
|
193 |
+
|
194 |
+
h = h.type(x.dtype)
|
195 |
+
h = self.out_layer(h)
|
196 |
+
|
197 |
+
mean, logvar = h.chunk(2, dim=1)
|
198 |
+
|
199 |
+
if sample_posterior:
|
200 |
+
std = torch.exp(0.5 * logvar)
|
201 |
+
z = mean + std * torch.randn_like(std)
|
202 |
+
else:
|
203 |
+
z = mean
|
204 |
+
|
205 |
+
if return_raw:
|
206 |
+
return z, mean, logvar
|
207 |
+
return z
|
208 |
+
|
209 |
+
|
210 |
+
class SparseStructureDecoder(nn.Module):
|
211 |
+
"""
|
212 |
+
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
|
213 |
+
|
214 |
+
Args:
|
215 |
+
out_channels (int): Channels of the output.
|
216 |
+
latent_channels (int): Channels of the latent representation.
|
217 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
218 |
+
channels (List[int]): Channels of the decoder blocks.
|
219 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
220 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
221 |
+
use_fp16 (bool): Whether to use FP16.
|
222 |
+
"""
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
out_channels: int,
|
226 |
+
latent_channels: int,
|
227 |
+
num_res_blocks: int,
|
228 |
+
channels: List[int],
|
229 |
+
num_res_blocks_middle: int = 2,
|
230 |
+
norm_type: Literal["group", "layer"] = "layer",
|
231 |
+
use_fp16: bool = False,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
self.out_channels = out_channels
|
235 |
+
self.latent_channels = latent_channels
|
236 |
+
self.num_res_blocks = num_res_blocks
|
237 |
+
self.channels = channels
|
238 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
239 |
+
self.norm_type = norm_type
|
240 |
+
self.use_fp16 = use_fp16
|
241 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
242 |
+
|
243 |
+
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
|
244 |
+
|
245 |
+
self.middle_block = nn.Sequential(*[
|
246 |
+
ResBlock3d(channels[0], channels[0])
|
247 |
+
for _ in range(num_res_blocks_middle)
|
248 |
+
])
|
249 |
+
|
250 |
+
self.blocks = nn.ModuleList([])
|
251 |
+
for i, ch in enumerate(channels):
|
252 |
+
self.blocks.extend([
|
253 |
+
ResBlock3d(ch, ch)
|
254 |
+
for _ in range(num_res_blocks)
|
255 |
+
])
|
256 |
+
if i < len(channels) - 1:
|
257 |
+
self.blocks.append(
|
258 |
+
UpsampleBlock3d(ch, channels[i+1])
|
259 |
+
)
|
260 |
+
|
261 |
+
self.out_layer = nn.Sequential(
|
262 |
+
norm_layer(norm_type, channels[-1]),
|
263 |
+
nn.SiLU(),
|
264 |
+
nn.Conv3d(channels[-1], out_channels, 3, padding=1)
|
265 |
+
)
|
266 |
+
|
267 |
+
if use_fp16:
|
268 |
+
self.convert_to_fp16()
|
269 |
+
|
270 |
+
@property
|
271 |
+
def device(self) -> torch.device:
|
272 |
+
"""
|
273 |
+
Return the device of the model.
|
274 |
+
"""
|
275 |
+
return next(self.parameters()).device
|
276 |
+
|
277 |
+
def convert_to_fp16(self) -> None:
|
278 |
+
"""
|
279 |
+
Convert the torso of the model to float16.
|
280 |
+
"""
|
281 |
+
self.use_fp16 = True
|
282 |
+
self.dtype = torch.float16
|
283 |
+
self.blocks.apply(convert_module_to_f16)
|
284 |
+
self.middle_block.apply(convert_module_to_f16)
|
285 |
+
|
286 |
+
def convert_to_fp32(self) -> None:
|
287 |
+
"""
|
288 |
+
Convert the torso of the model to float32.
|
289 |
+
"""
|
290 |
+
self.use_fp16 = False
|
291 |
+
self.dtype = torch.float32
|
292 |
+
self.blocks.apply(convert_module_to_f32)
|
293 |
+
self.middle_block.apply(convert_module_to_f32)
|
294 |
+
|
295 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
296 |
+
h = self.input_layer(x)
|
297 |
+
|
298 |
+
h = h.type(self.dtype)
|
299 |
+
|
300 |
+
h = self.middle_block(h)
|
301 |
+
for block in self.blocks:
|
302 |
+
h = block(h)
|
303 |
+
|
304 |
+
h = h.type(x.dtype)
|
305 |
+
h = self.out_layer(h)
|
306 |
+
return h
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_flow.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ..modules.transformer import AbsolutePositionEmbedder
|
8 |
+
from ..modules.norm import LayerNorm32
|
9 |
+
from ..modules import sparse as sp
|
10 |
+
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
|
11 |
+
from .sparse_structure_flow import TimestepEmbedder
|
12 |
+
|
13 |
+
|
14 |
+
class SparseResBlock3d(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
channels: int,
|
18 |
+
emb_channels: int,
|
19 |
+
out_channels: Optional[int] = None,
|
20 |
+
downsample: bool = False,
|
21 |
+
upsample: bool = False,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.emb_channels = emb_channels
|
26 |
+
self.out_channels = out_channels or channels
|
27 |
+
self.downsample = downsample
|
28 |
+
self.upsample = upsample
|
29 |
+
|
30 |
+
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
|
31 |
+
|
32 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
33 |
+
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
34 |
+
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
35 |
+
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
|
36 |
+
self.emb_layers = nn.Sequential(
|
37 |
+
nn.SiLU(),
|
38 |
+
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
39 |
+
)
|
40 |
+
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
|
41 |
+
self.updown = None
|
42 |
+
if self.downsample:
|
43 |
+
self.updown = sp.SparseDownsample(2)
|
44 |
+
elif self.upsample:
|
45 |
+
self.updown = sp.SparseUpsample(2)
|
46 |
+
|
47 |
+
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
48 |
+
if self.updown is not None:
|
49 |
+
x = self.updown(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
|
53 |
+
emb_out = self.emb_layers(emb).type(x.dtype)
|
54 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
55 |
+
|
56 |
+
x = self._updown(x)
|
57 |
+
h = x.replace(self.norm1(x.feats))
|
58 |
+
h = h.replace(F.silu(h.feats))
|
59 |
+
h = self.conv1(h)
|
60 |
+
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
|
61 |
+
h = h.replace(F.silu(h.feats))
|
62 |
+
h = self.conv2(h)
|
63 |
+
h = h + self.skip_connection(x)
|
64 |
+
|
65 |
+
return h
|
66 |
+
|
67 |
+
|
68 |
+
class SLatFlowModel(nn.Module):
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
resolution: int,
|
72 |
+
in_channels: int,
|
73 |
+
model_channels: int,
|
74 |
+
cond_channels: int,
|
75 |
+
out_channels: int,
|
76 |
+
num_blocks: int,
|
77 |
+
num_heads: Optional[int] = None,
|
78 |
+
num_head_channels: Optional[int] = 64,
|
79 |
+
mlp_ratio: float = 4,
|
80 |
+
patch_size: int = 2,
|
81 |
+
num_io_res_blocks: int = 2,
|
82 |
+
io_block_channels: List[int] = None,
|
83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
84 |
+
use_fp16: bool = False,
|
85 |
+
use_checkpoint: bool = False,
|
86 |
+
use_skip_connection: bool = True,
|
87 |
+
share_mod: bool = False,
|
88 |
+
qk_rms_norm: bool = False,
|
89 |
+
qk_rms_norm_cross: bool = False,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.resolution = resolution
|
93 |
+
self.in_channels = in_channels
|
94 |
+
self.model_channels = model_channels
|
95 |
+
self.cond_channels = cond_channels
|
96 |
+
self.out_channels = out_channels
|
97 |
+
self.num_blocks = num_blocks
|
98 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
99 |
+
self.mlp_ratio = mlp_ratio
|
100 |
+
self.patch_size = patch_size
|
101 |
+
self.num_io_res_blocks = num_io_res_blocks
|
102 |
+
self.io_block_channels = io_block_channels
|
103 |
+
self.pe_mode = pe_mode
|
104 |
+
self.use_fp16 = use_fp16
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.use_skip_connection = use_skip_connection
|
107 |
+
self.share_mod = share_mod
|
108 |
+
self.qk_rms_norm = qk_rms_norm
|
109 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
110 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
111 |
+
|
112 |
+
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
|
113 |
+
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
|
114 |
+
|
115 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
116 |
+
if share_mod:
|
117 |
+
self.adaLN_modulation = nn.Sequential(
|
118 |
+
nn.SiLU(),
|
119 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
120 |
+
)
|
121 |
+
|
122 |
+
if pe_mode == "ape":
|
123 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
124 |
+
|
125 |
+
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
126 |
+
self.input_blocks = nn.ModuleList([])
|
127 |
+
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
|
128 |
+
self.input_blocks.extend([
|
129 |
+
SparseResBlock3d(
|
130 |
+
chs,
|
131 |
+
model_channels,
|
132 |
+
out_channels=chs,
|
133 |
+
)
|
134 |
+
for _ in range(num_io_res_blocks-1)
|
135 |
+
])
|
136 |
+
self.input_blocks.append(
|
137 |
+
SparseResBlock3d(
|
138 |
+
chs,
|
139 |
+
model_channels,
|
140 |
+
out_channels=next_chs,
|
141 |
+
downsample=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
self.blocks = nn.ModuleList([
|
146 |
+
ModulatedSparseTransformerCrossBlock(
|
147 |
+
model_channels,
|
148 |
+
cond_channels,
|
149 |
+
num_heads=self.num_heads,
|
150 |
+
mlp_ratio=self.mlp_ratio,
|
151 |
+
attn_mode='full',
|
152 |
+
use_checkpoint=self.use_checkpoint,
|
153 |
+
use_rope=(pe_mode == "rope"),
|
154 |
+
share_mod=self.share_mod,
|
155 |
+
qk_rms_norm=self.qk_rms_norm,
|
156 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
157 |
+
)
|
158 |
+
for _ in range(num_blocks)
|
159 |
+
])
|
160 |
+
|
161 |
+
self.out_blocks = nn.ModuleList([])
|
162 |
+
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
|
163 |
+
self.out_blocks.append(
|
164 |
+
SparseResBlock3d(
|
165 |
+
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
166 |
+
model_channels,
|
167 |
+
out_channels=chs,
|
168 |
+
upsample=True,
|
169 |
+
)
|
170 |
+
)
|
171 |
+
self.out_blocks.extend([
|
172 |
+
SparseResBlock3d(
|
173 |
+
chs * 2 if self.use_skip_connection else chs,
|
174 |
+
model_channels,
|
175 |
+
out_channels=chs,
|
176 |
+
)
|
177 |
+
for _ in range(num_io_res_blocks-1)
|
178 |
+
])
|
179 |
+
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
180 |
+
|
181 |
+
self.initialize_weights()
|
182 |
+
if use_fp16:
|
183 |
+
self.convert_to_fp16()
|
184 |
+
|
185 |
+
@property
|
186 |
+
def device(self) -> torch.device:
|
187 |
+
"""
|
188 |
+
Return the device of the model.
|
189 |
+
"""
|
190 |
+
return next(self.parameters()).device
|
191 |
+
|
192 |
+
def convert_to_fp16(self) -> None:
|
193 |
+
"""
|
194 |
+
Convert the torso of the model to float16.
|
195 |
+
"""
|
196 |
+
self.input_blocks.apply(convert_module_to_f16)
|
197 |
+
self.blocks.apply(convert_module_to_f16)
|
198 |
+
self.out_blocks.apply(convert_module_to_f16)
|
199 |
+
|
200 |
+
def convert_to_fp32(self) -> None:
|
201 |
+
"""
|
202 |
+
Convert the torso of the model to float32.
|
203 |
+
"""
|
204 |
+
self.input_blocks.apply(convert_module_to_f32)
|
205 |
+
self.blocks.apply(convert_module_to_f32)
|
206 |
+
self.out_blocks.apply(convert_module_to_f32)
|
207 |
+
|
208 |
+
def initialize_weights(self) -> None:
|
209 |
+
# Initialize transformer layers:
|
210 |
+
def _basic_init(module):
|
211 |
+
if isinstance(module, nn.Linear):
|
212 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
213 |
+
if module.bias is not None:
|
214 |
+
nn.init.constant_(module.bias, 0)
|
215 |
+
self.apply(_basic_init)
|
216 |
+
|
217 |
+
# Initialize timestep embedding MLP:
|
218 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
219 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
220 |
+
|
221 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
222 |
+
if self.share_mod:
|
223 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
224 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
225 |
+
else:
|
226 |
+
for block in self.blocks:
|
227 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
228 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
229 |
+
|
230 |
+
# Zero-out output layers:
|
231 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
232 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
233 |
+
|
234 |
+
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor:
|
235 |
+
h = self.input_layer(x).type(self.dtype)
|
236 |
+
t_emb = self.t_embedder(t)
|
237 |
+
if self.share_mod:
|
238 |
+
t_emb = self.adaLN_modulation(t_emb)
|
239 |
+
t_emb = t_emb.type(self.dtype)
|
240 |
+
cond = cond.type(self.dtype)
|
241 |
+
|
242 |
+
skips = []
|
243 |
+
# pack with input blocks
|
244 |
+
for block in self.input_blocks:
|
245 |
+
h = block(h, t_emb)
|
246 |
+
skips.append(h.feats)
|
247 |
+
|
248 |
+
if self.pe_mode == "ape":
|
249 |
+
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
250 |
+
for block in self.blocks:
|
251 |
+
h = block(h, t_emb, cond)
|
252 |
+
|
253 |
+
# unpack with output blocks
|
254 |
+
for block, skip in zip(self.out_blocks, reversed(skips)):
|
255 |
+
if self.use_skip_connection:
|
256 |
+
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb)
|
257 |
+
else:
|
258 |
+
h = block(h, t_emb)
|
259 |
+
|
260 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
261 |
+
h = self.out_layer(h.type(x.dtype))
|
262 |
+
return h
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .encoder import SLatEncoder
|
2 |
+
from .decoder_gs import SLatGaussianDecoder
|
3 |
+
from .decoder_rf import SLatRadianceFieldDecoder
|
4 |
+
from .decoder_mesh import SLatMeshDecoder
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/base.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from ...modules.utils import convert_module_to_f16, convert_module_to_f32
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from ...modules.transformer import AbsolutePositionEmbedder
|
7 |
+
from ...modules.sparse.transformer import SparseTransformerBlock
|
8 |
+
|
9 |
+
|
10 |
+
def block_attn_config(self):
|
11 |
+
"""
|
12 |
+
Return the attention configuration of the model.
|
13 |
+
"""
|
14 |
+
for i in range(self.num_blocks):
|
15 |
+
if self.attn_mode == "shift_window":
|
16 |
+
yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
|
17 |
+
elif self.attn_mode == "shift_sequence":
|
18 |
+
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
|
19 |
+
elif self.attn_mode == "shift_order":
|
20 |
+
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
|
21 |
+
elif self.attn_mode == "full":
|
22 |
+
yield "full", None, None, None, None
|
23 |
+
elif self.attn_mode == "swin":
|
24 |
+
yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None
|
25 |
+
|
26 |
+
|
27 |
+
class SparseTransformerBase(nn.Module):
|
28 |
+
"""
|
29 |
+
Sparse Transformer without output layers.
|
30 |
+
Serve as the base class for encoder and decoder.
|
31 |
+
"""
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_channels: int,
|
35 |
+
model_channels: int,
|
36 |
+
num_blocks: int,
|
37 |
+
num_heads: Optional[int] = None,
|
38 |
+
num_head_channels: Optional[int] = 64,
|
39 |
+
mlp_ratio: float = 4.0,
|
40 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
41 |
+
window_size: Optional[int] = None,
|
42 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
43 |
+
use_fp16: bool = False,
|
44 |
+
use_checkpoint: bool = False,
|
45 |
+
qk_rms_norm: bool = False,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.in_channels = in_channels
|
49 |
+
self.model_channels = model_channels
|
50 |
+
self.num_blocks = num_blocks
|
51 |
+
self.window_size = window_size
|
52 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
53 |
+
self.mlp_ratio = mlp_ratio
|
54 |
+
self.attn_mode = attn_mode
|
55 |
+
self.pe_mode = pe_mode
|
56 |
+
self.use_fp16 = use_fp16
|
57 |
+
self.use_checkpoint = use_checkpoint
|
58 |
+
self.qk_rms_norm = qk_rms_norm
|
59 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
60 |
+
|
61 |
+
if pe_mode == "ape":
|
62 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
63 |
+
|
64 |
+
self.input_layer = sp.SparseLinear(in_channels, model_channels)
|
65 |
+
self.blocks = nn.ModuleList([
|
66 |
+
SparseTransformerBlock(
|
67 |
+
model_channels,
|
68 |
+
num_heads=self.num_heads,
|
69 |
+
mlp_ratio=self.mlp_ratio,
|
70 |
+
attn_mode=attn_mode,
|
71 |
+
window_size=window_size,
|
72 |
+
shift_sequence=shift_sequence,
|
73 |
+
shift_window=shift_window,
|
74 |
+
serialize_mode=serialize_mode,
|
75 |
+
use_checkpoint=self.use_checkpoint,
|
76 |
+
use_rope=(pe_mode == "rope"),
|
77 |
+
qk_rms_norm=self.qk_rms_norm,
|
78 |
+
)
|
79 |
+
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
|
80 |
+
])
|
81 |
+
|
82 |
+
@property
|
83 |
+
def device(self) -> torch.device:
|
84 |
+
"""
|
85 |
+
Return the device of the model.
|
86 |
+
"""
|
87 |
+
return next(self.parameters()).device
|
88 |
+
|
89 |
+
def convert_to_fp16(self) -> None:
|
90 |
+
"""
|
91 |
+
Convert the torso of the model to float16.
|
92 |
+
"""
|
93 |
+
self.blocks.apply(convert_module_to_f16)
|
94 |
+
|
95 |
+
def convert_to_fp32(self) -> None:
|
96 |
+
"""
|
97 |
+
Convert the torso of the model to float32.
|
98 |
+
"""
|
99 |
+
self.blocks.apply(convert_module_to_f32)
|
100 |
+
|
101 |
+
def initialize_weights(self) -> None:
|
102 |
+
# Initialize transformer layers:
|
103 |
+
def _basic_init(module):
|
104 |
+
if isinstance(module, nn.Linear):
|
105 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
106 |
+
if module.bias is not None:
|
107 |
+
nn.init.constant_(module.bias, 0)
|
108 |
+
self.apply(_basic_init)
|
109 |
+
|
110 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
111 |
+
h = self.input_layer(x)
|
112 |
+
if self.pe_mode == "ape":
|
113 |
+
h = h + self.pos_embedder(x.coords[:, 1:])
|
114 |
+
h = h.type(self.dtype)
|
115 |
+
for block in self.blocks:
|
116 |
+
h = block(h)
|
117 |
+
return h
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/decoder_gs.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from ...utils.random_utils import hammersley_sequence
|
7 |
+
from .base import SparseTransformerBase
|
8 |
+
from ...representations import Gaussian
|
9 |
+
|
10 |
+
|
11 |
+
class SLatGaussianDecoder(SparseTransformerBase):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
resolution: int,
|
15 |
+
model_channels: int,
|
16 |
+
latent_channels: int,
|
17 |
+
num_blocks: int,
|
18 |
+
num_heads: Optional[int] = None,
|
19 |
+
num_head_channels: Optional[int] = 64,
|
20 |
+
mlp_ratio: float = 4,
|
21 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
22 |
+
window_size: int = 8,
|
23 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
24 |
+
use_fp16: bool = False,
|
25 |
+
use_checkpoint: bool = False,
|
26 |
+
qk_rms_norm: bool = False,
|
27 |
+
representation_config: dict = None,
|
28 |
+
):
|
29 |
+
super().__init__(
|
30 |
+
in_channels=latent_channels,
|
31 |
+
model_channels=model_channels,
|
32 |
+
num_blocks=num_blocks,
|
33 |
+
num_heads=num_heads,
|
34 |
+
num_head_channels=num_head_channels,
|
35 |
+
mlp_ratio=mlp_ratio,
|
36 |
+
attn_mode=attn_mode,
|
37 |
+
window_size=window_size,
|
38 |
+
pe_mode=pe_mode,
|
39 |
+
use_fp16=use_fp16,
|
40 |
+
use_checkpoint=use_checkpoint,
|
41 |
+
qk_rms_norm=qk_rms_norm,
|
42 |
+
)
|
43 |
+
self.resolution = resolution
|
44 |
+
self.rep_config = representation_config
|
45 |
+
self._calc_layout()
|
46 |
+
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
|
47 |
+
self._build_perturbation()
|
48 |
+
|
49 |
+
self.initialize_weights()
|
50 |
+
if use_fp16:
|
51 |
+
self.convert_to_fp16()
|
52 |
+
|
53 |
+
def initialize_weights(self) -> None:
|
54 |
+
super().initialize_weights()
|
55 |
+
# Zero-out output layers:
|
56 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
57 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
58 |
+
|
59 |
+
def _build_perturbation(self) -> None:
|
60 |
+
perturbation = [hammersley_sequence(3, i, self.rep_config['num_gaussians']) for i in range(self.rep_config['num_gaussians'])]
|
61 |
+
perturbation = torch.tensor(perturbation).float() * 2 - 1
|
62 |
+
perturbation = perturbation / self.rep_config['voxel_size']
|
63 |
+
perturbation = torch.atanh(perturbation).to(self.device)
|
64 |
+
self.register_buffer('offset_perturbation', perturbation)
|
65 |
+
|
66 |
+
def _calc_layout(self) -> None:
|
67 |
+
self.layout = {
|
68 |
+
'_xyz' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
|
69 |
+
'_features_dc' : {'shape': (self.rep_config['num_gaussians'], 1, 3), 'size': self.rep_config['num_gaussians'] * 3},
|
70 |
+
'_scaling' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
|
71 |
+
'_rotation' : {'shape': (self.rep_config['num_gaussians'], 4), 'size': self.rep_config['num_gaussians'] * 4},
|
72 |
+
'_opacity' : {'shape': (self.rep_config['num_gaussians'], 1), 'size': self.rep_config['num_gaussians']},
|
73 |
+
}
|
74 |
+
start = 0
|
75 |
+
for k, v in self.layout.items():
|
76 |
+
v['range'] = (start, start + v['size'])
|
77 |
+
start += v['size']
|
78 |
+
self.out_channels = start
|
79 |
+
|
80 |
+
def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
|
81 |
+
"""
|
82 |
+
Convert a batch of network outputs to 3D representations.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
x: The [N x * x C] sparse tensor output by the network.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
list of representations
|
89 |
+
"""
|
90 |
+
ret = []
|
91 |
+
for i in range(x.shape[0]):
|
92 |
+
representation = Gaussian(
|
93 |
+
sh_degree=0,
|
94 |
+
aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
|
95 |
+
mininum_kernel_size = self.rep_config['3d_filter_kernel_size'],
|
96 |
+
scaling_bias = self.rep_config['scaling_bias'],
|
97 |
+
opacity_bias = self.rep_config['opacity_bias'],
|
98 |
+
scaling_activation = self.rep_config['scaling_activation']
|
99 |
+
)
|
100 |
+
xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
101 |
+
for k, v in self.layout.items():
|
102 |
+
if k == '_xyz':
|
103 |
+
offset = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape'])
|
104 |
+
offset = offset * self.rep_config['lr'][k]
|
105 |
+
if self.rep_config['perturb_offset']:
|
106 |
+
offset = offset + self.offset_perturbation
|
107 |
+
offset = torch.tanh(offset) / self.resolution * 0.5 * self.rep_config['voxel_size']
|
108 |
+
_xyz = xyz.unsqueeze(1) + offset
|
109 |
+
setattr(representation, k, _xyz.flatten(0, 1))
|
110 |
+
else:
|
111 |
+
feats = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']).flatten(0, 1)
|
112 |
+
feats = feats * self.rep_config['lr'][k]
|
113 |
+
setattr(representation, k, feats)
|
114 |
+
ret.append(representation)
|
115 |
+
return ret
|
116 |
+
|
117 |
+
def forward(self, x: sp.SparseTensor) -> List[Gaussian]:
|
118 |
+
h = super().forward(x)
|
119 |
+
h = h.type(x.dtype)
|
120 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
121 |
+
h = self.out_layer(h)
|
122 |
+
return self.to_representation(h)
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/decoder_mesh.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
7 |
+
from ...modules import sparse as sp
|
8 |
+
from .base import SparseTransformerBase
|
9 |
+
from ...representations import MeshExtractResult
|
10 |
+
from ...representations.mesh import SparseFeatures2Mesh
|
11 |
+
|
12 |
+
|
13 |
+
class SparseSubdivideBlock3d(nn.Module):
|
14 |
+
"""
|
15 |
+
A 3D subdivide block that can subdivide the sparse tensor.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
channels: channels in the inputs and outputs.
|
19 |
+
out_channels: if specified, the number of output channels.
|
20 |
+
num_groups: the number of groups for the group norm.
|
21 |
+
"""
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
channels: int,
|
25 |
+
resolution: int,
|
26 |
+
out_channels: Optional[int] = None,
|
27 |
+
num_groups: int = 32
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.channels = channels
|
31 |
+
self.resolution = resolution
|
32 |
+
self.out_resolution = resolution * 2
|
33 |
+
self.out_channels = out_channels or channels
|
34 |
+
|
35 |
+
self.act_layers = nn.Sequential(
|
36 |
+
sp.SparseGroupNorm32(num_groups, channels),
|
37 |
+
sp.SparseSiLU()
|
38 |
+
)
|
39 |
+
|
40 |
+
self.sub = sp.SparseSubdivide()
|
41 |
+
|
42 |
+
self.out_layers = nn.Sequential(
|
43 |
+
sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"),
|
44 |
+
sp.SparseGroupNorm32(num_groups, self.out_channels),
|
45 |
+
sp.SparseSiLU(),
|
46 |
+
zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")),
|
47 |
+
)
|
48 |
+
|
49 |
+
if self.out_channels == channels:
|
50 |
+
self.skip_connection = nn.Identity()
|
51 |
+
else:
|
52 |
+
self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}")
|
53 |
+
|
54 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
55 |
+
"""
|
56 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
x: an [N x C x ...] Tensor of features.
|
60 |
+
Returns:
|
61 |
+
an [N x C x ...] Tensor of outputs.
|
62 |
+
"""
|
63 |
+
h = self.act_layers(x)
|
64 |
+
h = self.sub(h)
|
65 |
+
x = self.sub(x)
|
66 |
+
h = self.out_layers(h)
|
67 |
+
h = h + self.skip_connection(x)
|
68 |
+
return h
|
69 |
+
|
70 |
+
|
71 |
+
class SLatMeshDecoder(SparseTransformerBase):
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
resolution: int,
|
75 |
+
model_channels: int,
|
76 |
+
latent_channels: int,
|
77 |
+
num_blocks: int,
|
78 |
+
num_heads: Optional[int] = None,
|
79 |
+
num_head_channels: Optional[int] = 64,
|
80 |
+
mlp_ratio: float = 4,
|
81 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
82 |
+
window_size: int = 8,
|
83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
84 |
+
use_fp16: bool = False,
|
85 |
+
use_checkpoint: bool = False,
|
86 |
+
qk_rms_norm: bool = False,
|
87 |
+
representation_config: dict = None,
|
88 |
+
):
|
89 |
+
super().__init__(
|
90 |
+
in_channels=latent_channels,
|
91 |
+
model_channels=model_channels,
|
92 |
+
num_blocks=num_blocks,
|
93 |
+
num_heads=num_heads,
|
94 |
+
num_head_channels=num_head_channels,
|
95 |
+
mlp_ratio=mlp_ratio,
|
96 |
+
attn_mode=attn_mode,
|
97 |
+
window_size=window_size,
|
98 |
+
pe_mode=pe_mode,
|
99 |
+
use_fp16=use_fp16,
|
100 |
+
use_checkpoint=use_checkpoint,
|
101 |
+
qk_rms_norm=qk_rms_norm,
|
102 |
+
)
|
103 |
+
self.resolution = resolution
|
104 |
+
self.rep_config = representation_config
|
105 |
+
self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
|
106 |
+
self.out_channels = self.mesh_extractor.feats_channels
|
107 |
+
self.upsample = nn.ModuleList([
|
108 |
+
SparseSubdivideBlock3d(
|
109 |
+
channels=model_channels,
|
110 |
+
resolution=resolution,
|
111 |
+
out_channels=model_channels // 4
|
112 |
+
),
|
113 |
+
SparseSubdivideBlock3d(
|
114 |
+
channels=model_channels // 4,
|
115 |
+
resolution=resolution * 2,
|
116 |
+
out_channels=model_channels // 8
|
117 |
+
)
|
118 |
+
])
|
119 |
+
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)
|
120 |
+
|
121 |
+
self.initialize_weights()
|
122 |
+
if use_fp16:
|
123 |
+
self.convert_to_fp16()
|
124 |
+
|
125 |
+
def initialize_weights(self) -> None:
|
126 |
+
super().initialize_weights()
|
127 |
+
# Zero-out output layers:
|
128 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
129 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
130 |
+
|
131 |
+
def convert_to_fp16(self) -> None:
|
132 |
+
"""
|
133 |
+
Convert the torso of the model to float16.
|
134 |
+
"""
|
135 |
+
super().convert_to_fp16()
|
136 |
+
self.upsample.apply(convert_module_to_f16)
|
137 |
+
|
138 |
+
def convert_to_fp32(self) -> None:
|
139 |
+
"""
|
140 |
+
Convert the torso of the model to float32.
|
141 |
+
"""
|
142 |
+
super().convert_to_fp32()
|
143 |
+
self.upsample.apply(convert_module_to_f32)
|
144 |
+
|
145 |
+
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
146 |
+
"""
|
147 |
+
Convert a batch of network outputs to 3D representations.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
x: The [N x * x C] sparse tensor output by the network.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
list of representations
|
154 |
+
"""
|
155 |
+
ret = []
|
156 |
+
for i in range(x.shape[0]):
|
157 |
+
mesh = self.mesh_extractor(x[i], training=self.training)
|
158 |
+
ret.append(mesh)
|
159 |
+
return ret
|
160 |
+
|
161 |
+
def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
162 |
+
h = super().forward(x)
|
163 |
+
for block in self.upsample:
|
164 |
+
h = block(h)
|
165 |
+
h = h.type(x.dtype)
|
166 |
+
h = self.out_layer(h)
|
167 |
+
return self.to_representation(h)
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/decoder_rf.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from ...modules import sparse as sp
|
7 |
+
from .base import SparseTransformerBase
|
8 |
+
from ...representations import Strivec
|
9 |
+
|
10 |
+
|
11 |
+
class SLatRadianceFieldDecoder(SparseTransformerBase):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
resolution: int,
|
15 |
+
model_channels: int,
|
16 |
+
latent_channels: int,
|
17 |
+
num_blocks: int,
|
18 |
+
num_heads: Optional[int] = None,
|
19 |
+
num_head_channels: Optional[int] = 64,
|
20 |
+
mlp_ratio: float = 4,
|
21 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
22 |
+
window_size: int = 8,
|
23 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
24 |
+
use_fp16: bool = False,
|
25 |
+
use_checkpoint: bool = False,
|
26 |
+
qk_rms_norm: bool = False,
|
27 |
+
representation_config: dict = None,
|
28 |
+
):
|
29 |
+
super().__init__(
|
30 |
+
in_channels=latent_channels,
|
31 |
+
model_channels=model_channels,
|
32 |
+
num_blocks=num_blocks,
|
33 |
+
num_heads=num_heads,
|
34 |
+
num_head_channels=num_head_channels,
|
35 |
+
mlp_ratio=mlp_ratio,
|
36 |
+
attn_mode=attn_mode,
|
37 |
+
window_size=window_size,
|
38 |
+
pe_mode=pe_mode,
|
39 |
+
use_fp16=use_fp16,
|
40 |
+
use_checkpoint=use_checkpoint,
|
41 |
+
qk_rms_norm=qk_rms_norm,
|
42 |
+
)
|
43 |
+
self.resolution = resolution
|
44 |
+
self.rep_config = representation_config
|
45 |
+
self._calc_layout()
|
46 |
+
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
|
47 |
+
|
48 |
+
self.initialize_weights()
|
49 |
+
if use_fp16:
|
50 |
+
self.convert_to_fp16()
|
51 |
+
|
52 |
+
def initialize_weights(self) -> None:
|
53 |
+
super().initialize_weights()
|
54 |
+
# Zero-out output layers:
|
55 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
56 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
57 |
+
|
58 |
+
def _calc_layout(self) -> None:
|
59 |
+
self.layout = {
|
60 |
+
'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']},
|
61 |
+
'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']},
|
62 |
+
'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3},
|
63 |
+
}
|
64 |
+
start = 0
|
65 |
+
for k, v in self.layout.items():
|
66 |
+
v['range'] = (start, start + v['size'])
|
67 |
+
start += v['size']
|
68 |
+
self.out_channels = start
|
69 |
+
|
70 |
+
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
|
71 |
+
"""
|
72 |
+
Convert a batch of network outputs to 3D representations.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
x: The [N x * x C] sparse tensor output by the network.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
list of representations
|
79 |
+
"""
|
80 |
+
ret = []
|
81 |
+
for i in range(x.shape[0]):
|
82 |
+
representation = Strivec(
|
83 |
+
sh_degree=0,
|
84 |
+
resolution=self.resolution,
|
85 |
+
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
|
86 |
+
rank=self.rep_config['rank'],
|
87 |
+
dim=self.rep_config['dim'],
|
88 |
+
device='cuda',
|
89 |
+
)
|
90 |
+
representation.density_shift = 0.0
|
91 |
+
representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
92 |
+
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda')
|
93 |
+
for k, v in self.layout.items():
|
94 |
+
setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']))
|
95 |
+
representation.trivec = representation.trivec + 1
|
96 |
+
ret.append(representation)
|
97 |
+
return ret
|
98 |
+
|
99 |
+
def forward(self, x: sp.SparseTensor) -> List[Strivec]:
|
100 |
+
h = super().forward(x)
|
101 |
+
h = h.type(x.dtype)
|
102 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
103 |
+
h = self.out_layer(h)
|
104 |
+
return self.to_representation(h)
|
thirdparty/TRELLIS/trellis/trellis/models/structured_latent_vae/encoder.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from ...modules import sparse as sp
|
6 |
+
from .base import SparseTransformerBase
|
7 |
+
|
8 |
+
|
9 |
+
class SLatEncoder(SparseTransformerBase):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
resolution: int,
|
13 |
+
in_channels: int,
|
14 |
+
model_channels: int,
|
15 |
+
latent_channels: int,
|
16 |
+
num_blocks: int,
|
17 |
+
num_heads: Optional[int] = None,
|
18 |
+
num_head_channels: Optional[int] = 64,
|
19 |
+
mlp_ratio: float = 4,
|
20 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
21 |
+
window_size: int = 8,
|
22 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
23 |
+
use_fp16: bool = False,
|
24 |
+
use_checkpoint: bool = False,
|
25 |
+
qk_rms_norm: bool = False,
|
26 |
+
):
|
27 |
+
super().__init__(
|
28 |
+
in_channels=in_channels,
|
29 |
+
model_channels=model_channels,
|
30 |
+
num_blocks=num_blocks,
|
31 |
+
num_heads=num_heads,
|
32 |
+
num_head_channels=num_head_channels,
|
33 |
+
mlp_ratio=mlp_ratio,
|
34 |
+
attn_mode=attn_mode,
|
35 |
+
window_size=window_size,
|
36 |
+
pe_mode=pe_mode,
|
37 |
+
use_fp16=use_fp16,
|
38 |
+
use_checkpoint=use_checkpoint,
|
39 |
+
qk_rms_norm=qk_rms_norm,
|
40 |
+
)
|
41 |
+
self.resolution = resolution
|
42 |
+
self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)
|
43 |
+
|
44 |
+
self.initialize_weights()
|
45 |
+
if use_fp16:
|
46 |
+
self.convert_to_fp16()
|
47 |
+
|
48 |
+
def initialize_weights(self) -> None:
|
49 |
+
super().initialize_weights()
|
50 |
+
# Zero-out output layers:
|
51 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
52 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
53 |
+
|
54 |
+
def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False):
|
55 |
+
h = super().forward(x)
|
56 |
+
h = h.type(x.dtype)
|
57 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
58 |
+
h = self.out_layer(h)
|
59 |
+
|
60 |
+
# Sample from the posterior distribution
|
61 |
+
mean, logvar = h.feats.chunk(2, dim=-1)
|
62 |
+
if sample_posterior:
|
63 |
+
std = torch.exp(0.5 * logvar)
|
64 |
+
z = mean + std * torch.randn_like(std)
|
65 |
+
else:
|
66 |
+
z = mean
|
67 |
+
z = h.replace(z)
|
68 |
+
|
69 |
+
if return_raw:
|
70 |
+
return z, mean, logvar
|
71 |
+
else:
|
72 |
+
return z
|
thirdparty/TRELLIS/trellis/trellis/modules/attention/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
BACKEND = 'flash_attn'
|
4 |
+
DEBUG = False
|
5 |
+
|
6 |
+
def __from_env():
|
7 |
+
import os
|
8 |
+
|
9 |
+
global BACKEND
|
10 |
+
global DEBUG
|
11 |
+
|
12 |
+
env_attn_backend = os.environ.get('ATTN_BACKEND')
|
13 |
+
env_sttn_debug = os.environ.get('ATTN_DEBUG')
|
14 |
+
|
15 |
+
if env_attn_backend is not None and env_attn_backend in ['xformers', 'flash_attn', 'sdpa', 'naive']:
|
16 |
+
BACKEND = env_attn_backend
|
17 |
+
if env_sttn_debug is not None:
|
18 |
+
DEBUG = env_sttn_debug == '1'
|
19 |
+
|
20 |
+
print(f"[ATTENTION] Using backend: {BACKEND}")
|
21 |
+
|
22 |
+
|
23 |
+
__from_env()
|
24 |
+
|
25 |
+
|
26 |
+
def set_backend(backend: Literal['xformers', 'flash_attn']):
|
27 |
+
global BACKEND
|
28 |
+
BACKEND = backend
|
29 |
+
|
30 |
+
def set_debug(debug: bool):
|
31 |
+
global DEBUG
|
32 |
+
DEBUG = debug
|
33 |
+
|
34 |
+
|
35 |
+
from .full_attn import *
|
36 |
+
from .modules import *
|
thirdparty/TRELLIS/trellis/trellis/modules/attention/full_attn.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from . import DEBUG, BACKEND
|
5 |
+
|
6 |
+
if BACKEND == 'xformers':
|
7 |
+
import xformers.ops as xops
|
8 |
+
elif BACKEND == 'flash_attn':
|
9 |
+
import flash_attn
|
10 |
+
elif BACKEND == 'sdpa':
|
11 |
+
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
12 |
+
elif BACKEND == 'naive':
|
13 |
+
pass
|
14 |
+
else:
|
15 |
+
raise ValueError(f"Unknown attention backend: {BACKEND}")
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
'scaled_dot_product_attention',
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
def _naive_sdpa(q, k, v):
|
24 |
+
"""
|
25 |
+
Naive implementation of scaled dot product attention.
|
26 |
+
"""
|
27 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
28 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
29 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
30 |
+
scale_factor = 1 / math.sqrt(q.size(-1))
|
31 |
+
attn_weight = q @ k.transpose(-2, -1) * scale_factor
|
32 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
33 |
+
out = attn_weight @ v
|
34 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
@overload
|
39 |
+
def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
|
40 |
+
"""
|
41 |
+
Apply scaled dot product attention.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.
|
45 |
+
"""
|
46 |
+
...
|
47 |
+
|
48 |
+
@overload
|
49 |
+
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
|
50 |
+
"""
|
51 |
+
Apply scaled dot product attention.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
q (torch.Tensor): A [N, L, H, C] tensor containing Qs.
|
55 |
+
kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.
|
56 |
+
"""
|
57 |
+
...
|
58 |
+
|
59 |
+
@overload
|
60 |
+
def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
61 |
+
"""
|
62 |
+
Apply scaled dot product attention.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.
|
66 |
+
k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.
|
67 |
+
v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.
|
68 |
+
|
69 |
+
Note:
|
70 |
+
k and v are assumed to have the same coordinate map.
|
71 |
+
"""
|
72 |
+
...
|
73 |
+
|
74 |
+
def scaled_dot_product_attention(*args, **kwargs):
|
75 |
+
arg_names_dict = {
|
76 |
+
1: ['qkv'],
|
77 |
+
2: ['q', 'kv'],
|
78 |
+
3: ['q', 'k', 'v']
|
79 |
+
}
|
80 |
+
num_all_args = len(args) + len(kwargs)
|
81 |
+
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
82 |
+
for key in arg_names_dict[num_all_args][len(args):]:
|
83 |
+
assert key in kwargs, f"Missing argument {key}"
|
84 |
+
|
85 |
+
if num_all_args == 1:
|
86 |
+
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
87 |
+
assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
|
88 |
+
device = qkv.device
|
89 |
+
|
90 |
+
elif num_all_args == 2:
|
91 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
92 |
+
kv = args[1] if len(args) > 1 else kwargs['kv']
|
93 |
+
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
94 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
95 |
+
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
96 |
+
device = q.device
|
97 |
+
|
98 |
+
elif num_all_args == 3:
|
99 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
100 |
+
k = args[1] if len(args) > 1 else kwargs['k']
|
101 |
+
v = args[2] if len(args) > 2 else kwargs['v']
|
102 |
+
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
103 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
104 |
+
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
105 |
+
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
106 |
+
device = q.device
|
107 |
+
|
108 |
+
if BACKEND == 'xformers':
|
109 |
+
if num_all_args == 1:
|
110 |
+
q, k, v = qkv.unbind(dim=2)
|
111 |
+
elif num_all_args == 2:
|
112 |
+
k, v = kv.unbind(dim=2)
|
113 |
+
out = xops.memory_efficient_attention(q, k, v)
|
114 |
+
elif BACKEND == 'flash_attn':
|
115 |
+
if num_all_args == 1:
|
116 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv)
|
117 |
+
elif num_all_args == 2:
|
118 |
+
out = flash_attn.flash_attn_kvpacked_func(q, kv)
|
119 |
+
elif num_all_args == 3:
|
120 |
+
out = flash_attn.flash_attn_func(q, k, v)
|
121 |
+
elif BACKEND == 'sdpa':
|
122 |
+
if num_all_args == 1:
|
123 |
+
q, k, v = qkv.unbind(dim=2)
|
124 |
+
elif num_all_args == 2:
|
125 |
+
k, v = kv.unbind(dim=2)
|
126 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
127 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
128 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
129 |
+
out = sdpa(q, k, v) # [N, H, L, C]
|
130 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
131 |
+
elif BACKEND == 'naive':
|
132 |
+
if num_all_args == 1:
|
133 |
+
q, k, v = qkv.unbind(dim=2)
|
134 |
+
elif num_all_args == 2:
|
135 |
+
k, v = kv.unbind(dim=2)
|
136 |
+
out = _naive_sdpa(q, k, v)
|
137 |
+
else:
|
138 |
+
raise ValueError(f"Unknown attention module: {BACKEND}")
|
139 |
+
|
140 |
+
return out
|
thirdparty/TRELLIS/trellis/trellis/modules/attention/modules.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from .full_attn import scaled_dot_product_attention
|
6 |
+
|
7 |
+
|
8 |
+
class MultiHeadRMSNorm(nn.Module):
|
9 |
+
def __init__(self, dim: int, heads: int):
|
10 |
+
super().__init__()
|
11 |
+
self.scale = dim ** 0.5
|
12 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
13 |
+
|
14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
15 |
+
return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype)
|
16 |
+
|
17 |
+
|
18 |
+
class RotaryPositionEmbedder(nn.Module):
|
19 |
+
def __init__(self, hidden_size: int, in_channels: int = 3):
|
20 |
+
super().__init__()
|
21 |
+
assert hidden_size % 2 == 0, "Hidden size must be divisible by 2"
|
22 |
+
self.hidden_size = hidden_size
|
23 |
+
self.in_channels = in_channels
|
24 |
+
self.freq_dim = hidden_size // in_channels // 2
|
25 |
+
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
26 |
+
self.freqs = 1.0 / (10000 ** self.freqs)
|
27 |
+
|
28 |
+
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
|
29 |
+
self.freqs = self.freqs.to(indices.device)
|
30 |
+
phases = torch.outer(indices, self.freqs)
|
31 |
+
phases = torch.polar(torch.ones_like(phases), phases)
|
32 |
+
return phases
|
33 |
+
|
34 |
+
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
|
35 |
+
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
36 |
+
x_rotated = x_complex * phases
|
37 |
+
x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
|
38 |
+
return x_embed
|
39 |
+
|
40 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
41 |
+
"""
|
42 |
+
Args:
|
43 |
+
q (sp.SparseTensor): [..., N, D] tensor of queries
|
44 |
+
k (sp.SparseTensor): [..., N, D] tensor of keys
|
45 |
+
indices (torch.Tensor): [..., N, C] tensor of spatial positions
|
46 |
+
"""
|
47 |
+
if indices is None:
|
48 |
+
indices = torch.arange(q.shape[-2], device=q.device)
|
49 |
+
if len(q.shape) > 2:
|
50 |
+
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
|
51 |
+
|
52 |
+
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
|
53 |
+
if phases.shape[1] < self.hidden_size // 2:
|
54 |
+
phases = torch.cat([phases, torch.polar(
|
55 |
+
torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device),
|
56 |
+
torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device)
|
57 |
+
)], dim=-1)
|
58 |
+
q_embed = self._rotary_embedding(q, phases)
|
59 |
+
k_embed = self._rotary_embedding(k, phases)
|
60 |
+
return q_embed, k_embed
|
61 |
+
|
62 |
+
|
63 |
+
class MultiHeadAttention(nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
channels: int,
|
67 |
+
num_heads: int,
|
68 |
+
ctx_channels: Optional[int]=None,
|
69 |
+
type: Literal["self", "cross"] = "self",
|
70 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
71 |
+
window_size: Optional[int] = None,
|
72 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
73 |
+
qkv_bias: bool = True,
|
74 |
+
use_rope: bool = False,
|
75 |
+
qk_rms_norm: bool = False,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
assert channels % num_heads == 0
|
79 |
+
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
80 |
+
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
|
81 |
+
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
|
82 |
+
|
83 |
+
if attn_mode == "windowed":
|
84 |
+
raise NotImplementedError("Windowed attention is not yet implemented")
|
85 |
+
|
86 |
+
self.channels = channels
|
87 |
+
self.head_dim = channels // num_heads
|
88 |
+
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
89 |
+
self.num_heads = num_heads
|
90 |
+
self._type = type
|
91 |
+
self.attn_mode = attn_mode
|
92 |
+
self.window_size = window_size
|
93 |
+
self.shift_window = shift_window
|
94 |
+
self.use_rope = use_rope
|
95 |
+
self.qk_rms_norm = qk_rms_norm
|
96 |
+
|
97 |
+
if self._type == "self":
|
98 |
+
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
|
99 |
+
else:
|
100 |
+
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
101 |
+
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
102 |
+
|
103 |
+
if self.qk_rms_norm:
|
104 |
+
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
105 |
+
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
106 |
+
|
107 |
+
self.to_out = nn.Linear(channels, channels)
|
108 |
+
|
109 |
+
if use_rope:
|
110 |
+
self.rope = RotaryPositionEmbedder(channels)
|
111 |
+
|
112 |
+
def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor:
|
113 |
+
B, L, C = x.shape
|
114 |
+
if self._type == "self":
|
115 |
+
qkv = self.to_qkv(x)
|
116 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1)
|
117 |
+
if self.use_rope:
|
118 |
+
q, k, v = qkv.unbind(dim=2)
|
119 |
+
q, k = self.rope(q, k, indices)
|
120 |
+
qkv = torch.stack([q, k, v], dim=2)
|
121 |
+
if self.attn_mode == "full":
|
122 |
+
if self.qk_rms_norm:
|
123 |
+
q, k, v = qkv.unbind(dim=2)
|
124 |
+
q = self.q_rms_norm(q)
|
125 |
+
k = self.k_rms_norm(k)
|
126 |
+
h = scaled_dot_product_attention(q, k, v)
|
127 |
+
else:
|
128 |
+
h = scaled_dot_product_attention(qkv)
|
129 |
+
elif self.attn_mode == "windowed":
|
130 |
+
raise NotImplementedError("Windowed attention is not yet implemented")
|
131 |
+
else:
|
132 |
+
Lkv = context.shape[1]
|
133 |
+
q = self.to_q(x)
|
134 |
+
kv = self.to_kv(context)
|
135 |
+
q = q.reshape(B, L, self.num_heads, -1)
|
136 |
+
kv = kv.reshape(B, Lkv, 2, self.num_heads, -1)
|
137 |
+
if self.qk_rms_norm:
|
138 |
+
q = self.q_rms_norm(q)
|
139 |
+
k, v = kv.unbind(dim=2)
|
140 |
+
k = self.k_rms_norm(k)
|
141 |
+
h = scaled_dot_product_attention(q, k, v)
|
142 |
+
else:
|
143 |
+
h = scaled_dot_product_attention(q, kv)
|
144 |
+
h = h.reshape(B, L, -1)
|
145 |
+
h = self.to_out(h)
|
146 |
+
return h
|
thirdparty/TRELLIS/trellis/trellis/modules/norm.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class LayerNorm32(nn.LayerNorm):
|
6 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
7 |
+
return super().forward(x.float()).type(x.dtype)
|
8 |
+
|
9 |
+
|
10 |
+
class GroupNorm32(nn.GroupNorm):
|
11 |
+
"""
|
12 |
+
A GroupNorm layer that converts to float32 before the forward pass.
|
13 |
+
"""
|
14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
15 |
+
return super().forward(x.float()).type(x.dtype)
|
16 |
+
|
17 |
+
|
18 |
+
class ChannelLayerNorm32(LayerNorm32):
|
19 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
20 |
+
DIM = x.dim()
|
21 |
+
x = x.permute(0, *range(2, DIM), 1).contiguous()
|
22 |
+
x = super().forward(x)
|
23 |
+
x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous()
|
24 |
+
return x
|
25 |
+
|
thirdparty/TRELLIS/trellis/trellis/modules/sparse/__init__.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
|
3 |
+
BACKEND = 'spconv'
|
4 |
+
DEBUG = False
|
5 |
+
ATTN = 'flash_attn'
|
6 |
+
|
7 |
+
def __from_env():
|
8 |
+
import os
|
9 |
+
|
10 |
+
global BACKEND
|
11 |
+
global DEBUG
|
12 |
+
global ATTN
|
13 |
+
|
14 |
+
env_sparse_backend = os.environ.get('SPARSE_BACKEND')
|
15 |
+
env_sparse_debug = os.environ.get('SPARSE_DEBUG')
|
16 |
+
env_sparse_attn = os.environ.get('SPARSE_ATTN_BACKEND')
|
17 |
+
if env_sparse_attn is None:
|
18 |
+
env_sparse_attn = os.environ.get('ATTN_BACKEND')
|
19 |
+
|
20 |
+
if env_sparse_backend is not None and env_sparse_backend in ['spconv', 'torchsparse']:
|
21 |
+
BACKEND = env_sparse_backend
|
22 |
+
if env_sparse_debug is not None:
|
23 |
+
DEBUG = env_sparse_debug == '1'
|
24 |
+
if env_sparse_attn is not None and env_sparse_attn in ['xformers', 'flash_attn']:
|
25 |
+
ATTN = env_sparse_attn
|
26 |
+
|
27 |
+
print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
|
28 |
+
|
29 |
+
|
30 |
+
__from_env()
|
31 |
+
|
32 |
+
|
33 |
+
def set_backend(backend: Literal['spconv', 'torchsparse']):
|
34 |
+
global BACKEND
|
35 |
+
BACKEND = backend
|
36 |
+
|
37 |
+
def set_debug(debug: bool):
|
38 |
+
global DEBUG
|
39 |
+
DEBUG = debug
|
40 |
+
|
41 |
+
def set_attn(attn: Literal['xformers', 'flash_attn']):
|
42 |
+
global ATTN
|
43 |
+
ATTN = attn
|
44 |
+
|
45 |
+
|
46 |
+
import importlib
|
47 |
+
|
48 |
+
__attributes = {
|
49 |
+
'SparseTensor': 'basic',
|
50 |
+
'sparse_batch_broadcast': 'basic',
|
51 |
+
'sparse_batch_op': 'basic',
|
52 |
+
'sparse_cat': 'basic',
|
53 |
+
'sparse_unbind': 'basic',
|
54 |
+
'SparseGroupNorm': 'norm',
|
55 |
+
'SparseLayerNorm': 'norm',
|
56 |
+
'SparseGroupNorm32': 'norm',
|
57 |
+
'SparseLayerNorm32': 'norm',
|
58 |
+
'SparseReLU': 'nonlinearity',
|
59 |
+
'SparseSiLU': 'nonlinearity',
|
60 |
+
'SparseGELU': 'nonlinearity',
|
61 |
+
'SparseActivation': 'nonlinearity',
|
62 |
+
'SparseLinear': 'linear',
|
63 |
+
'sparse_scaled_dot_product_attention': 'attention',
|
64 |
+
'SerializeMode': 'attention',
|
65 |
+
'sparse_serialized_scaled_dot_product_self_attention': 'attention',
|
66 |
+
'sparse_windowed_scaled_dot_product_self_attention': 'attention',
|
67 |
+
'SparseMultiHeadAttention': 'attention',
|
68 |
+
'SparseConv3d': 'conv',
|
69 |
+
'SparseInverseConv3d': 'conv',
|
70 |
+
'SparseDownsample': 'spatial',
|
71 |
+
'SparseUpsample': 'spatial',
|
72 |
+
'SparseSubdivide' : 'spatial'
|
73 |
+
}
|
74 |
+
|
75 |
+
__submodules = ['transformer']
|
76 |
+
|
77 |
+
__all__ = list(__attributes.keys()) + __submodules
|
78 |
+
|
79 |
+
def __getattr__(name):
|
80 |
+
if name not in globals():
|
81 |
+
if name in __attributes:
|
82 |
+
module_name = __attributes[name]
|
83 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
84 |
+
globals()[name] = getattr(module, name)
|
85 |
+
elif name in __submodules:
|
86 |
+
module = importlib.import_module(f".{name}", __name__)
|
87 |
+
globals()[name] = module
|
88 |
+
else:
|
89 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
90 |
+
return globals()[name]
|
91 |
+
|
92 |
+
|
93 |
+
# For Pylance
|
94 |
+
if __name__ == '__main__':
|
95 |
+
from .basic import *
|
96 |
+
from .norm import *
|
97 |
+
from .nonlinearity import *
|
98 |
+
from .linear import *
|
99 |
+
from .attention import *
|
100 |
+
from .conv import *
|
101 |
+
from .spatial import *
|
102 |
+
import transformer
|
thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .full_attn import *
|
2 |
+
from .serialized_attn import *
|
3 |
+
from .windowed_attn import *
|
4 |
+
from .modules import *
|
thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/full_attn.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
from .. import SparseTensor
|
4 |
+
from .. import DEBUG, ATTN
|
5 |
+
|
6 |
+
if ATTN == 'xformers':
|
7 |
+
import xformers.ops as xops
|
8 |
+
elif ATTN == 'flash_attn':
|
9 |
+
import flash_attn
|
10 |
+
else:
|
11 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
'sparse_scaled_dot_product_attention',
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
@overload
|
20 |
+
def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
|
21 |
+
"""
|
22 |
+
Apply scaled dot product attention to a sparse tensor.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
26 |
+
"""
|
27 |
+
...
|
28 |
+
|
29 |
+
@overload
|
30 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
|
31 |
+
"""
|
32 |
+
Apply scaled dot product attention to a sparse tensor.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
|
36 |
+
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
|
37 |
+
"""
|
38 |
+
...
|
39 |
+
|
40 |
+
@overload
|
41 |
+
def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
|
42 |
+
"""
|
43 |
+
Apply scaled dot product attention to a sparse tensor.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
|
47 |
+
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
|
48 |
+
"""
|
49 |
+
...
|
50 |
+
|
51 |
+
@overload
|
52 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
|
53 |
+
"""
|
54 |
+
Apply scaled dot product attention to a sparse tensor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
58 |
+
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
59 |
+
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
60 |
+
|
61 |
+
Note:
|
62 |
+
k and v are assumed to have the same coordinate map.
|
63 |
+
"""
|
64 |
+
...
|
65 |
+
|
66 |
+
@overload
|
67 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
|
68 |
+
"""
|
69 |
+
Apply scaled dot product attention to a sparse tensor.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
73 |
+
k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
|
74 |
+
v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
|
75 |
+
"""
|
76 |
+
...
|
77 |
+
|
78 |
+
@overload
|
79 |
+
def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
|
80 |
+
"""
|
81 |
+
Apply scaled dot product attention to a sparse tensor.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
|
85 |
+
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
86 |
+
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
87 |
+
"""
|
88 |
+
...
|
89 |
+
|
90 |
+
def sparse_scaled_dot_product_attention(*args, **kwargs):
|
91 |
+
arg_names_dict = {
|
92 |
+
1: ['qkv'],
|
93 |
+
2: ['q', 'kv'],
|
94 |
+
3: ['q', 'k', 'v']
|
95 |
+
}
|
96 |
+
num_all_args = len(args) + len(kwargs)
|
97 |
+
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
98 |
+
for key in arg_names_dict[num_all_args][len(args):]:
|
99 |
+
assert key in kwargs, f"Missing argument {key}"
|
100 |
+
|
101 |
+
if num_all_args == 1:
|
102 |
+
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
103 |
+
assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
|
104 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
105 |
+
device = qkv.device
|
106 |
+
|
107 |
+
s = qkv
|
108 |
+
q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
|
109 |
+
kv_seqlen = q_seqlen
|
110 |
+
qkv = qkv.feats # [T, 3, H, C]
|
111 |
+
|
112 |
+
elif num_all_args == 2:
|
113 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
114 |
+
kv = args[1] if len(args) > 1 else kwargs['kv']
|
115 |
+
assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
|
116 |
+
isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
|
117 |
+
f"Invalid types, got {type(q)} and {type(kv)}"
|
118 |
+
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
119 |
+
device = q.device
|
120 |
+
|
121 |
+
if isinstance(q, SparseTensor):
|
122 |
+
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
|
123 |
+
s = q
|
124 |
+
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
125 |
+
q = q.feats # [T_Q, H, C]
|
126 |
+
else:
|
127 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
128 |
+
s = None
|
129 |
+
N, L, H, C = q.shape
|
130 |
+
q_seqlen = [L] * N
|
131 |
+
q = q.reshape(N * L, H, C) # [T_Q, H, C]
|
132 |
+
|
133 |
+
if isinstance(kv, SparseTensor):
|
134 |
+
assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
|
135 |
+
kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
|
136 |
+
kv = kv.feats # [T_KV, 2, H, C]
|
137 |
+
else:
|
138 |
+
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
139 |
+
N, L, _, H, C = kv.shape
|
140 |
+
kv_seqlen = [L] * N
|
141 |
+
kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
|
142 |
+
|
143 |
+
elif num_all_args == 3:
|
144 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
145 |
+
k = args[1] if len(args) > 1 else kwargs['k']
|
146 |
+
v = args[2] if len(args) > 2 else kwargs['v']
|
147 |
+
assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
|
148 |
+
isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
|
149 |
+
f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
|
150 |
+
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
151 |
+
device = q.device
|
152 |
+
|
153 |
+
if isinstance(q, SparseTensor):
|
154 |
+
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
|
155 |
+
s = q
|
156 |
+
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
157 |
+
q = q.feats # [T_Q, H, Ci]
|
158 |
+
else:
|
159 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
160 |
+
s = None
|
161 |
+
N, L, H, CI = q.shape
|
162 |
+
q_seqlen = [L] * N
|
163 |
+
q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
|
164 |
+
|
165 |
+
if isinstance(k, SparseTensor):
|
166 |
+
assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
|
167 |
+
assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
|
168 |
+
kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
|
169 |
+
k = k.feats # [T_KV, H, Ci]
|
170 |
+
v = v.feats # [T_KV, H, Co]
|
171 |
+
else:
|
172 |
+
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
173 |
+
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
174 |
+
N, L, H, CI, CO = *k.shape, v.shape[-1]
|
175 |
+
kv_seqlen = [L] * N
|
176 |
+
k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
|
177 |
+
v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
|
178 |
+
|
179 |
+
if DEBUG:
|
180 |
+
if s is not None:
|
181 |
+
for i in range(s.shape[0]):
|
182 |
+
assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
|
183 |
+
if num_all_args in [2, 3]:
|
184 |
+
assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
|
185 |
+
if num_all_args == 3:
|
186 |
+
assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
|
187 |
+
assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
|
188 |
+
|
189 |
+
if ATTN == 'xformers':
|
190 |
+
if num_all_args == 1:
|
191 |
+
q, k, v = qkv.unbind(dim=1)
|
192 |
+
elif num_all_args == 2:
|
193 |
+
k, v = kv.unbind(dim=1)
|
194 |
+
q = q.unsqueeze(0)
|
195 |
+
k = k.unsqueeze(0)
|
196 |
+
v = v.unsqueeze(0)
|
197 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
|
198 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
199 |
+
elif ATTN == 'flash_attn':
|
200 |
+
cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
|
201 |
+
if num_all_args in [2, 3]:
|
202 |
+
cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
|
203 |
+
if num_all_args == 1:
|
204 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
|
205 |
+
elif num_all_args == 2:
|
206 |
+
out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
207 |
+
elif num_all_args == 3:
|
208 |
+
out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
209 |
+
else:
|
210 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
211 |
+
|
212 |
+
if s is not None:
|
213 |
+
return s.replace(out)
|
214 |
+
else:
|
215 |
+
return out.reshape(N, L, H, -1)
|
thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/modules.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from .. import SparseTensor
|
6 |
+
from .full_attn import sparse_scaled_dot_product_attention
|
7 |
+
from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention
|
8 |
+
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
|
9 |
+
from ...attention import RotaryPositionEmbedder
|
10 |
+
|
11 |
+
|
12 |
+
class SparseMultiHeadRMSNorm(nn.Module):
|
13 |
+
def __init__(self, dim: int, heads: int):
|
14 |
+
super().__init__()
|
15 |
+
self.scale = dim ** 0.5
|
16 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
17 |
+
|
18 |
+
def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
|
19 |
+
x_type = x.dtype
|
20 |
+
x = x.float()
|
21 |
+
if isinstance(x, SparseTensor):
|
22 |
+
x = x.replace(F.normalize(x.feats, dim=-1))
|
23 |
+
else:
|
24 |
+
x = F.normalize(x, dim=-1)
|
25 |
+
return (x * self.gamma * self.scale).to(x_type)
|
26 |
+
|
27 |
+
|
28 |
+
class SparseMultiHeadAttention(nn.Module):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
channels: int,
|
32 |
+
num_heads: int,
|
33 |
+
ctx_channels: Optional[int] = None,
|
34 |
+
type: Literal["self", "cross"] = "self",
|
35 |
+
attn_mode: Literal["full", "serialized", "windowed"] = "full",
|
36 |
+
window_size: Optional[int] = None,
|
37 |
+
shift_sequence: Optional[int] = None,
|
38 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
39 |
+
serialize_mode: Optional[SerializeMode] = None,
|
40 |
+
qkv_bias: bool = True,
|
41 |
+
use_rope: bool = False,
|
42 |
+
qk_rms_norm: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
assert channels % num_heads == 0
|
46 |
+
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
47 |
+
assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}"
|
48 |
+
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
|
49 |
+
assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention"
|
50 |
+
self.channels = channels
|
51 |
+
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self._type = type
|
54 |
+
self.attn_mode = attn_mode
|
55 |
+
self.window_size = window_size
|
56 |
+
self.shift_sequence = shift_sequence
|
57 |
+
self.shift_window = shift_window
|
58 |
+
self.serialize_mode = serialize_mode
|
59 |
+
self.use_rope = use_rope
|
60 |
+
self.qk_rms_norm = qk_rms_norm
|
61 |
+
|
62 |
+
if self._type == "self":
|
63 |
+
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
|
64 |
+
else:
|
65 |
+
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
66 |
+
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
67 |
+
|
68 |
+
if self.qk_rms_norm:
|
69 |
+
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
70 |
+
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
71 |
+
|
72 |
+
self.to_out = nn.Linear(channels, channels)
|
73 |
+
|
74 |
+
if use_rope:
|
75 |
+
self.rope = RotaryPositionEmbedder(channels)
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
|
79 |
+
if isinstance(x, SparseTensor):
|
80 |
+
return x.replace(module(x.feats))
|
81 |
+
else:
|
82 |
+
return module(x)
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]:
|
86 |
+
if isinstance(x, SparseTensor):
|
87 |
+
return x.reshape(*shape)
|
88 |
+
else:
|
89 |
+
return x.reshape(*x.shape[:2], *shape)
|
90 |
+
|
91 |
+
def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]:
|
92 |
+
if isinstance(x, SparseTensor):
|
93 |
+
x_feats = x.feats.unsqueeze(0)
|
94 |
+
else:
|
95 |
+
x_feats = x
|
96 |
+
x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1)
|
97 |
+
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
|
98 |
+
|
99 |
+
def _rope(self, qkv: SparseTensor) -> SparseTensor:
|
100 |
+
q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
|
101 |
+
q, k = self.rope(q, k, qkv.coords[:, 1:])
|
102 |
+
qkv = qkv.replace(torch.stack([q, k, v], dim=1))
|
103 |
+
return qkv
|
104 |
+
|
105 |
+
def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]:
|
106 |
+
if self._type == "self":
|
107 |
+
qkv = self._linear(self.to_qkv, x)
|
108 |
+
qkv = self._fused_pre(qkv, num_fused=3)
|
109 |
+
if self.use_rope:
|
110 |
+
qkv = self._rope(qkv)
|
111 |
+
if self.qk_rms_norm:
|
112 |
+
q, k, v = qkv.unbind(dim=1)
|
113 |
+
q = self.q_rms_norm(q)
|
114 |
+
k = self.k_rms_norm(k)
|
115 |
+
qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1))
|
116 |
+
if self.attn_mode == "full":
|
117 |
+
h = sparse_scaled_dot_product_attention(qkv)
|
118 |
+
elif self.attn_mode == "serialized":
|
119 |
+
h = sparse_serialized_scaled_dot_product_self_attention(
|
120 |
+
qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window
|
121 |
+
)
|
122 |
+
elif self.attn_mode == "windowed":
|
123 |
+
h = sparse_windowed_scaled_dot_product_self_attention(
|
124 |
+
qkv, self.window_size, shift_window=self.shift_window
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
q = self._linear(self.to_q, x)
|
128 |
+
q = self._reshape_chs(q, (self.num_heads, -1))
|
129 |
+
kv = self._linear(self.to_kv, context)
|
130 |
+
kv = self._fused_pre(kv, num_fused=2)
|
131 |
+
if self.qk_rms_norm:
|
132 |
+
q = self.q_rms_norm(q)
|
133 |
+
k, v = kv.unbind(dim=1)
|
134 |
+
k = self.k_rms_norm(k)
|
135 |
+
kv = kv.replace(torch.stack([k.feats, v.feats], dim=1))
|
136 |
+
h = sparse_scaled_dot_product_attention(q, kv)
|
137 |
+
h = self._reshape_chs(h, (-1,))
|
138 |
+
h = self._linear(self.to_out, h)
|
139 |
+
return h
|
thirdparty/TRELLIS/trellis/trellis/modules/sparse/attention/serialized_attn.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
from enum import Enum
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
from .. import SparseTensor
|
6 |
+
from .. import DEBUG, ATTN
|
7 |
+
|
8 |
+
if ATTN == 'xformers':
|
9 |
+
import xformers.ops as xops
|
10 |
+
elif ATTN == 'flash_attn':
|
11 |
+
import flash_attn
|
12 |
+
else:
|
13 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
14 |
+
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
'sparse_serialized_scaled_dot_product_self_attention',
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
class SerializeMode(Enum):
|
22 |
+
Z_ORDER = 0
|
23 |
+
Z_ORDER_TRANSPOSED = 1
|
24 |
+
HILBERT = 2
|
25 |
+
HILBERT_TRANSPOSED = 3
|
26 |
+
|
27 |
+
|
28 |
+
SerializeModes = [
|
29 |
+
SerializeMode.Z_ORDER,
|
30 |
+
SerializeMode.Z_ORDER_TRANSPOSED,
|
31 |
+
SerializeMode.HILBERT,
|
32 |
+
SerializeMode.HILBERT_TRANSPOSED
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
def calc_serialization(
|
37 |
+
tensor: SparseTensor,
|
38 |
+
window_size: int,
|
39 |
+
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
40 |
+
shift_sequence: int = 0,
|
41 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
42 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
43 |
+
"""
|
44 |
+
Calculate serialization and partitioning for a set of coordinates.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
tensor (SparseTensor): The input tensor.
|
48 |
+
window_size (int): The window size to use.
|
49 |
+
serialize_mode (SerializeMode): The serialization mode to use.
|
50 |
+
shift_sequence (int): The shift of serialized sequence.
|
51 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
(torch.Tensor, torch.Tensor): Forwards and backwards indices.
|
55 |
+
"""
|
56 |
+
fwd_indices = []
|
57 |
+
bwd_indices = []
|
58 |
+
seq_lens = []
|
59 |
+
seq_batch_indices = []
|
60 |
+
offsets = [0]
|
61 |
+
|
62 |
+
if 'vox2seq' not in globals():
|
63 |
+
import vox2seq
|
64 |
+
|
65 |
+
# Serialize the input
|
66 |
+
serialize_coords = tensor.coords[:, 1:].clone()
|
67 |
+
serialize_coords += torch.tensor(shift_window, dtype=torch.int32, device=tensor.device).reshape(1, 3)
|
68 |
+
if serialize_mode == SerializeMode.Z_ORDER:
|
69 |
+
code = vox2seq.encode(serialize_coords, mode='z_order', permute=[0, 1, 2])
|
70 |
+
elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
|
71 |
+
code = vox2seq.encode(serialize_coords, mode='z_order', permute=[1, 0, 2])
|
72 |
+
elif serialize_mode == SerializeMode.HILBERT:
|
73 |
+
code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[0, 1, 2])
|
74 |
+
elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
|
75 |
+
code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[1, 0, 2])
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Unknown serialize mode: {serialize_mode}")
|
78 |
+
|
79 |
+
for bi, s in enumerate(tensor.layout):
|
80 |
+
num_points = s.stop - s.start
|
81 |
+
num_windows = (num_points + window_size - 1) // window_size
|
82 |
+
valid_window_size = num_points / num_windows
|
83 |
+
to_ordered = torch.argsort(code[s.start:s.stop])
|
84 |
+
if num_windows == 1:
|
85 |
+
fwd_indices.append(to_ordered)
|
86 |
+
bwd_indices.append(torch.zeros_like(to_ordered).scatter_(0, to_ordered, torch.arange(num_points, device=tensor.device)))
|
87 |
+
fwd_indices[-1] += s.start
|
88 |
+
bwd_indices[-1] += offsets[-1]
|
89 |
+
seq_lens.append(num_points)
|
90 |
+
seq_batch_indices.append(bi)
|
91 |
+
offsets.append(offsets[-1] + seq_lens[-1])
|
92 |
+
else:
|
93 |
+
# Partition the input
|
94 |
+
offset = 0
|
95 |
+
mids = [(i + 0.5) * valid_window_size + shift_sequence for i in range(num_windows)]
|
96 |
+
split = [math.floor(i * valid_window_size + shift_sequence) for i in range(num_windows + 1)]
|
97 |
+
bwd_index = torch.zeros((num_points,), dtype=torch.int64, device=tensor.device)
|
98 |
+
for i in range(num_windows):
|
99 |
+
mid = mids[i]
|
100 |
+
valid_start = split[i]
|
101 |
+
valid_end = split[i + 1]
|
102 |
+
padded_start = math.floor(mid - 0.5 * window_size)
|
103 |
+
padded_end = padded_start + window_size
|
104 |
+
fwd_indices.append(to_ordered[torch.arange(padded_start, padded_end, device=tensor.device) % num_points])
|
105 |
+
offset += valid_start - padded_start
|
106 |
+
bwd_index.scatter_(0, fwd_indices[-1][valid_start-padded_start:valid_end-padded_start], torch.arange(offset, offset + valid_end - valid_start, device=tensor.device))
|
107 |
+
offset += padded_end - valid_start
|
108 |
+
fwd_indices[-1] += s.start
|
109 |
+
seq_lens.extend([window_size] * num_windows)
|
110 |
+
seq_batch_indices.extend([bi] * num_windows)
|
111 |
+
bwd_indices.append(bwd_index + offsets[-1])
|
112 |
+
offsets.append(offsets[-1] + num_windows * window_size)
|
113 |
+
|
114 |
+
fwd_indices = torch.cat(fwd_indices)
|
115 |
+
bwd_indices = torch.cat(bwd_indices)
|
116 |
+
|
117 |
+
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
118 |
+
|
119 |
+
|
120 |
+
def sparse_serialized_scaled_dot_product_self_attention(
|
121 |
+
qkv: SparseTensor,
|
122 |
+
window_size: int,
|
123 |
+
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
124 |
+
shift_sequence: int = 0,
|
125 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
126 |
+
) -> SparseTensor:
|
127 |
+
"""
|
128 |
+
Apply serialized scaled dot product self attention to a sparse tensor.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
132 |
+
window_size (int): The window size to use.
|
133 |
+
serialize_mode (SerializeMode): The serialization mode to use.
|
134 |
+
shift_sequence (int): The shift of serialized sequence.
|
135 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
136 |
+
shift (int): The shift to use.
|
137 |
+
"""
|
138 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
139 |
+
|
140 |
+
serialization_spatial_cache_name = f'serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}'
|
141 |
+
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
|
142 |
+
if serialization_spatial_cache is None:
|
143 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(qkv, window_size, serialize_mode, shift_sequence, shift_window)
|
144 |
+
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
|
145 |
+
else:
|
146 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
|
147 |
+
|
148 |
+
M = fwd_indices.shape[0]
|
149 |
+
T = qkv.feats.shape[0]
|
150 |
+
H = qkv.feats.shape[2]
|
151 |
+
C = qkv.feats.shape[3]
|
152 |
+
|
153 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
154 |
+
|
155 |
+
if DEBUG:
|
156 |
+
start = 0
|
157 |
+
qkv_coords = qkv.coords[fwd_indices]
|
158 |
+
for i in range(len(seq_lens)):
|
159 |
+
assert (qkv_coords[start:start+seq_lens[i], 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
160 |
+
start += seq_lens[i]
|
161 |
+
|
162 |
+
if all([seq_len == window_size for seq_len in seq_lens]):
|
163 |
+
B = len(seq_lens)
|
164 |
+
N = window_size
|
165 |
+
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
166 |
+
if ATTN == 'xformers':
|
167 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
168 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
169 |
+
elif ATTN == 'flash_attn':
|
170 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
171 |
+
else:
|
172 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
173 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
174 |
+
else:
|
175 |
+
if ATTN == 'xformers':
|
176 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
177 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
178 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
179 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
180 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
181 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
182 |
+
elif ATTN == 'flash_attn':
|
183 |
+
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
|
184 |
+
.to(qkv.device).int()
|
185 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
|
186 |
+
|
187 |
+
out = out[bwd_indices] # [T, H, C]
|
188 |
+
|
189 |
+
if DEBUG:
|
190 |
+
qkv_coords = qkv_coords[bwd_indices]
|
191 |
+
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
192 |
+
|
193 |
+
return qkv.replace(out)
|