File size: 51,802 Bytes
3a57d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40291e5
a6ec168
3a57d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40291e5
3a57d6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
import os
import sys
import math
import requests
import numpy as np
import cv2
import torch
import pickle
import logging
from PIL import Image
from typing import Optional, Dict, List, Tuple
from dataclasses import dataclass, field
from collections import Counter
import io
import tempfile # Import tempfile

import gradio as gr

from ultralytics import YOLO
from facenet_pytorch import InceptionResnetV1
from torchvision import transforms
from deep_sort_realtime.deepsort_tracker import DeepSort

import mediapipe as mp

# Configure logging
logging.basicConfig(
    level=logging.DEBUG, # Changed to DEBUG for more detailed logs
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.FileHandler('face_pipeline.log'), logging.StreamHandler()],
)
logger = logging.getLogger(__name__)

# Suppress verbose logs from libraries
logging.getLogger('torch').setLevel(logging.ERROR)
logging.getLogger('mediapipe').setLevel(logging.ERROR)
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)

# Constants and default paths
DEFAULT_MODEL_URL = "https://github.com/wuhplaptop/face-11-n/blob/main/face2.pt?raw=true"
DEFAULT_DB_PATH = os.path.expanduser("~/.face_pipeline/known_faces.pkl")
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")

# Mediapipe indices for eye landmarks
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]

# Initialize Mediapipe drawing utilities
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
mp_hands = mp.solutions.hands

@dataclass
class PipelineConfig:
    detector: Dict = field(default_factory=dict)
    tracker: Dict = field(default_factory=dict)
    recognition: Dict = field(default_factory=dict)
    anti_spoof: Dict = field(default_factory=dict)
    blink: Dict = field(default_factory=dict)
    face_mesh_options: Dict = field(default_factory=dict)
    hand: Dict = field(default_factory=dict)
    eye_color: Dict = field(default_factory=dict)
    enabled_components: Dict = field(default_factory=dict)

    detection_conf_thres: float = 0.4
    recognition_conf_thres: float = 0.85

    bbox_color: Tuple[int, int, int] = (0, 255, 0)
    spoofed_bbox_color: Tuple[int, int, int] = (0, 0, 255)
    unknown_bbox_color: Tuple[int, int, int] = (0, 0, 255)
    eye_outline_color: Tuple[int, int, int] = (255, 255, 0)
    blink_text_color: Tuple[int, int, int] = (0, 0, 255)
    hand_landmark_color: Tuple[int, int, int] = (255, 210, 77)
    hand_connection_color: Tuple[int, int, int] = (204, 102, 0)
    hand_text_color: Tuple[int, int, int] = (255, 255, 255)
    mesh_color: Tuple[int, int, int] = (100, 255, 100)
    contour_color: Tuple[int, int, int] = (200, 200, 0)
    iris_color: Tuple[int, int, int] = (255, 0, 255)
    eye_color_text_color: Tuple[int, int, int] = (255, 255, 255)

    def __post_init__(self):
        self.detector = self.detector or {
            'model_path': os.path.join(MODEL_DIR, "face2.pt"),
            'device': 'cuda' if torch.cuda.is_available() else 'cpu',
        }
        self.tracker = self.tracker or {'max_age': 30}
        self.recognition = self.recognition or {'enable': True}
        self.anti_spoof = self.anti_spoof or {'enable': True, 'lap_thresh': 80.0}
        self.blink = self.blink or {'enable': True, 'ear_thresh': 0.25}
        self.face_mesh_options = self.face_mesh_options or {
            'enable': False,
            'tesselation': False,
            'contours': False,
            'irises': False,
        }
        self.hand = self.hand or {
            'enable': True,
            'min_detection_confidence': 0.5,
            'min_tracking_confidence': 0.5,
        }
        self.eye_color = self.eye_color or {'enable': False}
        self.enabled_components = self.enabled_components or {
            'detection': True,
            'tracking': True,
            'anti_spoof': True,
            'recognition': True,
            'blink': True,
            'face_mesh': False,
            'hand': True,
            'eye_color': False,
        }

    def save(self, path: str):
        """Save this config to a pickle file."""
        try:
            os.makedirs(os.path.dirname(path), exist_ok=True)
            with open(path, 'wb') as f:
                pickle.dump(self.__dict__, f)
            logger.info(f"Saved config to {path}")
            logger.debug(f"Config data saved: {self.__dict__}") # Added debug log
        except Exception as e:
            logger.error(f"Config save failed: {str(e)}")
            raise RuntimeError(f"Config save failed: {str(e)}") from e

    @classmethod
    def load(cls, path: str) -> 'PipelineConfig':
        """Load a config from a pickle file."""
        try:
            if os.path.exists(path):
                with open(path, 'rb') as f:
                    data = pickle.load(f)
                logger.info(f"Loaded config from {path}")
                logger.debug(f"Config data loaded: {data}") # Added debug log
                return cls(**data)
            logger.info("No config file found, using default config.") # Added log for default case
            return cls()
        except Exception as e:
            logger.error(f"Config load failed: {str(e)}")
            return cls()

    def export_config(self) -> bytes:
        """Export your config to bytes."""
        try:
            config_data = self.__dict__
            buf = io.BytesIO()
            pickle.dump(config_data, buf)
            buf.seek(0)
            return buf.read()
        except Exception as e:
            logger.error(f"Export config failed: {str(e)}")
            raise RuntimeError(f"Export config failed: {str(e)}") from e

    @classmethod
    def import_config(cls, config_bytes: bytes) -> 'PipelineConfig':
        """Import config from bytes."""
        try:
            buf = io.BytesIO(config_bytes)
            data = pickle.load(buf)
            return cls(**data)
        except Exception as e:
            logger.error(f"Import config failed: {str(e)}")
            raise RuntimeError(f"Import config failed: {str(e)}") from e

class FaceDatabase:
    def __init__(self, db_path: str = DEFAULT_DB_PATH):
        self.db_path = db_path
        self.embeddings: Dict[str, List[np.ndarray]] = {}
        self._load()

    def _load(self):
        try:
            if os.path.exists(self.db_path):
                with open(self.db_path, 'rb') as f:
                    self.embeddings = pickle.load(f)
                logger.info(f"Loaded database from {self.db_path}")
        except Exception as e:
            logger.error(f"Database load failed: {str(e)}")
            self.embeddings = {}

    def save(self):
        try:
            os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
            with open(self.db_path, 'wb') as f:
                pickle.dump(self.embeddings, f)
            logger.info(f"Saved database to {self.db_path}")
        except Exception as e:
            logger.error(f"Database save failed: {str(e)}")
            raise RuntimeError(f"Database save failed: {str(e)}") from e

    def export_database(self) -> bytes:
        """Export the entire face embeddings DB to bytes."""
        try:
            db_data = self.embeddings
            buf = io.BytesIO()
            pickle.dump(db_data, buf)
            buf.seek(0)
            return buf.read()
        except Exception as e:
            logger.error(f"Export database failed: {str(e)}")
            raise RuntimeError(f"Export database failed: {str(e)}") from e

    def import_database(self, db_bytes: bytes, merge: bool = True):
        """
        Import embeddings from bytes.
        If merge=True, merges with current DB. If False, overwrites.
        """
        try:
            buf = io.BytesIO(db_bytes)
            imported_data = pickle.load(buf)
            if not isinstance(imported_data, dict):
                raise ValueError("Imported data is not a dictionary!")

            if merge:
                for label, emb_list in imported_data.items():
                    if label not in self.embeddings:
                        self.embeddings[label] = []
                    self.embeddings[label].extend(emb_list)
            else:
                self.embeddings = imported_data

            self.save()
            logger.info(f"Imported face database, merge={merge}")
        except Exception as e:
            logger.error(f"Import database failed: {str(e)}")
            raise RuntimeError(f"Import database failed: {str(e)}") from e

    def add_embedding(self, label: str, embedding: np.ndarray):
        try:
            if not isinstance(embedding, np.ndarray) or embedding.ndim != 1:
                raise ValueError("Invalid embedding format")
            if label not in self.embeddings:
                self.embeddings[label] = []
            self.embeddings[label].append(embedding)
            logger.debug(f"Added embedding for {label}")
        except Exception as e:
            logger.error(f"Add embedding failed: {str(e)}")
            raise

    def remove_label(self, label: str):
        try:
            if label in self.embeddings:
                del self.embeddings[label]
                logger.info(f"Removed {label}")
            else:
                logger.warning(f"Label {label} not found")
        except Exception as e:
            logger.error(f"Remove label failed: {str(e)}")
            raise

    def list_labels(self) -> List[str]:
        return list(self.embeddings.keys())

    def get_embeddings_by_label(self, label: str) -> Optional[List[np.ndarray]]:
        return self.embeddings.get(label)

    def search_by_image(self, query_embedding: np.ndarray, threshold: float = 0.7) -> List[Tuple[str, float]]:
        results = []
        for lbl, embs in self.embeddings.items():
            for db_emb in embs:
                sim = FacePipeline.cosine_similarity(query_embedding, db_emb)
                if sim >= threshold:
                    results.append((lbl, sim))
        return sorted(results, key=lambda x: x[1], reverse=True)

class YOLOFaceDetector:
    def __init__(self, model_path: str, device: str = 'cpu'):
        self.model = None
        self.device = device
        try:
            if not os.path.exists(model_path):
                logger.info(f"Model not found at {model_path}. Downloading from GitHub...")
                resp = requests.get(DEFAULT_MODEL_URL)
                resp.raise_for_status()
                os.makedirs(os.path.dirname(model_path), exist_ok=True)
                with open(model_path, 'wb') as f:
                    f.write(resp.content)
                logger.info(f"Downloaded YOLO model to {model_path}")

            self.model = YOLO(model_path)
            self.model.to(device)
            logger.info(f"Loaded YOLO model from {model_path}")
        except Exception as e:
            logger.error(f"YOLO init failed: {str(e)}")
            raise

    def detect(self, image: np.ndarray, conf_thres: float) -> List[Tuple[int, int, int, int, float, int]]:
        try:
            results = self.model.predict(
                source=image, conf=conf_thres, verbose=False, device=self.device
            )
            detections = []
            for result in results:
                for box in result.boxes:
                    x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
                    conf = float(box.conf[0].cpu().numpy())
                    cls = int(box.cls[0].cpu().numpy()) if box.cls is not None else 0
                    detections.append((int(x1), int(y1), int(x2), int(y2), conf, cls))
            logger.debug(f"Detected {len(detections)} faces.")
            return detections
        except Exception as e:
            logger.error(f"Detection error: {str(e)}")
            return []

class FaceTracker:
    def __init__(self, max_age: int = 30):
        self.tracker = DeepSort(max_age=max_age, embedder='mobilenet')

    def update(self, detections: List[Tuple], frame: np.ndarray):
        try:
            ds_detections = [
                ([x1, y1, x2 - x1, y2 - y1], conf, cls)
                for (x1, y1, x2, y2, conf, cls) in detections
            ]
            tracks = self.tracker.update_tracks(ds_detections, frame=frame)
            logger.debug(f"Updated tracker with {len(tracks)} tracks.")
            return tracks
        except Exception as e:
            logger.error(f"Tracking error: {str(e)}")
            return []

class FaceNetEmbedder:
    def __init__(self, device: str = 'cpu'):
        self.device = device
        self.model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
        self.transform = transforms.Compose([
            transforms.Resize((160, 160)),
            transforms.ToTensor(),
            transforms.Normalize([0.5]*3, [0.5]*3),
        ])

    def get_embedding(self, face_bgr: np.ndarray) -> Optional[np.ndarray]:
        try:
            face_rgb = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2RGB)
            pil_img = Image.fromarray(face_rgb).convert('RGB')
            tens = self.transform(pil_img).unsqueeze(0).to(self.device)
            with torch.no_grad():
                embedding = self.model(tens)[0].cpu().numpy()
            logger.debug(f"Generated embedding sample: {embedding[:5]}...")
            return embedding
        except Exception as e:
            logger.error(f"Embedding failed: {str(e)}")
            return None

def detect_blink(face_roi: np.ndarray, threshold: float = 0.25) -> Tuple[bool, float, float, Optional[np.ndarray], Optional[np.ndarray]]:
    """
    Returns:
      (blink_bool, left_ear, right_ear, left_eye_points, right_eye_points).
    """
    try:
        face_mesh_proc = mp_face_mesh.FaceMesh(
            static_image_mode=True,
            max_num_faces=1,
            refine_landmarks=True,
            min_detection_confidence=0.5
        )
        result = face_mesh_proc.process(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
        face_mesh_proc.close()

        if not result.multi_face_landmarks:
            return False, 0.0, 0.0, None, None

        landmarks = result.multi_face_landmarks[0].landmark
        h, w = face_roi.shape[:2]

        def eye_aspect_ratio(indices):
            pts = [(landmarks[i].x * w, landmarks[i].y * h) for i in indices]
            vertical = np.linalg.norm(np.array(pts[1]) - np.array(pts[5])) + \
                       np.linalg.norm(np.array(pts[2]) - np.array(pts[4]))
            horizontal = np.linalg.norm(np.array(pts[0]) - np.array(pts[3]))
            return vertical / (2.0 * horizontal + 1e-6)

        left_ear = eye_aspect_ratio(LEFT_EYE_IDX)
        right_ear = eye_aspect_ratio(RIGHT_EYE_IDX)

        blink = (left_ear < threshold) and (right_ear < threshold)

        left_eye_pts = np.array([(int(landmarks[i].x * w), int(landmarks[i].y * h)) for i in LEFT_EYE_IDX])
        right_eye_pts = np.array([(int(landmarks[i].x * w), int(landmarks[i].y * h)) for i in RIGHT_EYE_IDX])

        return blink, left_ear, right_ear, left_eye_pts, right_eye_pts

    except Exception as e:
        logger.error(f"Blink detection error: {str(e)}")
        return False, 0.0, 0.0, None, None

def process_face_mesh(face_roi: np.ndarray):
    try:
        fm_proc = mp_face_mesh.FaceMesh(
            static_image_mode=True,
            max_num_faces=1,
            refine_landmarks=True,
            min_detection_confidence=0.5
        )
        result = fm_proc.process(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
        fm_proc.close()
        if result.multi_face_landmarks:
            return result.multi_face_landmarks[0]
        return None
    except Exception as e:
        logger.error(f"Face mesh error: {str(e)}")
        return None

def draw_face_mesh(image: np.ndarray, face_landmarks, config: Dict, pipeline_config: PipelineConfig):
    mesh_color_bgr = pipeline_config.mesh_color[::-1]
    contour_color_bgr = pipeline_config.contour_color[::-1]
    iris_color_bgr = pipeline_config.iris_color[::-1]

    if config.get('tesselation'):
        mp_drawing.draw_landmarks(
            image,
            face_landmarks,
            mp_face_mesh.FACEMESH_TESSELATION,
            landmark_drawing_spec=mp_drawing.DrawingSpec(color=mesh_color_bgr, thickness=1, circle_radius=1),
            connection_drawing_spec=mp_drawing.DrawingSpec(color=mesh_color_bgr, thickness=1),
        )
    if config.get('contours'):
        mp_drawing.draw_landmarks(
            image,
            face_landmarks,
            mp_face_mesh.FACEMESH_CONTOURS,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing.DrawingSpec(color=contour_color_bgr, thickness=2)
        )
    if config.get('irises'):
        mp_drawing.draw_landmarks(
            image,
            face_landmarks,
            mp_face_mesh.FACEMESH_IRISES,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing.DrawingSpec(color=iris_color_bgr, thickness=2)
        )

EYE_COLOR_RANGES = {
    "amber": (255, 191, 0),
    "blue": (0, 0, 255),
    "brown": (139, 69, 19),
    "green": (0, 128, 0),
    "gray": (128, 128, 128),
    "hazel": (102, 51, 0),
}

def classify_eye_color(rgb_color: Tuple[int,int,int]) -> str:
    if rgb_color is None:
        return "Unknown"
    min_dist = float('inf')
    best = "Unknown"
    for color_name, ref_rgb in EYE_COLOR_RANGES.items():
        dist = math.sqrt(sum([(a-b)**2 for a,b in zip(rgb_color, ref_rgb)]))
        if dist < min_dist:
            min_dist = dist
            best = color_name
    return best

def get_dominant_color(image_roi, k=3):
    if image_roi.size == 0:
        return None
    pixels = np.float32(image_roi.reshape(-1, 3))
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.1)
    _, labels, palette = cv2.kmeans(pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
    _, counts = np.unique(labels, return_counts=True)
    dom_color = tuple(palette[np.argmax(counts)].astype(int).tolist())
    return dom_color

def detect_eye_color(face_roi: np.ndarray, face_landmarks) -> Optional[str]:
    if face_landmarks is None:
        return None
    h, w = face_roi.shape[:2]
    iris_inds = set()
    for conn in mp_face_mesh.FACEMESH_IRISES:
        iris_inds.update(conn)

    iris_points = []
    for idx in iris_inds:
        lm = face_landmarks.landmark[idx]
        iris_points.append((int(lm.x * w), int(lm.y * h)))
    if not iris_points:
        return None

    min_x = min(pt[0] for pt in iris_points)
    max_x = max(pt[0] for pt in iris_points)
    min_y = min(pt[1] for pt in iris_points)
    max_y = max(pt[1] for pt in iris_points)

    pad = 5
    x1 = max(0, min_x - pad)
    y1 = max(0, min_y - pad)
    x2 = min(w, max_x + pad)
    y2 = min(h, max_y + pad)

    eye_roi = face_roi[y1:y2, x1:x2]
    eye_roi_resize = cv2.resize(eye_roi, (40, 40), interpolation=cv2.INTER_AREA)

    if eye_roi_resize.size == 0:
        return None

    dom_rgb = get_dominant_color(eye_roi_resize)
    if dom_rgb is not None:
        return classify_eye_color(dom_rgb)
    return None

class HandTracker:
    def __init__(self, min_detection_confidence=0.5, min_tracking_confidence=0.5):
        self.hands = mp_hands.Hands(
            static_image_mode=True,
            max_num_hands=2,
            min_detection_confidence=min_detection_confidence,
            min_tracking_confidence=min_tracking_confidence,
        )
        logger.info("Initialized Mediapipe HandTracking")

    def detect_hands(self, image: np.ndarray):
        try:
            img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            results = self.hands.process(img_rgb)
            return results.multi_hand_landmarks, results.multi_handedness
        except Exception as e:
            logger.error(f"Hand detection error: {str(e)}")
            return None, None

    def draw_hands(self, image: np.ndarray, hand_landmarks, handedness, config: Dict):
        if not hand_landmarks:
            return image

        for i, hlms in enumerate(hand_landmarks):
            hl_color = config.hand_landmark_color[::-1]
            hc_color = config.hand_connection_color[::-1]
            mp_drawing.draw_landmarks(
                image,
                hlms,
                mp_hands.HAND_CONNECTIONS,
                mp_drawing.DrawingSpec(color=hl_color, thickness=2, circle_radius=4),
                mp_drawing.DrawingSpec(color=hc_color, thickness=2, circle_radius=2),
            )
            if handedness and i < len(handedness):
                label = handedness[i].classification[0].label
                score = handedness[i].classification[0].score
                text = f"{label}: {score:.2f}"

                wrist_lm = hlms.landmark[mp_hands.HandLandmark.WRIST]
                h, w_img, _ = image.shape
                cx, cy = int(wrist_lm.x * w_img), int(wrist_lm.y * h)
                ht_color = config.hand_text_color[::-1]
                cv2.putText(image, text, (cx, cy - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ht_color, 2)
        return image

class FacePipeline:
    def __init__(self, config: PipelineConfig):
        self.config = config
        self.detector = None
        self.tracker = None
        self.facenet = None
        self.db = None
        self.hand_tracker = None
        self._initialized = False

    def initialize(self):
        try:
            self.detector = YOLOFaceDetector(
                model_path=self.config.detector['model_path'],
                device=self.config.detector['device']
            )
            self.tracker = FaceTracker(max_age=self.config.tracker['max_age'])
            self.facenet = FaceNetEmbedder(device=self.config.detector['device'])
            self.db = FaceDatabase()

            if self.config.hand['enable']:
                self.hand_tracker = HandTracker(
                    min_detection_confidence=self.config.hand['min_detection_confidence'],
                    min_tracking_confidence=self.config.hand['min_tracking_confidence']
                )

            self._initialized = True
            logger.info("FacePipeline initialized successfully.")
        except Exception as e:
            logger.error(f"Initialization failed: {str(e)}")
            self._initialized = False
            raise

    def process_frame(self, frame: np.ndarray) -> Tuple[np.ndarray, List[Dict]]:
        """
        Main pipeline processing: detection, tracking, hand detection, face mesh, blink detection, etc.
        Returns annotated_frame, detection_results.
        """
        if not self._initialized:
            logger.error("Pipeline not initialized.")
            return frame, []

        try:
            detections = self.detector.detect(frame, self.config.detection_conf_thres)
            tracked_objs = self.tracker.update(detections, frame)
            annotated = frame.copy()
            results = []

            # Hand detection
            hand_landmarks_list = None
            handedness_list = None
            if self.config.hand['enable'] and self.hand_tracker:
                hand_landmarks_list, handedness_list = self.hand_tracker.detect_hands(annotated)
                annotated = self.hand_tracker.draw_hands(
                    annotated, hand_landmarks_list, handedness_list, self.config
                )

            for obj in tracked_objs:
                if not obj.is_confirmed():
                    continue

                track_id = obj.track_id
                bbox = obj.to_tlbr().astype(int)
                x1, y1, x2, y2 = bbox
                conf = getattr(obj, 'score', 1.0)
                cls = getattr(obj, 'class_id', 0)

                face_roi = frame[y1:y2, x1:x2]
                if face_roi.size == 0:
                    logger.warning(f"Empty face ROI for track={track_id}")
                    continue

                # Anti-spoof
                is_spoofed = False
                if self.config.anti_spoof.get('enable', True):
                    is_spoofed = not self.is_real_face(face_roi)
                    if is_spoofed:
                        cls = 1  # Mark as "spoof"

                if is_spoofed:
                    box_color_bgr = self.config.spoofed_bbox_color[::-1]
                    name = "Spoofed"
                    similarity = 0.0
                else:
                    # Face recognition
                    emb = self.facenet.get_embedding(face_roi)
                    if emb is not None and self.config.recognition.get('enable', True):
                        name, similarity = self.recognize_face(emb, self.config.recognition_conf_thres)
                    else:
                        name = "Unknown"
                        similarity = 0.0

                    box_color_rgb = (self.config.bbox_color if name != "Unknown"
                                     else self.config.unknown_bbox_color)
                    box_color_bgr = box_color_rgb[::-1]

                label_text = name
                cv2.rectangle(annotated, (x1, y1), (x2, y2), box_color_bgr, 2)
                cv2.putText(annotated, label_text, (x1, y1 - 10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2)

                # Blink detection
                blink = False
                if self.config.blink.get('enable', False):
                    blink, left_ear, right_ear, left_eye_pts, right_eye_pts = detect_blink(
                        face_roi, threshold=self.config.blink.get('ear_thresh', 0.25)
                    )
                    if left_eye_pts is not None and right_eye_pts is not None:
                        le_g = left_eye_pts + np.array([x1, y1])
                        re_g = right_eye_pts + np.array([x1, y1])

                        eye_outline_bgr = self.config.eye_outline_color[::-1]
                        cv2.polylines(annotated, [le_g], True, eye_outline_bgr, 1)
                        cv2.polylines(annotated, [re_g], True, eye_outline_bgr, 1)
                        if blink:
                            blink_msg_color = self.config.blink_text_color[::-1]
                            cv2.putText(annotated, "Blink Detected",
                                        (x1, y2 + 20),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                        blink_msg_color, 2)

                # Face mesh
                face_mesh_landmarks = None
                eye_color_name = None
                if (self.config.face_mesh_options.get('enable') or
                        self.config.eye_color.get('enable')):
                    face_mesh_landmarks = process_face_mesh(face_roi)
                    if face_mesh_landmarks:
                        # Draw mesh
                        if self.config.face_mesh_options.get('enable', False):
                            draw_face_mesh(
                                annotated[y1:y2, x1:x2],
                                face_mesh_landmarks,
                                self.config.face_mesh_options,
                                self.config
                            )

                        # Eye color detection
                        if self.config.eye_color.get('enable', False):
                            color_found = detect_eye_color(face_roi, face_mesh_landmarks)
                            if color_found:
                                eye_color_name = color_found
                                text_col_bgr = self.config.eye_color_text_color[::-1]
                                cv2.putText(
                                    annotated, f"Eye Color: {eye_color_name}",
                                    (x1, y2 + 40),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                    text_col_bgr, 2
                                )

                detection_info = {
                    "track_id": track_id,
                    "bbox": (x1, y1, x2, y2),
                    "confidence": float(conf),
                    "class_id": cls,
                    "name": name,
                    "similarity": similarity,
                    "blink": blink if self.config.blink.get('enable') else None,
                    "face_mesh": bool(face_mesh_landmarks) if self.config.face_mesh_options.get('enable') else False,
                    "hands_detected": bool(hand_landmarks_list),
                    "hand_count": len(hand_landmarks_list) if hand_landmarks_list else 0,
                    "eye_color": eye_color_name if self.config.eye_color.get('enable') else None
                }
                results.append(detection_info)

            return annotated, results

        except Exception as e:
            logger.error(f"Frame process error: {str(e)}")
            return frame, []

    def is_real_face(self, face_roi: np.ndarray) -> bool:
        try:
            gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
            lapv = cv2.Laplacian(gray, cv2.CV_64F).var()
            return lapv > self.config.anti_spoof.get('lap_thresh', 80.0)
        except Exception as e:
            logger.error(f"Anti-spoof error: {str(e)}")
            return False

    def recognize_face(self, embedding: np.ndarray, threshold: float) -> Tuple[str, float]:
        try:
            best_name = "Unknown"
            best_sim = 0.0
            for lbl, embs in self.db.embeddings.items():
                for db_emb in embs:
                    sim = FacePipeline.cosine_similarity(embedding, db_emb)
                    if sim > best_sim:
                        best_sim = sim
                        best_name = lbl
            if best_sim < threshold:
                best_name = "Unknown"
            return best_name, best_sim
        except Exception as e:
            logger.error(f"Recognition error: {str(e)}")
            return ("Unknown", 0.0)

    @staticmethod
    def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
        return float(np.dot(a, b) / ((np.linalg.norm(a)*np.linalg.norm(b)) + 1e-6))

pipeline = None
def load_pipeline() -> FacePipeline:
    """Global pipeline loader. Creates if not exists, or returns existing one."""
    global pipeline
    if pipeline is None:
        cfg = PipelineConfig.load(CONFIG_PATH)
        pipeline = FacePipeline(cfg)
        pipeline.initialize()
    return pipeline

def hex_to_bgr(hexstr: str) -> Tuple[int,int,int]:
    if not hexstr.startswith('#'):
        hexstr = '#' + hexstr
    h = hexstr.lstrip('#')
    if len(h) != 6:
        return (255, 0, 0)
    r = int(h[0:2], 16)
    g = int(h[2:4], 16)
    b = int(h[4:6], 16)
    return (b,g,r)

def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
    b,g,r = bgr
    return f"#{r:02x}{g:02x}{b:02x}"

def update_config(
    enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
    show_tesselation, show_contours, show_irises,
    detection_conf, recognition_thresh, antispoof_thresh, blink_thresh, hand_det_conf, hand_track_conf,
    bbox_hex, spoofed_hex, unknown_hex, eye_hex, blink_hex,
    hand_landmark_hex, hand_connect_hex, hand_text_hex,
    mesh_hex, contour_hex, iris_hex, eye_color_text_hex
):
    pl = load_pipeline()
    cfg = pl.config

    cfg.recognition['enable'] = enable_recognition
    cfg.anti_spoof['enable'] = enable_antispoof
    cfg.blink['enable'] = enable_blink
    cfg.hand['enable'] = enable_hand
    cfg.eye_color['enable'] = enable_eyecolor
    cfg.face_mesh_options['enable'] = enable_facemesh

    cfg.face_mesh_options['tesselation'] = show_tesselation
    cfg.face_mesh_options['contours'] = show_contours
    cfg.face_mesh_options['irises'] = show_irises

    cfg.detection_conf_thres = detection_conf
    cfg.recognition_conf_thres = recognition_thresh
    cfg.anti_spoof['lap_thresh'] = antispoof_thresh
    cfg.blink['ear_thresh'] = blink_thresh
    cfg.hand['min_detection_confidence'] = hand_det_conf
    cfg.hand['min_tracking_confidence'] = hand_track_conf

    cfg.bbox_color = hex_to_bgr(bbox_hex)[::-1]
    cfg.spoofed_bbox_color = hex_to_bgr(spoofed_hex)[::-1]
    cfg.unknown_bbox_color = hex_to_bgr(unknown_hex)[::-1]
    cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
    cfg.blink_text_color = hex_to_bgr(blink_hex)[::-1]
    cfg.hand_landmark_color = hex_to_bgr(hand_landmark_hex)[::-1]
    cfg.hand_connection_color = hex_to_bgr(hand_connect_hex)[::-1]
    cfg.hand_text_color = hex_to_bgr(hand_text_hex)[::-1]
    cfg.mesh_color = hex_to_bgr(mesh_hex)[::-1]
    cfg.contour_color = hex_to_bgr(contour_hex)[::-1]
    cfg.iris_color = hex_to_bgr(iris_hex)[::-1]
    cfg.eye_color_text_color = hex_to_bgr(eye_color_text_hex)[::-1]

    cfg.save(CONFIG_PATH)
    logger.info("Configuration updated with:") # Added info log
    logger.info(f"Recognition Enabled: {enable_recognition}")
    logger.info(f"Anti-spoof Enabled: {enable_antispoof}")
    logger.info(f"Blink Enabled: {enable_blink}")
    logger.info(f"Face Mesh Enabled: {enable_facemesh}, Tesselation: {show_tesselation}, Contours: {show_contours}, Irises: {show_irises}")
    logger.info(f"Thresholds - Detection Conf: {detection_conf}, Recognition: {recognition_thresh}, Anti-spoof: {antispoof_thresh}, Blink: {blink_thresh}, Hand Det Conf: {hand_det_conf}, Hand Track Conf: {hand_track_conf}")
    logger.info(f"Colors - BBox: {bbox_hex}, Spoofed: {spoofed_hex}, Unknown: {unknown_hex}, Eye Outline: {eye_hex}, Blink Text: {blink_hex}, Hand Landmark: {hand_landmark_hex}, Hand Connect: {hand_connect_hex}, Hand Text: {hand_text_hex}, Mesh: {mesh_hex}, Contour: {contour_hex}, Iris: {iris_hex}, Eye Color Text: {eye_color_text_hex}")


    return "Configuration saved successfully!"

def enroll_user(label_name: str, files: List[bytes]) -> str:
    """Enrolls a user by name using multiple uploaded image files."""
    pl = load_pipeline()
    if not label_name:
        return "Please provide a user name."
    if not files or len(files) == 0:
        return "No images provided."

    enrolled_count = 0
    for file_bytes in files:
        if not file_bytes:
            continue
        try:
            img_array = np.frombuffer(file_bytes, np.uint8)
            img_bgr = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
            if img_bgr is None:
                continue

            dets = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
            for x1, y1, x2, y2, conf, cls in dets:
                roi = img_bgr[y1:y2, x1:x2]
                if roi.size == 0:
                    continue
                emb = pl.facenet.get_embedding(roi)
                if emb is not None:
                    pl.db.add_embedding(label_name, emb)
                    enrolled_count += 1
        except Exception as e:
            logger.error(f"Error enrolling user from file: {str(e)}")
            continue

    if enrolled_count > 0:
        pl.db.save()
        return f"Enrolled '{label_name}' with {enrolled_count} face(s)!"
    else:
        return "No faces detected in provided images."

def search_by_name(name: str) -> str:
    pl = load_pipeline()
    if not name:
        return "No name entered."
    embs = pl.db.get_embeddings_by_label(name)
    if embs:
        return f"'{name}' found with {len(embs)} embedding(s)."
    else:
        return f"No embeddings found for '{name}'."

def search_by_image(img: np.ndarray) -> str:
    pl = load_pipeline()
    if img is None:
        return "No image uploaded."
    img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    dets = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
    if not dets:
        return "No faces detected in the uploaded image."
    x1, y1, x2, y2, conf, cls = dets[0]
    roi = img_bgr[y1:y2, x1:x2]
    if roi.size == 0:
        return "Empty face ROI in the uploaded image."

    emb = pl.facenet.get_embedding(roi)
    if emb is None:
        return "Could not generate embedding from face."
    results = pl.db.search_by_image(emb, pl.config.recognition_conf_thres)
    if not results:
        return "No matches in the database under current threshold."
    lines = [f"- {lbl} (sim={sim:.3f})" for lbl, sim in results]
    return "Search results:\n" + "\n".join(lines)

def remove_user(label: str) -> str:
    pl = load_pipeline()
    if not label:
        return "No user label selected."
    pl.db.remove_label(label)
    pl.db.save()
    return f"User '{label}' removed."

def list_users() -> str:
    pl = load_pipeline()
    labels = pl.db.list_labels()
    if labels:
        return "Enrolled users:\n" + ", ".join(labels)
    return "No users enrolled."

def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
    """Single-image test: run pipeline and return annotated image + JSON results."""
    if img is None:
        return None, "No image uploaded."
    pl = load_pipeline()
    bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    processed, detections = pl.process_frame(bgr)
    result_rgb = cv2.cvtColor(processed, cv2.COLOR_BGR2RGB)
    return result_rgb, str(detections)

# ===================================
# Combined Export/Import (Config + DB)
# ===================================
def export_all_file() -> str: # Changed return type to str (file path)
    """
    Exports both the pipeline config and database embeddings into a single
    pickle file. Returns the file path for Gradio to handle the download.
    """
    pl = load_pipeline()
    combined_data = {
        "config": pl.config.__dict__,
        "database": pl.db.embeddings
    }

    # Create an in-memory buffer and pickle the combined data
    buf = io.BytesIO()
    pickle.dump(combined_data, buf)
    buf_bytes = buf.getvalue() # Get bytes from buffer

    with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp_file:
        tmp_file.write(buf_bytes)
        temp_path = tmp_file.name
    return temp_path # Return the path to the temporary file

def import_all_file(file_bytes: bytes, merge_db: bool = True) -> str:
    """
    Imports a single pickle file containing both the config and database.
    If merge_db=False, overwrites the existing DB; otherwise merges.
    """
    if not file_bytes:
        return "No file provided."

    try:
        # Load the data from the bytes
        buf = io.BytesIO(file_bytes)
        combined_data = pickle.load(buf)

        if not isinstance(combined_data, dict):
            return "Invalid combined data format."

        # Rebuild config
        new_cfg_data = combined_data.get("config", {})
        new_cfg = PipelineConfig(**new_cfg_data)

        # Rebuild DB
        new_db_data = combined_data.get("database", {})

        # Re-initialize pipeline with new config
        global pipeline
        pipeline = FacePipeline(new_cfg)
        pipeline.initialize()

        # Merge or overwrite DB
        if merge_db:
            # Merge
            for label, emb_list in new_db_data.items():
                if label not in pipeline.db.embeddings:
                    pipeline.db.embeddings[label] = []
                pipeline.db.embeddings[label].extend(emb_list)
        else:
            # Overwrite
            pipeline.db.embeddings = new_db_data

        pipeline.db.save()

        return "Config and database imported successfully!"

    except Exception as e:
        logger.error(f"Import all failed: {str(e)}")
        return f"Import failed: {str(e)}"

# ==========================
# Original Export/Import for
# Config or DB individually
# ==========================

def export_config_file() -> str: # Changed return type to str (file path)
    """Export the current pipeline config as a downloadable file."""
    pl = load_pipeline()
    config_bytes = pl.config.export_config()
    with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp_file:
        tmp_file.write(config_bytes)
        temp_path = tmp_file.name
    return temp_path # Return the path to the temporary file

def import_config_file(file_bytes: bytes) -> str:
    """Import a pipeline config from uploaded bytes and re-initialize pipeline."""
    if not file_bytes:
        return "No file provided."
    try:
        new_cfg = PipelineConfig.import_config(file_bytes)
        pl = FacePipeline(new_cfg)
        pl.initialize()
        global pipeline
        pipeline = pl
        return f"Imported config successfully!"
    except Exception as e:
        logger.error(f"Import config failed: {str(e)}")
        return f"Import failed: {str(e)}"

def export_db_file() -> str: # Changed return type to str (file path)
    """Export the current face database as a downloadable file."""
    pl = load_pipeline()
    db_bytes = pl.db.export_database()
    with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp_file:
        tmp_file.write(db_bytes)
        temp_path = tmp_file.name
    return temp_path # Return the path to the temporary file

def import_db_file(db_bytes: bytes, merge: bool=True) -> str:
    """Import face database from uploaded bytes. Merge or overwrite existing."""
    if not db_bytes:
        return "No file provided."
    try:
        pl = load_pipeline()
        pl.db.import_database(db_bytes, merge=merge)
        return f"Database imported successfully, merge={merge}"
    except Exception as e:
        logger.error(f"Import DB failed: {str(e)}")
        return f"Import DB failed: {str(e)}"

# Build Gradio App
def build_app():
    with gr.Blocks() as demo:
        gr.Markdown("# FaceRec: Comprehensive Face Recognition Pipeline")
        gr.Markdown("**Note:** After downloading, please rename the file to its appropriate extension (e.g., `config_export.pkl`, `database_export.pkl`).")

        with gr.Tab("Image Test"):
            gr.Markdown("Upload a single image to detect faces, run blink detection, face mesh, hand tracking, etc.")
            test_in = gr.Image(type="numpy", label="Upload Image")
            test_out = gr.Image()
            test_info = gr.Textbox(label="Detections")
            process_btn = gr.Button("Process Image")

            process_btn.click(
                fn=process_test_image,
                inputs=test_in,
                outputs=[test_out, test_info],
            )

        with gr.Tab("Configuration"):
            gr.Markdown("Adjust toggles, thresholds, and colors. Click Save to persist changes.")

            with gr.Row():
                enable_recognition = gr.Checkbox(label="Enable Recognition", value=True)
                enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
                enable_blink = gr.Checkbox(label="Enable Blink Detection", value=True)
                enable_hand = gr.Checkbox(label="Enable Hand Tracking", value=True)
                enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
                enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)

            gr.Markdown("**Face Mesh Options**")
            with gr.Row():
                show_tesselation = gr.Checkbox(label="Tesselation", value=False)
                show_contours = gr.Checkbox(label="Contours", value=False)
                show_irises = gr.Checkbox(label="Irises", value=False)

            gr.Markdown("**Thresholds**")
            detection_conf = gr.Slider(0, 1, 0.4, step=0.01, label="Detection Confidence")
            recognition_thresh = gr.Slider(0.5, 1.0, 0.85, step=0.01, label="Recognition Threshold")
            antispoof_thresh = gr.Slider(0, 200, 80, step=1, label="Anti-Spoof Threshold")
            blink_thresh = gr.Slider(0, 0.5, 0.25, step=0.01, label="Blink EAR Threshold")
            hand_det_conf = gr.Slider(0, 1, 0.5, step=0.01, label="Hand Detection Confidence")
            hand_track_conf = gr.Slider(0, 1, 0.5, step=0.01, label="Hand Tracking Confidence")

            gr.Markdown("**Color Options (Hex)**")
            bbox_hex = gr.Textbox(label="Box Color (Recognized)", value="#00ff00")
            spoofed_hex = gr.Textbox(label="Box Color (Spoofed)", value="#ff0000")
            unknown_hex = gr.Textbox(label="Box Color (Unknown)", value="#ff0000")
            eye_hex = gr.Textbox(label="Eye Outline Color", value="#ffff00")
            blink_hex = gr.Textbox(label="Blink Text Color", value="#0000ff")

            hand_landmark_hex = gr.Textbox(label="Hand Landmark Color", value="#ffd24d")
            hand_connect_hex = gr.Textbox(label="Hand Connection Color", value="#cc6600")
            hand_text_hex = gr.Textbox(label="Hand Text Color", value="#ffffff")

            mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
            contour_hex = gr.Textbox(label="Contour Color", value="#c8c800")
            iris_hex = gr.Textbox(label="Iris Color", value="#ff00ff")
            eye_color_text_hex = gr.Textbox(label="Eye Color Text Color", value="#ffffff")

            save_btn = gr.Button("Save Configuration")
            save_msg = gr.Textbox(label="", interactive=False)

            save_btn.click(
                fn=update_config,
                inputs=[
                    enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
                    show_tesselation, show_contours, show_irises,
                    detection_conf, recognition_thresh, antispoof_thresh, blink_thresh, hand_det_conf, hand_track_conf,
                    bbox_hex, spoofed_hex, unknown_hex, eye_hex, blink_hex,
                    hand_landmark_hex, hand_connect_hex, hand_text_hex,
                    mesh_hex, contour_hex, iris_hex, eye_color_text_hex
                ],
                outputs=[save_msg]
            )

        with gr.Tab("Database Management"):
            gr.Markdown("Enroll multiple images per user, search by name or image, remove users, list all users.")

            with gr.Accordion("User Enrollment", open=False):
                enroll_name = gr.Textbox(label="User Name")
                enroll_paths = gr.File(file_count="multiple", type="binary", label="Upload Multiple Images")
                enroll_btn = gr.Button("Enroll User")
                enroll_result = gr.Textbox()

                enroll_btn.click(
                    fn=enroll_user,
                    inputs=[enroll_name, enroll_paths],
                    outputs=[enroll_result]
                )

            with gr.Accordion("User Search", open=False):
                search_mode = gr.Radio(["Name", "Image"], label="Search By", value="Name")
                search_name_box = gr.Dropdown(label="Select User", choices=[], value=None, visible=True)
                search_image_box = gr.Image(label="Upload Search Image", type="numpy", visible=False)
                search_btn = gr.Button("Search")
                search_out = gr.Textbox()

                def toggle_search(mode):
                    if mode == "Name":
                        return gr.update(visible=True), gr.update(visible=False)
                    else:
                        return gr.update(visible=False), gr.update(visible=True)

                search_mode.change(
                    fn=toggle_search,
                    inputs=[search_mode],
                    outputs=[search_name_box, search_image_box]
                )

                def do_search(mode, uname, img):
                    if mode == "Name":
                        return search_by_name(uname)
                    else:
                        return search_by_image(img)

                search_btn.click(
                    fn=do_search,
                    inputs=[search_mode, search_name_box, search_image_box],
                    outputs=[search_out]
                )

            with gr.Accordion("User Management Tools", open=False):
                list_btn = gr.Button("List Enrolled Users")
                list_out = gr.Textbox()
                list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[list_out])

                def refresh_choices():
                    pl = load_pipeline()
                    return gr.update(choices=pl.db.list_labels())

                refresh_btn = gr.Button("Refresh User List")
                refresh_btn.click(fn=refresh_choices, inputs=[], outputs=[search_name_box])

                remove_box = gr.Dropdown(label="Select User to Remove", choices=[])
                remove_btn = gr.Button("Remove")
                remove_out = gr.Textbox()

                remove_btn.click(fn=remove_user, inputs=[remove_box], outputs=[remove_out])
                refresh_btn.click(fn=refresh_choices, inputs=[], outputs=[remove_box])

        with gr.Tab("Export / Import"):
            gr.Markdown("Export or import pipeline config (thresholds/colors) or face database (embeddings).")
            gr.Markdown("**Note:** After downloading, please rename the file to its appropriate extension (e.g., `config_export.pkl`, `database_export.pkl`).")

            gr.Markdown("**Export Individually (Download)**")
            export_config_btn = gr.Button("Export Config")
            export_config_download = gr.File(label="Download Config Export", type="binary")

            export_db_btn = gr.Button("Export Database")
            export_db_download = gr.File(label="Download Database Export", type="binary")

            export_config_btn.click(fn=export_config_file, inputs=[], outputs=[export_config_download])
            export_db_btn.click(fn=export_db_file, inputs=[], outputs=[export_db_download])

            gr.Markdown("**Import Individually (Upload)**")
            import_config_filebox = gr.File(label="Import Config File", file_count="single", type="binary")
            import_config_btn = gr.Button("Import Config")
            import_config_out = gr.Textbox()

            import_db_filebox = gr.File(label="Import Database File", file_count="single", type="binary")
            merge_db_checkbox = gr.Checkbox(label="Merge instead of overwrite?", value=True)
            import_db_btn = gr.Button("Import Database")
            import_db_out = gr.Textbox()

            import_config_btn.click(fn=import_config_file, inputs=[import_config_filebox], outputs=[import_config_out])
            import_db_btn.click(fn=import_db_file, inputs=[import_db_filebox, merge_db_checkbox], outputs=[import_db_out])

            # =============================
            # Export/Import All Together
            # =============================
            gr.Markdown("---")
            gr.Markdown("**Export & Import Everything (Config + Database) Together**")
            gr.Markdown("**Note:** After downloading, please rename the file to `pipeline_export.pkl`.")

            # For exporting: produce a file in-memory
            export_all_btn = gr.Button("Export All (Config + DB)")
            export_all_download = gr.File(label="Download Combined Export", type="binary")

            export_all_btn.click(
                fn=export_all_file,  # Now returns file path
                outputs=[export_all_download],
                inputs=[]
            )

            # For importing: user uploads file
            import_all_in = gr.File(label="Import Combined File (Pickle)", file_count="single", type="binary")
            import_all_merge_cb = gr.Checkbox(label="Merge DB instead of overwrite?", value=True)
            import_all_btn = gr.Button("Import All")
            import_all_out = gr.Textbox()

            import_all_btn.click(
                fn=import_all_file,
                inputs=[import_all_in, import_all_merge_cb],
                outputs=[import_all_out]
            )

        return demo

def main():
    """Entry point to launch the Gradio app."""
    app = build_app()
    # We add `.queue()` so that multiple requests can be queued
    app.queue().launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    main()