Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
# --------------------------------------------------------------------
|
3 |
+
# A Gradio-based face recognition system that mimics most features of
|
4 |
+
# your Streamlit app: real-time webcam, image tests, configuration,
|
5 |
+
# database enrollment, searching, user removal, etc.
|
6 |
+
# --------------------------------------------------------------------
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import math
|
11 |
+
import requests
|
12 |
+
import numpy as np
|
13 |
+
import cv2
|
14 |
+
import torch
|
15 |
+
import pickle
|
16 |
+
import logging
|
17 |
+
from PIL import Image
|
18 |
+
from typing import Optional, Dict, List, Tuple
|
19 |
+
from dataclasses import dataclass, field
|
20 |
+
from collections import Counter
|
21 |
+
|
22 |
+
# 3rd-party modules
|
23 |
+
import gradio as gr
|
24 |
+
from ultralytics import YOLO
|
25 |
+
from facenet_pytorch import InceptionResnetV1
|
26 |
+
from torchvision import transforms
|
27 |
+
from deep_sort_realtime.deepsort_tracker import DeepSort
|
28 |
+
|
29 |
+
# --------------------------------------------------------------------
|
30 |
+
# GLOBALS & CONSTANTS
|
31 |
+
# --------------------------------------------------------------------
|
32 |
+
logging.basicConfig(
|
33 |
+
level=logging.INFO,
|
34 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
35 |
+
handlers=[logging.FileHandler('face_pipeline.log'), logging.StreamHandler()],
|
36 |
+
)
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
logging.getLogger('torch').setLevel(logging.ERROR)
|
40 |
+
logging.getLogger('deep_sort_realtime').setLevel(logging.ERROR)
|
41 |
+
|
42 |
+
DEFAULT_MODEL_URL = "https://github.com/wuhplaptop/face-11-n/blob/main/face2.pt?raw=true"
|
43 |
+
DEFAULT_DB_PATH = os.path.expanduser("~/.face_pipeline/known_faces.pkl")
|
44 |
+
MODEL_DIR = os.path.expanduser("~/.face_pipeline/models")
|
45 |
+
CONFIG_PATH = os.path.expanduser("~/.face_pipeline/config.pkl")
|
46 |
+
|
47 |
+
# If you need blink detection or face mesh, keep or define your landmarks:
|
48 |
+
LEFT_EYE_IDX = [33, 160, 158, 133, 153, 144]
|
49 |
+
RIGHT_EYE_IDX = [263, 387, 385, 362, 380, 373]
|
50 |
+
|
51 |
+
# --------------------------------------------------------------------
|
52 |
+
# PIPELINE CONFIG DATACLASS
|
53 |
+
# --------------------------------------------------------------------
|
54 |
+
@dataclass
|
55 |
+
class PipelineConfig:
|
56 |
+
detector: Dict = field(default_factory=dict)
|
57 |
+
tracker: Dict = field(default_factory=dict)
|
58 |
+
recognition: Dict = field(default_factory=dict)
|
59 |
+
anti_spoof: Dict = field(default_factory=dict)
|
60 |
+
blink: Dict = field(default_factory=dict)
|
61 |
+
face_mesh_options: Dict = field(default_factory=dict)
|
62 |
+
hand: Dict = field(default_factory=dict)
|
63 |
+
eye_color: Dict = field(default_factory=dict)
|
64 |
+
enabled_components: Dict = field(default_factory=dict)
|
65 |
+
detection_conf_thres: float = 0.4
|
66 |
+
recognition_conf_thres: float = 0.85
|
67 |
+
bbox_color: Tuple[int, int, int] = (0, 255, 0)
|
68 |
+
spoofed_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
69 |
+
unknown_bbox_color: Tuple[int, int, int] = (0, 0, 255)
|
70 |
+
eye_outline_color: Tuple[int, int, int] = (255, 255, 0)
|
71 |
+
blink_text_color: Tuple[int, int, int] = (0, 0, 255)
|
72 |
+
hand_landmark_color: Tuple[int, int, int] = (255, 210, 77)
|
73 |
+
hand_connection_color: Tuple[int, int, int] = (204, 102, 0)
|
74 |
+
hand_text_color: Tuple[int, int, int] = (255, 255, 255)
|
75 |
+
mesh_color: Tuple[int, int, int] = (100, 255, 100)
|
76 |
+
contour_color: Tuple[int, int, int] = (200, 200, 0)
|
77 |
+
iris_color: Tuple[int, int, int] = (255, 0, 255)
|
78 |
+
eye_color_text_color: Tuple[int, int, int] = (255, 255, 255)
|
79 |
+
|
80 |
+
def __post_init__(self):
|
81 |
+
self.detector = self.detector or {
|
82 |
+
'model_path': os.path.join(MODEL_DIR, "face2.pt"),
|
83 |
+
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
84 |
+
}
|
85 |
+
self.tracker = self.tracker or {'max_age': 30}
|
86 |
+
self.recognition = self.recognition or {'enable': True}
|
87 |
+
self.anti_spoof = self.anti_spoof or {'enable': True, 'lap_thresh': 80.0}
|
88 |
+
self.blink = self.blink or {'enable': True, 'ear_thresh': 0.25}
|
89 |
+
self.face_mesh_options = self.face_mesh_options or {
|
90 |
+
'enable': False,
|
91 |
+
'tesselation': False,
|
92 |
+
'contours': False,
|
93 |
+
'irises': False,
|
94 |
+
}
|
95 |
+
self.hand = self.hand or {
|
96 |
+
'enable': True,
|
97 |
+
'min_detection_confidence': 0.5,
|
98 |
+
'min_tracking_confidence': 0.5,
|
99 |
+
}
|
100 |
+
self.eye_color = self.eye_color or {'enable': False}
|
101 |
+
self.enabled_components = self.enabled_components or {
|
102 |
+
'detection': True,
|
103 |
+
'tracking': True,
|
104 |
+
'anti_spoof': True,
|
105 |
+
'recognition': True,
|
106 |
+
'blink': True,
|
107 |
+
'face_mesh': False,
|
108 |
+
'hand': True,
|
109 |
+
'eye_color': False,
|
110 |
+
}
|
111 |
+
|
112 |
+
def save(self, path: str):
|
113 |
+
try:
|
114 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
115 |
+
with open(path, 'wb') as f:
|
116 |
+
pickle.dump(self.__dict__, f)
|
117 |
+
logger.info(f"Saved config to {path}")
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Config save failed: {str(e)}")
|
120 |
+
raise RuntimeError(f"Config save failed: {str(e)}") from e
|
121 |
+
|
122 |
+
@classmethod
|
123 |
+
def load(cls, path: str) -> 'PipelineConfig':
|
124 |
+
try:
|
125 |
+
if os.path.exists(path):
|
126 |
+
with open(path, 'rb') as f:
|
127 |
+
data = pickle.load(f)
|
128 |
+
return cls(**data)
|
129 |
+
return cls()
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Config load failed: {str(e)}")
|
132 |
+
return cls()
|
133 |
+
|
134 |
+
# --------------------------------------------------------------------
|
135 |
+
# FACE DATABASE
|
136 |
+
# --------------------------------------------------------------------
|
137 |
+
class FaceDatabase:
|
138 |
+
def __init__(self, db_path: str = DEFAULT_DB_PATH):
|
139 |
+
self.db_path = db_path
|
140 |
+
self.embeddings: Dict[str, List[np.ndarray]] = {}
|
141 |
+
self._load()
|
142 |
+
|
143 |
+
def _load(self):
|
144 |
+
try:
|
145 |
+
if os.path.exists(self.db_path):
|
146 |
+
with open(self.db_path, 'rb') as f:
|
147 |
+
self.embeddings = pickle.load(f)
|
148 |
+
logger.info(f"Loaded database from {self.db_path}")
|
149 |
+
except Exception as e:
|
150 |
+
logger.error(f"Database load failed: {str(e)}")
|
151 |
+
self.embeddings = {}
|
152 |
+
|
153 |
+
def save(self):
|
154 |
+
try:
|
155 |
+
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
|
156 |
+
with open(self.db_path, 'wb') as f:
|
157 |
+
pickle.dump(self.embeddings, f)
|
158 |
+
logger.info(f"Saved database to {self.db_path}")
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Database save failed: {str(e)}")
|
161 |
+
raise RuntimeError(f"Database save failed: {str(e)}") from e
|
162 |
+
|
163 |
+
def add_embedding(self, label: str, embedding: np.ndarray):
|
164 |
+
try:
|
165 |
+
if not isinstance(embedding, np.ndarray) or embedding.ndim != 1:
|
166 |
+
raise ValueError("Invalid embedding format")
|
167 |
+
if label not in self.embeddings:
|
168 |
+
self.embeddings[label] = []
|
169 |
+
self.embeddings[label].append(embedding)
|
170 |
+
logger.debug(f"Added embedding for {label}")
|
171 |
+
except Exception as e:
|
172 |
+
logger.error(f"Add embedding failed: {str(e)}")
|
173 |
+
raise
|
174 |
+
|
175 |
+
def remove_label(self, label: str):
|
176 |
+
try:
|
177 |
+
if label in self.embeddings:
|
178 |
+
del self.embeddings[label]
|
179 |
+
logger.info(f"Removed {label}")
|
180 |
+
else:
|
181 |
+
logger.warning(f"Label {label} not found")
|
182 |
+
except Exception as e:
|
183 |
+
logger.error(f"Remove label failed: {str(e)}")
|
184 |
+
raise
|
185 |
+
|
186 |
+
def list_labels(self) -> List[str]:
|
187 |
+
return list(self.embeddings.keys())
|
188 |
+
|
189 |
+
def get_embeddings_by_label(self, label: str) -> Optional[List[np.ndarray]]:
|
190 |
+
return self.embeddings.get(label)
|
191 |
+
|
192 |
+
def search_by_image(self, query_embedding: np.ndarray, threshold: float = 0.7) -> List[Tuple[str, float]]:
|
193 |
+
results = []
|
194 |
+
for label, embeddings in self.embeddings.items():
|
195 |
+
for db_emb in embeddings:
|
196 |
+
similarity = FacePipeline.cosine_similarity(query_embedding, db_emb)
|
197 |
+
if similarity >= threshold:
|
198 |
+
results.append((label, similarity))
|
199 |
+
return sorted(results, key=lambda x: x[1], reverse=True)
|
200 |
+
|
201 |
+
# --------------------------------------------------------------------
|
202 |
+
# YOLO FACE DETECTOR
|
203 |
+
# --------------------------------------------------------------------
|
204 |
+
class YOLOFaceDetector:
|
205 |
+
def __init__(self, model_path: str, device: str = 'cpu'):
|
206 |
+
self.model = None
|
207 |
+
self.device = device
|
208 |
+
try:
|
209 |
+
if not os.path.exists(model_path):
|
210 |
+
logger.info(f"Model file not found at {model_path}. Attempting to download...")
|
211 |
+
response = requests.get(DEFAULT_MODEL_URL)
|
212 |
+
response.raise_for_status()
|
213 |
+
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
214 |
+
with open(model_path, 'wb') as f:
|
215 |
+
f.write(response.content)
|
216 |
+
logger.info(f"Downloaded YOLO model to {model_path}")
|
217 |
+
|
218 |
+
self.model = YOLO(model_path)
|
219 |
+
self.model.to(device)
|
220 |
+
logger.info(f"Loaded YOLO model from {model_path}")
|
221 |
+
except Exception as e:
|
222 |
+
logger.error(f"YOLO initialization failed: {str(e)}")
|
223 |
+
raise
|
224 |
+
|
225 |
+
def detect(self, image: np.ndarray, conf_thres: float) -> List[Tuple[int, int, int, int, float, int]]:
|
226 |
+
try:
|
227 |
+
results = self.model.predict(
|
228 |
+
source=image, conf=conf_thres, verbose=False, device=self.device
|
229 |
+
)
|
230 |
+
detections = []
|
231 |
+
for result in results:
|
232 |
+
for box in result.boxes:
|
233 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
234 |
+
conf = float(box.conf[0].cpu().numpy())
|
235 |
+
cls = int(box.cls[0].cpu().numpy()) if box.cls is not None else 0
|
236 |
+
detections.append((int(x1), int(y1), int(x2), int(y2), conf, cls))
|
237 |
+
logger.debug(f"Detected {len(detections)} faces.")
|
238 |
+
return detections
|
239 |
+
except Exception as e:
|
240 |
+
logger.error(f"Detection failed: {str(e)}")
|
241 |
+
return []
|
242 |
+
|
243 |
+
# --------------------------------------------------------------------
|
244 |
+
# FACE TRACKER
|
245 |
+
# --------------------------------------------------------------------
|
246 |
+
class FaceTracker:
|
247 |
+
def __init__(self, max_age: int = 30):
|
248 |
+
self.tracker = DeepSort(max_age=max_age, embedder='mobilenet')
|
249 |
+
|
250 |
+
def update(self, detections: List[Tuple], frame: np.ndarray):
|
251 |
+
try:
|
252 |
+
ds_detections = [
|
253 |
+
([x1, y1, x2 - x1, y2 - y1], conf, cls)
|
254 |
+
for (x1, y1, x2, y2, conf, cls) in detections
|
255 |
+
]
|
256 |
+
tracks = self.tracker.update_tracks(ds_detections, frame=frame)
|
257 |
+
logger.debug(f"Updated tracker with {len(tracks)} tracks.")
|
258 |
+
return tracks
|
259 |
+
except Exception as e:
|
260 |
+
logger.error(f"Tracking update failed: {str(e)}")
|
261 |
+
return []
|
262 |
+
|
263 |
+
# --------------------------------------------------------------------
|
264 |
+
# FACENET EMBEDDER
|
265 |
+
# --------------------------------------------------------------------
|
266 |
+
class FaceNetEmbedder:
|
267 |
+
def __init__(self, device: str = 'cpu'):
|
268 |
+
self.device = device
|
269 |
+
self.model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
270 |
+
self.transform = transforms.Compose([
|
271 |
+
transforms.Resize((160, 160)),
|
272 |
+
transforms.ToTensor(),
|
273 |
+
transforms.Normalize([0.5]*3, [0.5]*3),
|
274 |
+
])
|
275 |
+
|
276 |
+
def get_embedding(self, face_bgr: np.ndarray) -> Optional[np.ndarray]:
|
277 |
+
try:
|
278 |
+
face_rgb = cv2.cvtColor(face_bgr, cv2.COLOR_BGR2RGB)
|
279 |
+
pil_img = Image.fromarray(face_rgb).convert('RGB')
|
280 |
+
tens = self.transform(pil_img).unsqueeze(0).to(self.device)
|
281 |
+
with torch.no_grad():
|
282 |
+
embedding = self.model(tens)[0].cpu().numpy()
|
283 |
+
logger.debug(f"Generated embedding: {embedding[:5]}...")
|
284 |
+
return embedding
|
285 |
+
except Exception as e:
|
286 |
+
logger.error(f"Embedding generation failed: {str(e)}")
|
287 |
+
return None
|
288 |
+
|
289 |
+
# --------------------------------------------------------------------
|
290 |
+
# MAIN PIPELINE
|
291 |
+
# --------------------------------------------------------------------
|
292 |
+
class FacePipeline:
|
293 |
+
def __init__(self, config: PipelineConfig):
|
294 |
+
self.config = config
|
295 |
+
self.detector = None
|
296 |
+
self.tracker = None
|
297 |
+
self.facenet = None
|
298 |
+
self.db = None
|
299 |
+
self._initialized = False
|
300 |
+
|
301 |
+
def initialize(self):
|
302 |
+
try:
|
303 |
+
self.detector = YOLOFaceDetector(
|
304 |
+
model_path=self.config.detector['model_path'],
|
305 |
+
device=self.config.detector['device']
|
306 |
+
)
|
307 |
+
self.tracker = FaceTracker(max_age=self.config.tracker['max_age'])
|
308 |
+
self.facenet = FaceNetEmbedder(device=self.config.detector['device'])
|
309 |
+
self.db = FaceDatabase()
|
310 |
+
self._initialized = True
|
311 |
+
logger.info("FacePipeline initialized successfully.")
|
312 |
+
except Exception as e:
|
313 |
+
logger.error(f"Pipeline initialization failed: {str(e)}")
|
314 |
+
self._initialized = False
|
315 |
+
raise
|
316 |
+
|
317 |
+
def process_frame(self, frame: np.ndarray) -> Tuple[np.ndarray, List[Dict]]:
|
318 |
+
if not self._initialized:
|
319 |
+
logger.error("Pipeline not initialized!")
|
320 |
+
return frame, []
|
321 |
+
|
322 |
+
try:
|
323 |
+
detections = self.detector.detect(frame, self.config.detection_conf_thres)
|
324 |
+
tracked_objects = self.tracker.update(detections, frame)
|
325 |
+
annotated_frame = frame.copy()
|
326 |
+
results = []
|
327 |
+
|
328 |
+
for obj in tracked_objects:
|
329 |
+
if not obj.is_confirmed():
|
330 |
+
continue
|
331 |
+
track_id = obj.track_id
|
332 |
+
bbox = obj.to_tlbr()
|
333 |
+
x1, y1, x2, y2 = bbox.astype(int)
|
334 |
+
conf = getattr(obj, 'score', 1.0)
|
335 |
+
cls = getattr(obj, 'class_id', 0)
|
336 |
+
|
337 |
+
face_roi = frame[y1:y2, x1:x2]
|
338 |
+
if face_roi.size == 0:
|
339 |
+
logger.warning(f"Empty face ROI for track {track_id}")
|
340 |
+
continue
|
341 |
+
|
342 |
+
# Anti-spoof
|
343 |
+
is_spoofed = False
|
344 |
+
if self.config.anti_spoof['enable']:
|
345 |
+
is_spoofed = not self.is_real_face(face_roi)
|
346 |
+
if is_spoofed:
|
347 |
+
cls = 1
|
348 |
+
|
349 |
+
if is_spoofed:
|
350 |
+
box_color_bgr = self.config.spoofed_bbox_color[::-1]
|
351 |
+
name = "Spoofed"
|
352 |
+
similarity = 0.0
|
353 |
+
else:
|
354 |
+
# Face recognition
|
355 |
+
embedding = self.facenet.get_embedding(face_roi)
|
356 |
+
if embedding is not None and self.config.recognition['enable']:
|
357 |
+
name, similarity = self.recognize_face(
|
358 |
+
embedding, self.config.recognition_conf_thres
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
name = "Unknown"
|
362 |
+
similarity = 0.0
|
363 |
+
|
364 |
+
box_color_rgb = (
|
365 |
+
self.config.bbox_color
|
366 |
+
if name != "Unknown"
|
367 |
+
else self.config.unknown_bbox_color
|
368 |
+
)
|
369 |
+
box_color_bgr = box_color_rgb[::-1]
|
370 |
+
|
371 |
+
label_text = f"{name}"
|
372 |
+
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), box_color_bgr, 2)
|
373 |
+
cv2.putText(
|
374 |
+
annotated_frame, label_text, (x1, y1 - 10),
|
375 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, box_color_bgr, 2
|
376 |
+
)
|
377 |
+
|
378 |
+
detection_info = {
|
379 |
+
'track_id': track_id,
|
380 |
+
'bbox': (x1, y1, x2, y2),
|
381 |
+
'confidence': float(conf),
|
382 |
+
'class_id': cls,
|
383 |
+
'name': name,
|
384 |
+
'similarity': float(similarity),
|
385 |
+
}
|
386 |
+
results.append(detection_info)
|
387 |
+
|
388 |
+
return annotated_frame, results
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Frame processing failed: {str(e)}", exc_info=True)
|
392 |
+
return frame, []
|
393 |
+
|
394 |
+
def is_real_face(self, face_roi: np.ndarray) -> bool:
|
395 |
+
try:
|
396 |
+
gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
|
397 |
+
lap_var = cv2.Laplacian(gray, cv2.CV_64F).var()
|
398 |
+
return lap_var > self.config.anti_spoof['lap_thresh']
|
399 |
+
except Exception as e:
|
400 |
+
logger.error(f"Anti-spoof check failed: {str(e)}")
|
401 |
+
return False
|
402 |
+
|
403 |
+
def recognize_face(self, embedding: np.ndarray, recognition_threshold: float) -> Tuple[str, float]:
|
404 |
+
try:
|
405 |
+
best_match = "Unknown"
|
406 |
+
best_similarity = 0.0
|
407 |
+
for label, embeddings in self.db.embeddings.items():
|
408 |
+
for db_emb in embeddings:
|
409 |
+
similarity = FacePipeline.cosine_similarity(embedding, db_emb)
|
410 |
+
if similarity > best_similarity:
|
411 |
+
best_similarity = similarity
|
412 |
+
best_match = label
|
413 |
+
if best_similarity < recognition_threshold:
|
414 |
+
best_match = "Unknown"
|
415 |
+
return best_match, best_similarity
|
416 |
+
except Exception as e:
|
417 |
+
logger.error(f"Face recognition failed: {str(e)}")
|
418 |
+
return "Unknown", 0.0
|
419 |
+
|
420 |
+
@staticmethod
|
421 |
+
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
|
422 |
+
return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6))
|
423 |
+
|
424 |
+
# --------------------------------------------------------------------
|
425 |
+
# GLOBAL pipeline instance (we can store it in a lazy loader)
|
426 |
+
# --------------------------------------------------------------------
|
427 |
+
pipeline = None
|
428 |
+
|
429 |
+
def load_pipeline() -> FacePipeline:
|
430 |
+
global pipeline
|
431 |
+
if pipeline is None:
|
432 |
+
logger.info("Loading pipeline for the first time...")
|
433 |
+
cfg = PipelineConfig.load(CONFIG_PATH)
|
434 |
+
pipeline = FacePipeline(cfg)
|
435 |
+
pipeline.initialize()
|
436 |
+
return pipeline
|
437 |
+
|
438 |
+
# --------------------------------------------------------------------
|
439 |
+
# GRADIO HELPER FUNCTIONS
|
440 |
+
# --------------------------------------------------------------------
|
441 |
+
def hex_to_bgr(hex_str: str) -> Tuple[int,int,int]:
|
442 |
+
"""
|
443 |
+
Convert a hex string (#RRGGBB) into a BGR tuple as used in OpenCV.
|
444 |
+
"""
|
445 |
+
if not hex_str.startswith('#'):
|
446 |
+
hex_str = f"#{hex_str}"
|
447 |
+
hex_str = hex_str.lstrip('#')
|
448 |
+
if len(hex_str) != 6:
|
449 |
+
return (255, 0, 0) # fallback to something
|
450 |
+
r = int(hex_str[0:2], 16)
|
451 |
+
g = int(hex_str[2:4], 16)
|
452 |
+
b = int(hex_str[4:6], 16)
|
453 |
+
return (b,g,r)
|
454 |
+
|
455 |
+
def bgr_to_hex(bgr: Tuple[int,int,int]) -> str:
|
456 |
+
"""
|
457 |
+
Convert a BGR tuple (as stored in pipeline config) to a #RRGGBB hex string.
|
458 |
+
"""
|
459 |
+
b,g,r = bgr
|
460 |
+
return f"#{r:02x}{g:02x}{b:02x}"
|
461 |
+
|
462 |
+
# --------------------------------------------------------------------
|
463 |
+
# TAB: Configuration
|
464 |
+
# --------------------------------------------------------------------
|
465 |
+
def update_config(
|
466 |
+
enable_recognition, enable_antispoof, enable_blink, enable_hand, enable_eyecolor, enable_facemesh,
|
467 |
+
show_tesselation, show_contours, show_irises,
|
468 |
+
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh,
|
469 |
+
hand_det_conf, hand_track_conf,
|
470 |
+
bbox_hex, spoofed_hex, unknown_hex,
|
471 |
+
eye_hex, blink_hex,
|
472 |
+
hand_landmark_hex, hand_connection_hex, hand_text_hex,
|
473 |
+
mesh_hex, contour_hex, iris_hex,
|
474 |
+
eye_color_text_hex
|
475 |
+
):
|
476 |
+
# Load pipeline
|
477 |
+
pl = load_pipeline()
|
478 |
+
cfg = pl.config
|
479 |
+
|
480 |
+
# Update toggles
|
481 |
+
cfg.recognition['enable'] = enable_recognition
|
482 |
+
cfg.anti_spoof['enable'] = enable_antispoof
|
483 |
+
cfg.blink['enable'] = enable_blink
|
484 |
+
cfg.hand['enable'] = enable_hand
|
485 |
+
cfg.eye_color['enable'] = enable_eyecolor
|
486 |
+
cfg.face_mesh_options['enable'] = enable_facemesh
|
487 |
+
|
488 |
+
cfg.face_mesh_options['tesselation'] = show_tesselation
|
489 |
+
cfg.face_mesh_options['contours'] = show_contours
|
490 |
+
cfg.face_mesh_options['irises'] = show_irises
|
491 |
+
|
492 |
+
# Update thresholds
|
493 |
+
cfg.detection_conf_thres = detection_conf
|
494 |
+
cfg.recognition_conf_thres = recognition_thresh
|
495 |
+
cfg.anti_spoof['lap_thresh'] = antispoof_thresh
|
496 |
+
cfg.blink['ear_thresh'] = blink_thresh
|
497 |
+
cfg.hand['min_detection_confidence'] = hand_det_conf
|
498 |
+
cfg.hand['min_tracking_confidence'] = hand_track_conf
|
499 |
+
|
500 |
+
# Update color fields
|
501 |
+
cfg.bbox_color = hex_to_bgr(bbox_hex)[::-1] # store in (R,G,B)
|
502 |
+
cfg.spoofed_bbox_color = hex_to_bgr(spoofed_hex)[::-1]
|
503 |
+
cfg.unknown_bbox_color = hex_to_bgr(unknown_hex)[::-1]
|
504 |
+
cfg.eye_outline_color = hex_to_bgr(eye_hex)[::-1]
|
505 |
+
cfg.blink_text_color = hex_to_bgr(blink_hex)[::-1]
|
506 |
+
cfg.hand_landmark_color = hex_to_bgr(hand_landmark_hex)[::-1]
|
507 |
+
cfg.hand_connection_color = hex_to_bgr(hand_connection_hex)[::-1]
|
508 |
+
cfg.hand_text_color = hex_to_bgr(hand_text_hex)[::-1]
|
509 |
+
cfg.mesh_color = hex_to_bgr(mesh_hex)[::-1]
|
510 |
+
cfg.contour_color = hex_to_bgr(contour_hex)[::-1]
|
511 |
+
cfg.iris_color = hex_to_bgr(iris_hex)[::-1]
|
512 |
+
cfg.eye_color_text_color = hex_to_bgr(eye_color_text_hex)[::-1]
|
513 |
+
|
514 |
+
# Save config
|
515 |
+
cfg.save(CONFIG_PATH)
|
516 |
+
|
517 |
+
return "Configuration saved successfully!"
|
518 |
+
|
519 |
+
# --------------------------------------------------------------------
|
520 |
+
# TAB: Database Management
|
521 |
+
# --------------------------------------------------------------------
|
522 |
+
def enroll_user(name: str, images: List[np.ndarray]) -> str:
|
523 |
+
"""
|
524 |
+
Enroll user by name using one or more images. images is a list of
|
525 |
+
NxMx3 numpy arrays in BGR or RGB depending on Gradio type.
|
526 |
+
"""
|
527 |
+
pl = load_pipeline()
|
528 |
+
if not name:
|
529 |
+
return "Please provide a user name."
|
530 |
+
|
531 |
+
if not images or len(images) == 0:
|
532 |
+
return "No images provided."
|
533 |
+
|
534 |
+
count_enrolled = 0
|
535 |
+
for img in images:
|
536 |
+
if img is None:
|
537 |
+
continue
|
538 |
+
# Gradio provides images in RGB by default, let's ensure BGR for pipeline
|
539 |
+
if img.shape[-1] == 3: # RGB
|
540 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
541 |
+
else:
|
542 |
+
img_bgr = img
|
543 |
+
|
544 |
+
# Run YOLO detection on each image
|
545 |
+
detections = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
546 |
+
for x1, y1, x2, y2, conf, cls in detections:
|
547 |
+
face_roi = img_bgr[y1:y2, x1:x2]
|
548 |
+
if face_roi.size == 0:
|
549 |
+
continue
|
550 |
+
emb = pl.facenet.get_embedding(face_roi)
|
551 |
+
if emb is not None:
|
552 |
+
pl.db.add_embedding(name, emb)
|
553 |
+
count_enrolled += 1
|
554 |
+
|
555 |
+
if count_enrolled > 0:
|
556 |
+
pl.db.save()
|
557 |
+
return f"Enrolled {name} with {count_enrolled} face(s)!"
|
558 |
+
else:
|
559 |
+
return "No faces were detected or embedded. Enrollment failed."
|
560 |
+
|
561 |
+
def search_by_name(name: str) -> str:
|
562 |
+
pl = load_pipeline()
|
563 |
+
if not name:
|
564 |
+
return "No name provided"
|
565 |
+
embeddings = pl.db.get_embeddings_by_label(name)
|
566 |
+
if embeddings:
|
567 |
+
return f"User '{name}' found with {len(embeddings)} embedding(s)."
|
568 |
+
else:
|
569 |
+
return f"No embeddings found for user '{name}'."
|
570 |
+
|
571 |
+
def search_by_image(image: np.ndarray) -> str:
|
572 |
+
"""
|
573 |
+
Search database by face in the uploaded image.
|
574 |
+
"""
|
575 |
+
pl = load_pipeline()
|
576 |
+
if image is None:
|
577 |
+
return "No image uploaded."
|
578 |
+
|
579 |
+
img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
580 |
+
detections = pl.detector.detect(img_bgr, pl.config.detection_conf_thres)
|
581 |
+
if not detections:
|
582 |
+
return "No faces detected in the uploaded image."
|
583 |
+
|
584 |
+
x1, y1, x2, y2, conf, cls = detections[0]
|
585 |
+
face_roi = img_bgr[y1:y2, x1:x2]
|
586 |
+
if face_roi.size == 0:
|
587 |
+
return "Empty face ROI in the uploaded image."
|
588 |
+
|
589 |
+
emb = pl.facenet.get_embedding(face_roi)
|
590 |
+
if emb is None:
|
591 |
+
return "Failed to generate embedding from the face."
|
592 |
+
|
593 |
+
search_results = pl.db.search_by_image(emb, pl.config.recognition_conf_thres)
|
594 |
+
if not search_results:
|
595 |
+
return "No matching users found in the database (under current threshold)."
|
596 |
+
|
597 |
+
lines = []
|
598 |
+
for label, sim in search_results:
|
599 |
+
lines.append(f" - {label}, similarity={sim:.3f}")
|
600 |
+
return "Search results:\n" + "\n".join(lines)
|
601 |
+
|
602 |
+
def remove_user(label: str) -> str:
|
603 |
+
pl = load_pipeline()
|
604 |
+
if not label:
|
605 |
+
return "No user label selected."
|
606 |
+
pl.db.remove_label(label)
|
607 |
+
pl.db.save()
|
608 |
+
return f"User '{label}' removed."
|
609 |
+
|
610 |
+
def list_users() -> str:
|
611 |
+
pl = load_pipeline()
|
612 |
+
labels = pl.db.list_labels()
|
613 |
+
if labels:
|
614 |
+
return f"Enrolled users:\n{', '.join(labels)}"
|
615 |
+
return "No users enrolled."
|
616 |
+
|
617 |
+
# --------------------------------------------------------------------
|
618 |
+
# TAB: Real-Time Recognition
|
619 |
+
# --------------------------------------------------------------------
|
620 |
+
def process_webcam_frame(frame: np.ndarray) -> Tuple[np.ndarray, str]:
|
621 |
+
"""
|
622 |
+
Called for every incoming webcam frame. Return annotated frame + textual info.
|
623 |
+
Gradio delivers frames in RGB.
|
624 |
+
"""
|
625 |
+
if frame is None:
|
626 |
+
return None, "No frame."
|
627 |
+
pl = load_pipeline()
|
628 |
+
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
629 |
+
annotated_bgr, detections = pl.process_frame(frame_bgr)
|
630 |
+
annotated_rgb = cv2.cvtColor(annotated_bgr, cv2.COLOR_BGR2RGB)
|
631 |
+
return annotated_rgb, str(detections)
|
632 |
+
|
633 |
+
# --------------------------------------------------------------------
|
634 |
+
# TAB: Image Test
|
635 |
+
# --------------------------------------------------------------------
|
636 |
+
def process_test_image(img: np.ndarray) -> Tuple[np.ndarray, str]:
|
637 |
+
if img is None:
|
638 |
+
return None, "No image uploaded."
|
639 |
+
pl = load_pipeline()
|
640 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
641 |
+
processed, detections = pl.process_frame(img_bgr)
|
642 |
+
out_rgb = cv2.cvtColor(processed, cv2.COLOR_BGR2RGB)
|
643 |
+
return out_rgb, str(detections)
|
644 |
+
|
645 |
+
# --------------------------------------------------------------------
|
646 |
+
# BUILD THE GRADIO APP
|
647 |
+
# --------------------------------------------------------------------
|
648 |
+
def build_app():
|
649 |
+
with gr.Blocks() as demo:
|
650 |
+
gr.Markdown("# Face Recognition System (Gradio)")
|
651 |
+
|
652 |
+
with gr.Tab("Real-Time Recognition"):
|
653 |
+
gr.Markdown("Live face recognition from your webcam (roughly 'real-time').")
|
654 |
+
webcam_input = gr.Video(source="webcam", mirror=True, streaming=True)
|
655 |
+
webcam_output = gr.Image()
|
656 |
+
webcam_info = gr.Textbox(label="Detections", interactive=False)
|
657 |
+
webcam_input.change(
|
658 |
+
fn=process_webcam_frame,
|
659 |
+
inputs=webcam_input,
|
660 |
+
outputs=[webcam_output, webcam_info],
|
661 |
+
)
|
662 |
+
|
663 |
+
with gr.Tab("Image Test"):
|
664 |
+
gr.Markdown("Upload a single image for face detection and recognition.")
|
665 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
666 |
+
image_out = gr.Image()
|
667 |
+
image_info = gr.Textbox(label="Detections", interactive=False)
|
668 |
+
process_btn = gr.Button("Process Image")
|
669 |
+
|
670 |
+
process_btn.click(
|
671 |
+
fn=process_test_image,
|
672 |
+
inputs=image_input,
|
673 |
+
outputs=[image_out, image_info],
|
674 |
+
)
|
675 |
+
|
676 |
+
with gr.Tab("Configuration"):
|
677 |
+
gr.Markdown("Modify the pipeline settings and thresholds here.")
|
678 |
+
|
679 |
+
with gr.Row():
|
680 |
+
enable_recognition = gr.Checkbox(label="Enable Face Recognition", value=True)
|
681 |
+
enable_antispoof = gr.Checkbox(label="Enable Anti-Spoof", value=True)
|
682 |
+
enable_blink = gr.Checkbox(label="Enable Blink Detection", value=True)
|
683 |
+
enable_hand = gr.Checkbox(label="Enable Hand Tracking", value=True)
|
684 |
+
enable_eyecolor = gr.Checkbox(label="Enable Eye Color Detection", value=False)
|
685 |
+
enable_facemesh = gr.Checkbox(label="Enable Face Mesh", value=False)
|
686 |
+
|
687 |
+
gr.Markdown("**Face Mesh Options** (only if Face Mesh is enabled):")
|
688 |
+
with gr.Row():
|
689 |
+
show_tesselation = gr.Checkbox(label="Show Tesselation", value=False)
|
690 |
+
show_contours = gr.Checkbox(label="Show Contours", value=False)
|
691 |
+
show_irises = gr.Checkbox(label="Show Irises", value=False)
|
692 |
+
|
693 |
+
gr.Markdown("**Thresholds**")
|
694 |
+
detection_conf = gr.Slider(0.0, 1.0, value=0.4, step=0.01, label="Detection Confidence Threshold")
|
695 |
+
recognition_thresh = gr.Slider(0.5, 1.0, value=0.85, step=0.01, label="Recognition Similarity Threshold")
|
696 |
+
antispoof_thresh = gr.Slider(0, 200, value=80, step=1, label="Anti-Spoof Laplacian Threshold")
|
697 |
+
blink_thresh = gr.Slider(0, 0.5, value=0.25, step=0.01, label="Blink EAR Threshold")
|
698 |
+
hand_det_conf = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Hand Detection Confidence")
|
699 |
+
hand_track_conf = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Hand Tracking Confidence")
|
700 |
+
|
701 |
+
gr.Markdown("**Color Options (Hex)**")
|
702 |
+
bbox_hex = gr.Textbox(label="Box Color (Recognized)", value="#00ff00")
|
703 |
+
spoofed_hex = gr.Textbox(label="Box Color (Spoofed)", value="#ff0000")
|
704 |
+
unknown_hex = gr.Textbox(label="Box Color (Unknown)", value="#ff0000")
|
705 |
+
|
706 |
+
eye_hex = gr.Textbox(label="Eye Outline Color", value="#ffff00")
|
707 |
+
blink_hex = gr.Textbox(label="Blink Text Color", value="#0000ff")
|
708 |
+
|
709 |
+
hand_landmark_hex = gr.Textbox(label="Hand Landmark Color", value="#ffd24d")
|
710 |
+
hand_connection_hex = gr.Textbox(label="Hand Connection Color", value="#cc6600")
|
711 |
+
hand_text_hex = gr.Textbox(label="Hand Text Color", value="#ffffff")
|
712 |
+
|
713 |
+
mesh_hex = gr.Textbox(label="Mesh Color", value="#64ff64")
|
714 |
+
contour_hex = gr.Textbox(label="Contour Color", value="#c8c800")
|
715 |
+
iris_hex = gr.Textbox(label="Iris Color", value="#ff00ff")
|
716 |
+
|
717 |
+
eye_color_text_hex = gr.Textbox(label="Eye Color Text Color", value="#ffffff")
|
718 |
+
|
719 |
+
save_btn = gr.Button("Save Configuration")
|
720 |
+
save_msg = gr.Textbox(label="", interactive=False)
|
721 |
+
|
722 |
+
save_btn.click(
|
723 |
+
fn=update_config,
|
724 |
+
inputs=[
|
725 |
+
enable_recognition, enable_antispoof, enable_blink,
|
726 |
+
enable_hand, enable_eyecolor, enable_facemesh,
|
727 |
+
show_tesselation, show_contours, show_irises,
|
728 |
+
detection_conf, recognition_thresh, antispoof_thresh, blink_thresh,
|
729 |
+
hand_det_conf, hand_track_conf,
|
730 |
+
bbox_hex, spoofed_hex, unknown_hex,
|
731 |
+
eye_hex, blink_hex,
|
732 |
+
hand_landmark_hex, hand_connection_hex, hand_text_hex,
|
733 |
+
mesh_hex, contour_hex, iris_hex, eye_color_text_hex
|
734 |
+
],
|
735 |
+
outputs=[save_msg],
|
736 |
+
)
|
737 |
+
|
738 |
+
with gr.Tab("Database Management"):
|
739 |
+
gr.Markdown("Enroll Users, Search by Name or Image, Remove or List.")
|
740 |
+
|
741 |
+
with gr.Accordion("User Enrollment", open=False):
|
742 |
+
enroll_name = gr.Textbox(label="Enter name for enrollment")
|
743 |
+
enroll_images = gr.Image(type="numpy", label="Upload Enrollment Images", multiple=True)
|
744 |
+
enroll_btn = gr.Button("Enroll User")
|
745 |
+
enroll_result = gr.Textbox(label="", interactive=False)
|
746 |
+
enroll_btn.click(fn=enroll_user, inputs=[enroll_name, enroll_images], outputs=[enroll_result])
|
747 |
+
|
748 |
+
with gr.Accordion("User Search", open=False):
|
749 |
+
search_mode = gr.Radio(["Name", "Image"], value="Name", label="Search Database By")
|
750 |
+
search_name_input = gr.Dropdown(label="Select User", choices=[], value=None, interactive=True)
|
751 |
+
search_image_input = gr.Image(type="numpy", label="Upload Image", visible=False)
|
752 |
+
search_btn = gr.Button("Search")
|
753 |
+
search_result = gr.Textbox(label="", interactive=False)
|
754 |
+
|
755 |
+
def update_search_visibility(mode):
|
756 |
+
if mode == "Name":
|
757 |
+
return gr.update(visible=True), gr.update(visible=False)
|
758 |
+
else:
|
759 |
+
return gr.update(visible=False), gr.update(visible=True)
|
760 |
+
|
761 |
+
search_mode.change(fn=update_search_visibility,
|
762 |
+
inputs=[search_mode],
|
763 |
+
outputs=[search_name_input, search_image_input])
|
764 |
+
|
765 |
+
def search_user(mode, name, img):
|
766 |
+
if mode == "Name":
|
767 |
+
return search_by_name(name)
|
768 |
+
else:
|
769 |
+
return search_by_image(img)
|
770 |
+
|
771 |
+
search_btn.click(fn=search_user,
|
772 |
+
inputs=[search_mode, search_name_input, search_image_input],
|
773 |
+
outputs=[search_result])
|
774 |
+
|
775 |
+
with gr.Accordion("User Management Tools", open=False):
|
776 |
+
list_btn = gr.Button("List Enrolled Users")
|
777 |
+
list_output = gr.Textbox(label="", interactive=False)
|
778 |
+
list_btn.click(fn=lambda: list_users(), inputs=[], outputs=[list_output])
|
779 |
+
|
780 |
+
# Reload user list dropdown
|
781 |
+
def get_user_list():
|
782 |
+
pl = load_pipeline()
|
783 |
+
return gr.update(choices=pl.db.list_labels())
|
784 |
+
|
785 |
+
# A dedicated button to refresh the dropdown
|
786 |
+
refresh_users_btn = gr.Button("Refresh User List")
|
787 |
+
refresh_users_btn.click(fn=get_user_list, inputs=[], outputs=[search_name_input])
|
788 |
+
|
789 |
+
remove_user_select = gr.Dropdown(label="Select User to Remove", choices=[])
|
790 |
+
remove_btn = gr.Button("Remove Selected User")
|
791 |
+
remove_output = gr.Textbox(label="", interactive=False)
|
792 |
+
|
793 |
+
remove_btn.click(fn=remove_user, inputs=[remove_user_select], outputs=[remove_output])
|
794 |
+
refresh_users_btn.click(fn=get_user_list, inputs=[], outputs=[remove_user_select])
|
795 |
+
|
796 |
+
return demo
|
797 |
+
|
798 |
+
# --------------------------------------------------------------------
|
799 |
+
# MAIN
|
800 |
+
# --------------------------------------------------------------------
|
801 |
+
if __name__ == "__main__":
|
802 |
+
app = build_app()
|
803 |
+
app.queue().launch(server_name="0.0.0.0", server_port=7860)
|