Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,487 Bytes
ba4c371 303156d ba4c371 9c44f4a ba4c371 ebfdd0c ba4c371 d2690c4 ba4c371 7c16f5d ba4c371 d2690c4 ba4c371 d2690c4 ba4c371 d2690c4 ba4c371 d2690c4 ba4c371 d2690c4 ba4c371 9c44f4a ba4c371 ebfdd0c ba4c371 ebfdd0c d2690c4 ba4c371 fec2205 303156d fec2205 ba4c371 fec2205 303156d ba4c371 7f8348b ba4c371 7f8348b ba4c371 20b299a ba4c371 bcf38fb ba4c371 59d5ae2 ba4c371 59d5ae2 ba4c371 303156d ba4c371 7f589c6 ba4c371 45caf8e fec2205 303156d 45caf8e d2690c4 45caf8e d2690c4 303156d d2690c4 45caf8e 303156d 45caf8e a2e6545 45caf8e ba4c371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import numpy as np
import torch
from torch.nn import functional as F
import cv2
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks
from detectron2.utils.visualizer import ColorMode, Visualizer
import open_clip
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from .modeling.meta_arch.mask_adapter_head import build_mask_adapter
from sam2.sam2_image_predictor import SAM2ImagePredictor
from PIL import Image
PIXEL_MEAN = [122.7709383, 116.7460125, 104.09373615]
PIXEL_STD = [68.5005327, 66.6321579, 70.32316305]
VILD_PROMPT = [
"a photo of a {}.",
"This is a photo of a {}",
"There is a {} in the scene",
"There is the {} in the scene",
"a photo of a {} in the scene",
"a photo of a small {}.",
"a photo of a medium {}.",
"a photo of a large {}.",
"This is a photo of a small {}.",
"This is a photo of a medium {}.",
"This is a photo of a large {}.",
"There is a small {} in the scene.",
"There is a medium {} in the scene.",
"There is a large {} in the scene.",
]
class OpenVocabVisualizer(Visualizer):
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE, class_names=None):
super().__init__(img_rgb, metadata, scale, instance_mode)
self.class_names = class_names
def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.6):
"""
Draw semantic segmentation predictions/labels.
Args:
sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
Each value is the integer label of the pixel.
area_threshold (int): segments with less than `area_threshold` are not drawn.
alpha (float): the larger it is, the more opaque the segmentations are.
Returns:
output (VisImage): image object with visualizations.
"""
if isinstance(sem_seg, torch.Tensor):
sem_seg = sem_seg.numpy()
labels, areas = np.unique(sem_seg, return_counts=True)
sorted_idxs = np.argsort(-areas).tolist()
labels = labels[sorted_idxs]
class_names = self.class_names if self.class_names is not None else self.metadata.stuff_classes
for label in filter(lambda l: l < len(class_names), labels):
try:
mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
except (AttributeError, IndexError):
mask_color = None
binary_mask = (sem_seg == label).astype(np.uint8)
text = class_names[label]
self.draw_binary_mask(
binary_mask,
color=mask_color,
edge_color=(1.0, 1.0, 240.0 / 255),
text=text,
alpha=alpha,
area_threshold=area_threshold,
)
return self.output
class SAMVisualizationDemo(object):
def __init__(self, cfg, granularity, sam2, clip_model ,mask_adapter, instance_mode=ColorMode.IMAGE, parallel=False,):
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
self.granularity = granularity
self.sam2 = sam2
self.predictor = SAM2AutomaticMaskGenerator(sam2, points_per_batch=16,
pred_iou_thresh=0.8,
stability_score_thresh=0.7,
crop_n_layers=0,
crop_n_points_downscale_factor=2,
min_mask_region_area=100)
self.clip_model = clip_model
self.mask_adapter = mask_adapter
def extract_features_convnext(self, x):
out = {}
x = self.clip_model.visual.trunk.stem(x)
out['stem'] = x.contiguous() # os4
for i in range(4):
x = self.clip_model.visual.trunk.stages[i](x)
out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
x = self.clip_model.visual.trunk.norm_pre(x)
out['clip_vis_dense'] = x.contiguous()
return out
def visual_prediction_forward_convnext(self, x):
batch, num_query, channel = x.shape
x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
x = self.clip_model.visual.trunk.head(x)
x = self.clip_model.visual.head(x)
return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640
def visual_prediction_forward_convnext_2d(self, x):
clip_vis_dense = self.clip_model.visual.trunk.head.norm(x)
clip_vis_dense = self.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1))
clip_vis_dense = self.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2)
return clip_vis_dense
def run_on_image(self, ori_image, class_names, text_features):
height, width, _ = ori_image.shape
if width > height:
new_width = 896
new_height = int((new_width / width) * height)
else:
new_height = 896
new_width = int((new_height / height) * width)
image = cv2.resize(ori_image, (new_width, new_height))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
ori_image = cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB)
visualizer = OpenVocabVisualizer(ori_image, self.metadata, instance_mode=self.instance_mode, class_names=class_names)
with torch.no_grad():#, torch.cuda.amp.autocast():
masks = self.predictor.generate(image)
pred_masks = [masks[i]['segmentation'][None,:,:] for i in range(len(masks))]
pred_masks = np.row_stack(pred_masks)
pred_masks = BitMasks(pred_masks)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
image = (image - pixel_mean) / pixel_std
image = image.unsqueeze(0)
image = image.to(text_features)
# if len(class_names) == 1:
# class_names.append('others')
# txts = [f'a photo of {cls_name}' for cls_name in class_names]
# text = open_clip.tokenize(txts)
with torch.no_grad():
# text_features = self.clip_model.encode_text(text)
# text_features /= text_features.norm(dim=-1, keepdim=True)
features = self.extract_features_convnext(image.float())
clip_feature = features['clip_vis_dense']
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).float())
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
mode='bilinear', align_corners=False)
B, C = clip_feature.size(0),clip_feature.size(1)
N = maps_for_pooling.size(1)
num_instances = N // 16
maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
pooled_clip_feature = self.visual_prediction_forward_convnext(pooled_clip_feature)
pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, 16, -1).mean(dim=-2).contiguous())
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
class_preds = class_preds.squeeze(0)
select_cls = torch.zeros_like(class_preds)
max_scores, select_mask = torch.max(class_preds, dim=0)
if len(class_names) == 2 and class_names[-1] == 'others':
select_mask = select_mask[:-1]
if self.granularity < 1:
thr_scores = max_scores * self.granularity
select_mask = []
if len(class_names) == 2 and class_names[-1] == 'others':
thr_scores = thr_scores[:-1]
for i, thr in enumerate(thr_scores):
cls_pred = class_preds[:,i]
locs = torch.where(cls_pred > thr)
select_mask.extend(locs[0].tolist())
for idx in select_mask:
select_cls[idx] = class_preds[idx]
semseg = torch.einsum("qc,qhw->chw", select_cls.float(), pred_masks.tensor.to(text_features).float())
r = semseg
blank_area = (r[0] == 0)
pred_mask = r.argmax(dim=0).to('cpu')
pred_mask[blank_area] = 255
pred_mask = np.array(pred_mask, dtype=int)
pred_mask = cv2.resize(pred_mask, (width, height), interpolation=cv2.INTER_NEAREST)
vis_output = visualizer.draw_sem_seg(
pred_mask
)
return None, vis_output
class SAMPointVisualizationDemo(object):
def __init__(self, cfg, granularity, sam2, clip_model ,mask_adapter, instance_mode=ColorMode.IMAGE, parallel=False):
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
self.granularity = granularity
self.sam2 = sam2
self.predictor = SAM2ImagePredictor(sam2)
self.clip_model = clip_model
self.mask_adapter = mask_adapter
#from .data.datasets import openseg_classes
#COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
#COCO_CATEGORIES_seg = openseg_classes.get_coco_stuff_categories_with_prompt_eng()
#thing_classes = [k["name"] for k in COCO_CATEGORIES_pan if k["isthing"] == 1]
#stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
#print(coco_metadata)
#lvis_classes = open("./mask_adapter/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
#lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
#self.class_names = thing_classes + stuff_classes + lvis_classes
#self.text_embedding = torch.from_numpy(np.load("./text_embedding/lvis_coco_text_embedding.npy"))
self.class_names = self._load_class_names()
def _load_class_names(self):
from .data.datasets import openseg_classes
COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
ADE20K_150_CATEGORIES_ = openseg_classes.get_ade20k_categories_with_prompt_eng()
ade20k_stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES_]
class_names = stuff_classes + ade20k_stuff_classes #+ lvis_classes
return [ class_name for class_name in class_names ]
def extract_features_convnext(self, x):
out = {}
x = self.clip_model.visual.trunk.stem(x)
out['stem'] = x.contiguous() # os4
for i in range(4):
x = self.clip_model.visual.trunk.stages[i](x)
out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
x = self.clip_model.visual.trunk.norm_pre(x)
out['clip_vis_dense'] = x.contiguous()
return out
def visual_prediction_forward_convnext(self, x):
batch, num_query, channel = x.shape
x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
x = self.clip_model.visual.trunk.head(x)
x = self.clip_model.visual.head(x)
return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640
def visual_prediction_forward_convnext_2d(self, x):
clip_vis_dense = self.clip_model.visual.trunk.head.norm(x)
clip_vis_dense = self.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1))
clip_vis_dense = self.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2)
return clip_vis_dense
def run_on_image_with_points(self, ori_image, points,text_features,class_names=None):
if class_names != None:
self.class_names = class_names
else:
num_templates = []
for cls_name in self.class_names:
cls_name = cls_name.replace(', ', ',').split(',')#[0]
num_templates.append(len(cls_name))
height, width, _ = ori_image.shape
image = ori_image
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# ori_image = cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB)
input_point = np.array(points)
input_label = np.array([1] * len(points))
with torch.no_grad():
self.predictor.set_image(image)
masks, _, _ = self.predictor.predict(point_coords=input_point, point_labels=input_label, multimask_output=False)
pred_masks = BitMasks(masks)
image = torch.as_tensor(image.astype("float16").transpose(2, 0, 1))
pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
image = (image - pixel_mean) / pixel_std
image = image.unsqueeze(0)
# txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
# text = open_clip.tokenize(txts)
with torch.no_grad():
# text_features = self.clip_model.encode_text(text.cuda())
# text_features /= text_features.norm(dim=-1, keepdim=True)
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
#text_features = self.text_embedding.to(self.mask_adapter.device)
features = self.extract_features_convnext(image.to(text_features).float())
clip_feature = features['clip_vis_dense']
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).float())
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
B, C = clip_feature.size(0), clip_feature.size(1)
N = maps_for_pooling.size(1)
num_instances = N // 16
maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
pooled_clip_feature = self.visual_prediction_forward_convnext(pooled_clip_feature)
pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
if class_names is None:
final_class_preds = []
cur_idx = 0
for num_t in num_templates:
final_class_preds.append(class_preds[:, :, cur_idx: cur_idx + num_t].max(-1).values)
cur_idx += num_t
final_class_preds = torch.stack(final_class_preds, dim=-1)
class_preds = final_class_preds.squeeze(0)
else:
class_preds = class_preds.squeeze(0)
# Resize mask to match original image size
pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST) # Resize mask to match original image size
# Create an overlay for the mask with a transparent background (using alpha transparency)
overlay = ori_image.copy()
mask_colored = np.zeros_like(ori_image)
mask_colored[pred_mask == 1] = [234, 103, 112] # Green color for the mask
# Apply the mask with transparency (alpha blending)
alpha = 0.5
cv2.addWeighted(mask_colored, alpha, overlay, 1 - alpha, 0, overlay)
# Add label based on the class with the highest score
max_scores, max_score_idx = class_preds.max(dim=1) # Find the max score across the class predictions
label = f"{self.class_names[max_score_idx.item()]}: {max_scores.item():.2f}"
# Dynamically place the label near the clicked point
text_x = min(width - 200, points[0][0] + 5) # Add some offset from the point
text_y = min(height - 30, points[0][1] + 10) # Ensure the text does not go out of bounds
# Put text near the point
cv2.putText(overlay, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
return None, Image.fromarray(overlay)
def run_on_image_with_boxes(self, ori_image, bbox,text_features,class_names=None):
if class_names != None:
self.class_names = class_names
else:
num_templates = []
for cls_name in self.class_names:
cls_name = cls_name.replace(', ', ',').split(',')#[0]
num_templates.append(len(cls_name))
height, width, _ = ori_image.shape
image = ori_image
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# ori_image = cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB)
with torch.no_grad():
self.predictor.set_image(image)
masks, _, _ = self.predictor.predict(box=bbox[None, :], multimask_output=False)
pred_masks = BitMasks(masks)
image = torch.as_tensor(image.astype("float16").transpose(2, 0, 1))
pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
image = (image - pixel_mean) / pixel_std
image = image.unsqueeze(0)
# txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
# text = open_clip.tokenize(txts)
with torch.no_grad():
# text_features = self.clip_model.encode_text(text.cuda())
# text_features /= text_features.norm(dim=-1, keepdim=True)
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
#text_features = self.text_embedding.to(self.mask_adapter.device)
features = self.extract_features_convnext(image.to(text_features).float())
clip_feature = features['clip_vis_dense']
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).float())
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
B, C = clip_feature.size(0), clip_feature.size(1)
N = maps_for_pooling.size(1)
num_instances = N // 16
maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
pooled_clip_feature = self.visual_prediction_forward_convnext(pooled_clip_feature)
pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())
class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
if class_names is None:
final_class_preds = []
cur_idx = 0
for num_t in num_templates:
final_class_preds.append(class_preds[:, :, cur_idx: cur_idx + num_t].max(-1).values)
cur_idx += num_t
final_class_preds = torch.stack(final_class_preds, dim=-1)
class_preds = final_class_preds.squeeze(0)
else:
class_preds = class_preds.squeeze(0)
# Resize mask to match original image size
pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST) # Resize mask to match original image size
# Create an overlay for the mask with a transparent background (using alpha transparency)
overlay = ori_image.copy()
mask_colored = np.zeros_like(ori_image)
mask_colored[pred_mask == 1] = [234, 103, 112] # Green color for the mask
alpha = 0.5
cv2.addWeighted(mask_colored, alpha, overlay, 1 - alpha, 0, overlay)
# Add label based on the class with the highest score
max_scores, max_score_idx = class_preds.max(dim=1) # Find the max score across the class predictions
label = f"{self.class_names[max_score_idx.item()]}: {max_scores.item():.2f}"
# Dynamically place the label near the clicked point
text_x = min(width - 200, bbox[0] + 20) # Add some offset from the point
text_y = min(height - 30, bbox[1] + 5) # Ensure the text does not go out of bounds
# Put text near the point
cv2.putText(overlay, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
return None, Image.fromarray(overlay) |