Spaces:
Running
on
Zero
Running
on
Zero
Update mask_adapter/sam_maskadapter.py
Browse files- mask_adapter/sam_maskadapter.py +30 -31
mask_adapter/sam_maskadapter.py
CHANGED
@@ -132,7 +132,7 @@ class SAMVisualizationDemo(object):
|
|
132 |
|
133 |
return clip_vis_dense
|
134 |
|
135 |
-
def run_on_image(self, ori_image, class_names):
|
136 |
height, width, _ = ori_image.shape
|
137 |
if width > height:
|
138 |
new_width = 896
|
@@ -158,25 +158,25 @@ class SAMVisualizationDemo(object):
|
|
158 |
image = (image - pixel_mean) / pixel_std
|
159 |
|
160 |
image = image.unsqueeze(0)
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
166 |
|
167 |
|
168 |
with torch.no_grad():
|
169 |
-
self.clip_model.
|
170 |
-
text_features
|
171 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
172 |
|
173 |
-
features = self.extract_features_convnext(image.
|
174 |
|
175 |
clip_feature = features['clip_vis_dense']
|
176 |
|
177 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
178 |
|
179 |
-
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).
|
180 |
|
181 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
|
182 |
mode='bilinear', align_corners=False)
|
@@ -207,7 +207,7 @@ class SAMVisualizationDemo(object):
|
|
207 |
select_mask.extend(locs[0].tolist())
|
208 |
for idx in select_mask:
|
209 |
select_cls[idx] = class_preds[idx]
|
210 |
-
semseg = torch.einsum("qc,qhw->chw", select_cls.float(), pred_masks.tensor.
|
211 |
|
212 |
r = semseg
|
213 |
blank_area = (r[0] == 0)
|
@@ -244,6 +244,21 @@ class SAMPointVisualizationDemo(object):
|
|
244 |
self.clip_model = clip_model
|
245 |
|
246 |
self.mask_adapter = mask_adapter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
self.class_names = self._load_class_names()
|
249 |
|
@@ -411,28 +426,12 @@ class SAMPointVisualizationDemo(object):
|
|
411 |
image = image.unsqueeze(0)
|
412 |
|
413 |
# txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
# txts.append(f'a photo of {cls_name}')
|
418 |
-
#assert len(self.class_names) * 14 == len(txts)
|
419 |
-
#text = open_clip.tokenize(txts)
|
420 |
|
421 |
with torch.no_grad():
|
422 |
-
# text_features =
|
423 |
-
# bs = 128
|
424 |
-
# for idx in range(0, len(text), bs):
|
425 |
-
# text_features.append(
|
426 |
-
# self.clip_model.encode_text(text[idx:idx+bs].cuda())
|
427 |
-
# )
|
428 |
-
# text_features = torch.cat(text_features, dim=0)
|
429 |
-
|
430 |
-
# #text_features = self.clip_model.encode_text(text.cuda())
|
431 |
-
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
432 |
-
# text_features = text_features.reshape(text_features.shape[0] // len(VILD_PROMPT), len(VILD_PROMPT), text_features.shape[-1]).mean(1)
|
433 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
434 |
-
#
|
435 |
-
# np.save("/data/yongkangli/Mask-Adapter-Demo/text_embedding/coco_ade20k_text_embedding_new.npy", text_features.cpu().numpy())
|
436 |
#text_features = self.text_embedding.to(self.mask_adapter.device)
|
437 |
features = self.extract_features_convnext(image.to(text_features).float())
|
438 |
clip_feature = features['clip_vis_dense']
|
|
|
132 |
|
133 |
return clip_vis_dense
|
134 |
|
135 |
+
def run_on_image(self, ori_image, class_names, text_features):
|
136 |
height, width, _ = ori_image.shape
|
137 |
if width > height:
|
138 |
new_width = 896
|
|
|
158 |
image = (image - pixel_mean) / pixel_std
|
159 |
|
160 |
image = image.unsqueeze(0)
|
161 |
+
|
162 |
+
image = image.to(text_features)
|
163 |
+
# if len(class_names) == 1:
|
164 |
+
# class_names.append('others')
|
165 |
+
# txts = [f'a photo of {cls_name}' for cls_name in class_names]
|
166 |
+
# text = open_clip.tokenize(txts)
|
167 |
|
168 |
|
169 |
with torch.no_grad():
|
170 |
+
# text_features = self.clip_model.encode_text(text)
|
171 |
+
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
172 |
|
173 |
+
features = self.extract_features_convnext(image.float())
|
174 |
|
175 |
clip_feature = features['clip_vis_dense']
|
176 |
|
177 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
178 |
|
179 |
+
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).float())
|
180 |
|
181 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
|
182 |
mode='bilinear', align_corners=False)
|
|
|
207 |
select_mask.extend(locs[0].tolist())
|
208 |
for idx in select_mask:
|
209 |
select_cls[idx] = class_preds[idx]
|
210 |
+
semseg = torch.einsum("qc,qhw->chw", select_cls.float(), pred_masks.tensor.to(text_features).float())
|
211 |
|
212 |
r = semseg
|
213 |
blank_area = (r[0] == 0)
|
|
|
244 |
self.clip_model = clip_model
|
245 |
|
246 |
self.mask_adapter = mask_adapter
|
247 |
+
|
248 |
+
|
249 |
+
#from .data.datasets import openseg_classes
|
250 |
+
|
251 |
+
#COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
|
252 |
+
#COCO_CATEGORIES_seg = openseg_classes.get_coco_stuff_categories_with_prompt_eng()
|
253 |
+
|
254 |
+
#thing_classes = [k["name"] for k in COCO_CATEGORIES_pan if k["isthing"] == 1]
|
255 |
+
#stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
|
256 |
+
#print(coco_metadata)
|
257 |
+
#lvis_classes = open("./mask_adapter/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
|
258 |
+
#lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
|
259 |
+
|
260 |
+
#self.class_names = thing_classes + stuff_classes + lvis_classes
|
261 |
+
#self.text_embedding = torch.from_numpy(np.load("./text_embedding/lvis_coco_text_embedding.npy"))
|
262 |
|
263 |
self.class_names = self._load_class_names()
|
264 |
|
|
|
426 |
image = image.unsqueeze(0)
|
427 |
|
428 |
# txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
|
429 |
+
# text = open_clip.tokenize(txts)
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
with torch.no_grad():
|
432 |
+
# text_features = self.clip_model.encode_text(text.cuda())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
434 |
+
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
|
|
|
435 |
#text_features = self.text_embedding.to(self.mask_adapter.device)
|
436 |
features = self.extract_features_convnext(image.to(text_features).float())
|
437 |
clip_feature = features['clip_vis_dense']
|