wondervictor commited on
Commit
7c16f5d
·
verified ·
1 Parent(s): db98a16

Update mask_adapter/sam_maskadapter.py

Browse files
Files changed (1) hide show
  1. mask_adapter/sam_maskadapter.py +5 -5
mask_adapter/sam_maskadapter.py CHANGED
@@ -131,7 +131,7 @@ class SAMVisualizationDemo(object):
131
  pred_masks = np.row_stack(pred_masks)
132
  pred_masks = BitMasks(pred_masks)
133
 
134
- image = torch.as_tensor(image.astype("float16").transpose(2, 0, 1))
135
 
136
  pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
137
  pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
@@ -151,13 +151,13 @@ class SAMVisualizationDemo(object):
151
  # text_features = self.clip_model.encode_text(text)
152
  # text_features /= text_features.norm(dim=-1, keepdim=True)
153
 
154
- features = self.extract_features_convnext(image.half())
155
 
156
  clip_feature = features['clip_vis_dense']
157
 
158
  clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
159
 
160
- semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).half())
161
 
162
  maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
163
  mode='bilinear', align_corners=False)
@@ -312,12 +312,12 @@ class SAMPointVisualizationDemo(object):
312
  # text_features /= text_features.norm(dim=-1, keepdim=True)
313
  #np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
314
  #text_features = self.text_embedding.to(self.clip_model.device)
315
- features = self.extract_features_convnext(image.to(self.clip_model.device).half())
316
  clip_feature = features['clip_vis_dense']
317
 
318
  clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
319
 
320
- semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(self.clip_model.device).half())
321
  maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
322
 
323
  B, C = clip_feature.size(0), clip_feature.size(1)
 
131
  pred_masks = np.row_stack(pred_masks)
132
  pred_masks = BitMasks(pred_masks)
133
 
134
+ image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
135
 
136
  pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
137
  pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
 
151
  # text_features = self.clip_model.encode_text(text)
152
  # text_features /= text_features.norm(dim=-1, keepdim=True)
153
 
154
+ features = self.extract_features_convnext(image.float())
155
 
156
  clip_feature = features['clip_vis_dense']
157
 
158
  clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
159
 
160
+ semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).float())
161
 
162
  maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
163
  mode='bilinear', align_corners=False)
 
312
  # text_features /= text_features.norm(dim=-1, keepdim=True)
313
  #np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
314
  #text_features = self.text_embedding.to(self.clip_model.device)
315
+ features = self.extract_features_convnext(image.to(self.clip_model.device).float())
316
  clip_feature = features['clip_vis_dense']
317
 
318
  clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
319
 
320
+ semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(self.clip_model.device).float())
321
  maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
322
 
323
  B, C = clip_feature.size(0), clip_feature.size(1)