Spaces:
Running
on
Zero
Running
on
Zero
Update mask_adapter/sam_maskadapter.py
Browse files
mask_adapter/sam_maskadapter.py
CHANGED
@@ -131,7 +131,7 @@ class SAMVisualizationDemo(object):
|
|
131 |
pred_masks = np.row_stack(pred_masks)
|
132 |
pred_masks = BitMasks(pred_masks)
|
133 |
|
134 |
-
image = torch.as_tensor(image.astype("
|
135 |
|
136 |
pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
|
137 |
pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
|
@@ -151,13 +151,13 @@ class SAMVisualizationDemo(object):
|
|
151 |
# text_features = self.clip_model.encode_text(text)
|
152 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
153 |
|
154 |
-
features = self.extract_features_convnext(image.
|
155 |
|
156 |
clip_feature = features['clip_vis_dense']
|
157 |
|
158 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
159 |
|
160 |
-
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).
|
161 |
|
162 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
|
163 |
mode='bilinear', align_corners=False)
|
@@ -312,12 +312,12 @@ class SAMPointVisualizationDemo(object):
|
|
312 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
313 |
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
|
314 |
#text_features = self.text_embedding.to(self.clip_model.device)
|
315 |
-
features = self.extract_features_convnext(image.to(self.clip_model.device).
|
316 |
clip_feature = features['clip_vis_dense']
|
317 |
|
318 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
319 |
|
320 |
-
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(self.clip_model.device).
|
321 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
|
322 |
|
323 |
B, C = clip_feature.size(0), clip_feature.size(1)
|
|
|
131 |
pred_masks = np.row_stack(pred_masks)
|
132 |
pred_masks = BitMasks(pred_masks)
|
133 |
|
134 |
+
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
|
135 |
|
136 |
pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
|
137 |
pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
|
|
|
151 |
# text_features = self.clip_model.encode_text(text)
|
152 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
153 |
|
154 |
+
features = self.extract_features_convnext(image.float())
|
155 |
|
156 |
clip_feature = features['clip_vis_dense']
|
157 |
|
158 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
159 |
|
160 |
+
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(text_features).float())
|
161 |
|
162 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
|
163 |
mode='bilinear', align_corners=False)
|
|
|
312 |
# text_features /= text_features.norm(dim=-1, keepdim=True)
|
313 |
#np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
|
314 |
#text_features = self.text_embedding.to(self.clip_model.device)
|
315 |
+
features = self.extract_features_convnext(image.to(self.clip_model.device).float())
|
316 |
clip_feature = features['clip_vis_dense']
|
317 |
|
318 |
clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
|
319 |
|
320 |
+
semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).to(self.clip_model.device).float())
|
321 |
maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)
|
322 |
|
323 |
B, C = clip_feature.size(0), clip_feature.size(1)
|