File size: 1,698 Bytes
e074ee9
5fadd6e
e074ee9
 
30bfbf8
e074ee9
d28a2eb
e074ee9
 
5fadd6e
 
e074ee9
 
5fadd6e
d28a2eb
5fadd6e
 
e074ee9
d28a2eb
5fadd6e
30bfbf8
e074ee9
 
30bfbf8
 
 
 
47bffaa
 
 
 
30bfbf8
 
 
 
 
 
 
e074ee9
 
 
 
 
 
 
5fadd6e
e074ee9
 
 
47bffaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
from transformers import CLIPModel, CLIPFeatureExtractor, BertTokenizer
from PIL import Image
import torch
import torch.nn.functional as F

# Load model and processors separately
model_name = "jinaai/jina-clip-v1"
model = CLIPModel.from_pretrained(model_name)
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)

def compute_similarity(image, text):
    image = Image.fromarray(image)  # Convert NumPy array to PIL Image

    # Process image
    image_inputs = feature_extractor(images=image, return_tensors="pt")

    # Process text (Remove `token_type_ids`)
    text_inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    text_inputs.pop("token_type_ids", None)  

    with torch.no_grad():
        # Extract embeddings
        image_embeds = model.get_image_features(**image_inputs)
        text_embeds = model.get_text_features(**text_inputs)

        # Print to debug
        print("Image Embedding:", image_embeds)
        print("Text Embedding:", text_embeds)

        # Normalize embeddings
        image_embeds = F.normalize(image_embeds, p=2, dim=-1)
        text_embeds = F.normalize(text_embeds, p=2, dim=-1)

        # Compute cosine similarity
        similarity_score = (image_embeds @ text_embeds.T).item()

    return similarity_score

# Gradio UI
demo = gr.Interface(
    fn=compute_similarity,
    inputs=[gr.Image(type="numpy"), gr.Textbox(label="Enter text")],
    outputs=gr.Number(label="Similarity Score"),
    title="JinaAI CLIP Image-Text Similarity",
    description="Upload an image and enter a text prompt to get the similarity score."
)

demo.launch()