Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Initialize the model | |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
# Streamlit app title | |
st.title("Image Captioning with Transformers") | |
# Input for the image URL | |
image_url = st.text_input("Enter the URL of an image", "https://www.simplilearn.com/ice9/free_resources_article_thumb/random_forest_algorithm.jpg") | |
# Display the image | |
if image_url: | |
st.image(image_url, caption="Input Image", use_column_width=True) | |
# Generate the caption | |
if st.button("Generate Caption"): | |
with st.spinner("Generating caption..."): | |
caption = captioner(image_url) | |
st.write("**Caption:**", caption[0]['generated_text']) | |
# Add some information about the app | |
st.write(""" | |
This app uses a pre-trained model from the Hugging Face Transformers library to generate captions for images. | |
Enter an image URL above and click "Generate Caption" to see the result. | |
""") | |