Spaces:
Sleeping
Sleeping
File size: 989 Bytes
b830598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import streamlit as st
from transformers import pipeline
# Initialize the model
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Streamlit app title
st.title("Image Captioning with Transformers")
# Input for the image URL
image_url = st.text_input("Enter the URL of an image", "https://www.simplilearn.com/ice9/free_resources_article_thumb/random_forest_algorithm.jpg")
# Display the image
if image_url:
st.image(image_url, caption="Input Image", use_column_width=True)
# Generate the caption
if st.button("Generate Caption"):
with st.spinner("Generating caption..."):
caption = captioner(image_url)
st.write("**Caption:**", caption[0]['generated_text'])
# Add some information about the app
st.write("""
This app uses a pre-trained model from the Hugging Face Transformers library to generate captions for images.
Enter an image URL above and click "Generate Caption" to see the result.
""")
|