wavesoumen commited on
Commit
b830598
·
verified ·
1 Parent(s): f05bd75
Files changed (1) hide show
  1. app.py +27 -0
app.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ # Initialize the model
5
+ captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
6
+
7
+ # Streamlit app title
8
+ st.title("Image Captioning with Transformers")
9
+
10
+ # Input for the image URL
11
+ image_url = st.text_input("Enter the URL of an image", "https://www.simplilearn.com/ice9/free_resources_article_thumb/random_forest_algorithm.jpg")
12
+
13
+ # Display the image
14
+ if image_url:
15
+ st.image(image_url, caption="Input Image", use_column_width=True)
16
+
17
+ # Generate the caption
18
+ if st.button("Generate Caption"):
19
+ with st.spinner("Generating caption..."):
20
+ caption = captioner(image_url)
21
+ st.write("**Caption:**", caption[0]['generated_text'])
22
+
23
+ # Add some information about the app
24
+ st.write("""
25
+ This app uses a pre-trained model from the Hugging Face Transformers library to generate captions for images.
26
+ Enter an image URL above and click "Generate Caption" to see the result.
27
+ """)