Spaces:
Sleeping
Sleeping
start
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize the model
|
5 |
+
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
6 |
+
|
7 |
+
# Streamlit app title
|
8 |
+
st.title("Image Captioning with Transformers")
|
9 |
+
|
10 |
+
# Input for the image URL
|
11 |
+
image_url = st.text_input("Enter the URL of an image", "https://www.simplilearn.com/ice9/free_resources_article_thumb/random_forest_algorithm.jpg")
|
12 |
+
|
13 |
+
# Display the image
|
14 |
+
if image_url:
|
15 |
+
st.image(image_url, caption="Input Image", use_column_width=True)
|
16 |
+
|
17 |
+
# Generate the caption
|
18 |
+
if st.button("Generate Caption"):
|
19 |
+
with st.spinner("Generating caption..."):
|
20 |
+
caption = captioner(image_url)
|
21 |
+
st.write("**Caption:**", caption[0]['generated_text'])
|
22 |
+
|
23 |
+
# Add some information about the app
|
24 |
+
st.write("""
|
25 |
+
This app uses a pre-trained model from the Hugging Face Transformers library to generate captions for images.
|
26 |
+
Enter an image URL above and click "Generate Caption" to see the result.
|
27 |
+
""")
|