File size: 9,635 Bytes
71fe406
a66bb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d65704
a66bb06
 
 
 
 
 
 
 
 
 
234af01
ae35b0a
b805b58
54adf1a
ae35b0a
54adf1a
 
b805b58
090982e
a13309f
 
 
 
 
 
b805b58
 
 
 
 
 
 
 
a13309f
 
 
 
 
 
 
b805b58
 
 
 
 
 
 
 
 
a66bb06
b805b58
73cf98c
a66bb06
 
a13309f
 
a66bb06
 
d12db4f
a66bb06
 
 
 
 
 
 
bb82241
 
 
 
 
 
a66bb06
bb82241
 
a66bb06
bb82241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74eb4ce
bb82241
 
 
 
 
 
74eb4ce
bb82241
 
 
 
 
 
 
a66bb06
6e04a6e
 
 
 
 
 
 
 
a66bb06
 
 
 
 
 
 
 
 
 
 
 
 
 
a13309f
a66bb06
 
74b41d6
090982e
54adf1a
a66bb06
 
 
 
 
 
 
 
 
74eb4ce
 
 
 
 
a66bb06
 
a12d1d7
 
 
 
 
 
 
 
 
 
 
 
a13309f
 
 
 
 
 
a66bb06
 
a12d1d7
a66bb06
 
 
 
 
 
 
 
 
a13309f
a66bb06
 
 
 
 
 
 
 
 
dd2e743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74eb4ce
bb82241
a66bb06
 
74eb4ce
a66bb06
 
 
bb82241
 
 
 
 
 
 
a66bb06
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image, StableDiffusionPipeline, EulerDiscreteScheduler
import torch
import os

try:
    import intel_extension_for_pytorch as ipex
except:
    pass

from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time
import math

SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
    "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float32 #float16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")

if mps_available:
    device = torch.device("mps")
    torch_device = "cpu"
    torch_dtype = torch.float32

repo_id = "runwayml/stable-diffusion-v1-5"
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
t2i_pipe = StableDiffusionPipeline.from_single_file(
    "https://huggingface.co/wanghuging/skin_demo/blob/main/skin_demo.safetensors",
    scheduler=scheduler,
    safety_checker = None,
    requires_safety_checker = False
)
    
# if SAFETY_CHECKER == "True":
#     i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
#         "stabilityai/sdxl-turbo",
#         torch_dtype=torch_dtype,
#         variant="fp16" if torch_dtype == torch.float16 else "fp32",
#     )
    # t2i_pipe = AutoPipelineForText2Image.from_pretrained(
    #     #"stabilityai/sdxl-turbo",
    #     # "wanghuging/demo_model",
    #     #"stabilityai/stable-diffusion-xl-base-1.0",
    #     "stabilityai/stable-diffusion-2-1",
    #     torch_dtype=torch_dtype,
    #     variant="fp16" #if torch_dtype == torch.float16 else "fp32",
    # )
# else:
#     i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
#         "stabilityai/sdxl-turbo",
#         safety_checker=None,
#         torch_dtype=torch_dtype,
#         variant="fp16" if torch_dtype == torch.float16 else "fp32",
#     )
    # t2i_pipe = AutoPipelineForText2Image.from_pretrained(
    #     #"stabilityai/sdxl-turbo",
    #     # "wanghuging/demo_model",
    #     # "stabilityai/stable-diffusion-xl-base-1.0",      
    #     "stabilityai/stable-diffusion-2-1",        
    #     safety_checker=None,
    #     torch_dtype=torch_dtype,
    #     variant="fp16" #if torch_dtype == torch.float16 else "fp32",
    # )

# t2i_pipe.load_lora_weights("wanghuging/skin_demo", weight_name="skin_demo.safetensors")
t2i_pipe.safety_checker = lambda images, clip_input: (images, False)
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
t2i_pipe.set_progress_bar_config(disable=True)
# i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
# i2i_pipe.set_progress_bar_config(disable=True)



def resize_crop(image, size=512):
    image = image.convert("RGB")
    w, h = image.size
    image = image.resize((size, int(size * (h / w))), Image.BICUBIC)
    return image


# async def predict(init_image, prompt, strength, steps, seed=1231231):
#     # init_image = None
#     if init_image is not None:
#         init_image = resize_crop(init_image)
#         generator = torch.manual_seed(seed)
#         last_time = time.time()
    
#         if int(steps * strength) < 1:
#             steps = math.ceil(1 / max(0.10, strength))
            
#         results = i2i_pipe(
#             prompt=prompt,
#             image=init_image,
#             generator=generator,
#             num_inference_steps=steps,
#             guidance_scale=0.0,
#             strength=strength,
#             width=512,
#             height=512,
#             output_type="pil",
#         )
#     else:
#         generator = torch.manual_seed(seed)
#         last_time = time.time()
#         t2i_pipe.safety_checker = None
#         t2i_pipe.requires_safety_checker = False
#         results = t2i_pipe(
#             prompt=prompt,
#             generator=generator,
#             num_inference_steps=steps,
#             guidance_scale=0.0,
#             width=512,
#             height=512,
#             output_type="pil",
#         )
#     print(f"Pipe took {time.time() - last_time} seconds")
#     nsfw_content_detected = (
#         results.nsfw_content_detected[0]
#         if "nsfw_content_detected" in results
#         else False
#     )
#     if nsfw_content_detected:
#         gr.Warning("NSFW content detected.")
#         return Image.new("RGB", (512, 512))
#     return results.images[0]
async def predict(prompt, neg_prompt, strength, steps, seed=1231231):
    generator = torch.manual_seed(seed)
    last_time = time.time()
    t2i_pipe.safety_checker = None
    t2i_pipe.requires_safety_checker = False
    results = t2i_pipe(
        prompt=prompt,
        negative_prompt = neg_prompt,
        generator=generator,
        num_inference_steps=steps,
        guidance_scale=0.0,
        width=512,
        height=512,
        output_type="pil",
    )
    print(f"Pipe took {time.time() - last_time} seconds")
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        gr.Warning("NSFW content detected.")
        return Image.new("RGB", (512, 512))
    return results.images[0]

css = """
#container{
    margin: 0 auto;
    max-width: 80rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    # init_image_state = gr.State()
    with gr.Column(elem_id="container"):
        gr.Markdown(
            """# Derm-T2IM Text to Image Skin Cancer
            ## Demo
            **Model**: https://huggingface.co/wanghuging/skin_demo
            """,
            elem_id="intro",
        )
        with gr.Row():
            prompt = gr.Textbox(
                placeholder="Insert your prompt here:",
                scale=5,
                container=False,
            )
            # neg_prompt = gr.Textbox(
            #     placeholder="Insert your negative prompt here:",
            #     scale=5,
            #     container=False,
            # )
            generate_bt = gr.Button("Generate", scale=1)
        with gr.Row():
            neg_prompt = gr.Textbox(
                placeholder="Insert your negative prompt here:",
                scale=5,
                container=False,
            )            
        with gr.Row():
            # with gr.Column():
            #     neg_prompt = gr.Textbox(
            #         placeholder="Insert your negative prompt here:",
            #         scale=5,
            #         container=False,
            #     )
            # with gr.Column():
            #     image_input = gr.Image(
            #         sources=["upload", "webcam", "clipboard"],
            #         label="Webcam",
            #         type="pil",
            #     )
            with gr.Column():
                image = gr.Image(type="filepath")
            with gr.Column():            
                with gr.Accordion("Advanced options", open=False):
                    strength = gr.Slider(
                        label="Strength",
                        value=0.7,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.001,
                    )
                    steps = gr.Slider(
                        label="Steps", value=2, minimum=1, maximum=25, step=1
                    )
                    seed = gr.Slider(
                        randomize=True,
                        minimum=0,
                        maximum=12013012031030,
                        label="Seed",
                        step=1,
                    )

        # with gr.Accordion("Run with diffusers"):
        #     gr.Markdown(
        #         """## Running SDXL Turbo with `diffusers`
        #     ```bash
        #     pip install diffusers==0.23.1
        #     ```
        #     ```py
        #     from diffusers import DiffusionPipeline
        #     pipe = DiffusionPipeline.from_pretrained(
        #         "stabilityai/sdxl-turbo"
        #     ).to("cuda")
        #     results = pipe(
        #         prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe",
        #         num_inference_steps=1,
        #         guidance_scale=0.0,
        #     )
        #     imga = results.images[0]
        #     imga.save("image.png")
        #     ```
        #     """
        #     )
        inputs = [prompt, neg_prompt, strength, steps, seed]
        # inputs = [image_input, prompt, strength, steps, seed]
        generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        neg_prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        # image_input.change(
        #     fn=lambda x: x,
        #     inputs=image_input,
        #     outputs=init_image_state,
        #     show_progress=False,
        #     queue=False,
        # )

demo.queue()
demo.launch()