Spaces:
Sleeping
Sleeping
Commit
·
a66bb06
1
Parent(s):
6c593b0
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
try:
|
6 |
+
import intel_extension_for_pytorch as ipex
|
7 |
+
except:
|
8 |
+
pass
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
import gradio as gr
|
13 |
+
import psutil
|
14 |
+
import time
|
15 |
+
import math
|
16 |
+
|
17 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
18 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
20 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
21 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
22 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
23 |
+
device = torch.device(
|
24 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
25 |
+
)
|
26 |
+
torch_device = device
|
27 |
+
torch_dtype = torch.float16
|
28 |
+
|
29 |
+
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
30 |
+
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
31 |
+
print(f"device: {device}")
|
32 |
+
|
33 |
+
if mps_available:
|
34 |
+
device = torch.device("mps")
|
35 |
+
torch_device = "cpu"
|
36 |
+
torch_dtype = torch.float32
|
37 |
+
|
38 |
+
if SAFETY_CHECKER == "True":
|
39 |
+
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
|
40 |
+
"stabilityai/sdxl-turbo",
|
41 |
+
torch_dtype=torch_dtype,
|
42 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
43 |
+
)
|
44 |
+
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
45 |
+
"stabilityai/sdxl-turbo",
|
46 |
+
torch_dtype=torch_dtype,
|
47 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
|
51 |
+
"stabilityai/sdxl-turbo",
|
52 |
+
safety_checker=None,
|
53 |
+
torch_dtype=torch_dtype,
|
54 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
55 |
+
)
|
56 |
+
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
57 |
+
"stabilityai/sdxl-turbo",
|
58 |
+
safety_checker=None,
|
59 |
+
torch_dtype=torch_dtype,
|
60 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
65 |
+
t2i_pipe.set_progress_bar_config(disable=True)
|
66 |
+
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
67 |
+
i2i_pipe.set_progress_bar_config(disable=True)
|
68 |
+
|
69 |
+
|
70 |
+
def resize_crop(image, size=512):
|
71 |
+
image = image.convert("RGB")
|
72 |
+
w, h = image.size
|
73 |
+
image = image.resize((size, int(size * (h / w))), Image.BICUBIC)
|
74 |
+
return image
|
75 |
+
|
76 |
+
|
77 |
+
async def predict(init_image, prompt, strength, steps, seed=1231231):
|
78 |
+
if init_image is not None:
|
79 |
+
init_image = resize_crop(init_image)
|
80 |
+
generator = torch.manual_seed(seed)
|
81 |
+
last_time = time.time()
|
82 |
+
|
83 |
+
if int(steps * strength) < 1:
|
84 |
+
steps = math.ceil(1 / max(0.10, strength))
|
85 |
+
|
86 |
+
results = i2i_pipe(
|
87 |
+
prompt=prompt,
|
88 |
+
image=init_image,
|
89 |
+
generator=generator,
|
90 |
+
num_inference_steps=steps,
|
91 |
+
guidance_scale=0.0,
|
92 |
+
strength=strength,
|
93 |
+
width=512,
|
94 |
+
height=512,
|
95 |
+
output_type="pil",
|
96 |
+
)
|
97 |
+
else:
|
98 |
+
generator = torch.manual_seed(seed)
|
99 |
+
last_time = time.time()
|
100 |
+
results = t2i_pipe(
|
101 |
+
prompt=prompt,
|
102 |
+
generator=generator,
|
103 |
+
num_inference_steps=steps,
|
104 |
+
guidance_scale=0.0,
|
105 |
+
width=512,
|
106 |
+
height=512,
|
107 |
+
output_type="pil",
|
108 |
+
)
|
109 |
+
print(f"Pipe took {time.time() - last_time} seconds")
|
110 |
+
nsfw_content_detected = (
|
111 |
+
results.nsfw_content_detected[0]
|
112 |
+
if "nsfw_content_detected" in results
|
113 |
+
else False
|
114 |
+
)
|
115 |
+
if nsfw_content_detected:
|
116 |
+
gr.Warning("NSFW content detected.")
|
117 |
+
return Image.new("RGB", (512, 512))
|
118 |
+
return results.images[0]
|
119 |
+
|
120 |
+
|
121 |
+
css = """
|
122 |
+
#container{
|
123 |
+
margin: 0 auto;
|
124 |
+
max-width: 80rem;
|
125 |
+
}
|
126 |
+
#intro{
|
127 |
+
max-width: 100%;
|
128 |
+
text-align: center;
|
129 |
+
margin: 0 auto;
|
130 |
+
}
|
131 |
+
"""
|
132 |
+
with gr.Blocks(css=css) as demo:
|
133 |
+
init_image_state = gr.State()
|
134 |
+
with gr.Column(elem_id="container"):
|
135 |
+
gr.Markdown(
|
136 |
+
"""# SDXL Turbo Image to Image/Text to Image
|
137 |
+
## Unofficial Demo
|
138 |
+
SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo).
|
139 |
+
**Model**: https://huggingface.co/stabilityai/sdxl-turbo
|
140 |
+
""",
|
141 |
+
elem_id="intro",
|
142 |
+
)
|
143 |
+
with gr.Row():
|
144 |
+
prompt = gr.Textbox(
|
145 |
+
placeholder="Insert your prompt here:",
|
146 |
+
scale=5,
|
147 |
+
container=False,
|
148 |
+
)
|
149 |
+
generate_bt = gr.Button("Generate", scale=1)
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column():
|
152 |
+
image_input = gr.Image(
|
153 |
+
sources=["upload", "webcam", "clipboard"],
|
154 |
+
label="Webcam",
|
155 |
+
type="pil",
|
156 |
+
)
|
157 |
+
with gr.Column():
|
158 |
+
image = gr.Image(type="filepath")
|
159 |
+
with gr.Accordion("Advanced options", open=False):
|
160 |
+
strength = gr.Slider(
|
161 |
+
label="Strength",
|
162 |
+
value=0.7,
|
163 |
+
minimum=0.0,
|
164 |
+
maximum=1.0,
|
165 |
+
step=0.001,
|
166 |
+
)
|
167 |
+
steps = gr.Slider(
|
168 |
+
label="Steps", value=2, minimum=1, maximum=10, step=1
|
169 |
+
)
|
170 |
+
seed = gr.Slider(
|
171 |
+
randomize=True,
|
172 |
+
minimum=0,
|
173 |
+
maximum=12013012031030,
|
174 |
+
label="Seed",
|
175 |
+
step=1,
|
176 |
+
)
|
177 |
+
|
178 |
+
with gr.Accordion("Run with diffusers"):
|
179 |
+
gr.Markdown(
|
180 |
+
"""## Running SDXL Turbo with `diffusers`
|
181 |
+
```bash
|
182 |
+
pip install diffusers==0.23.1
|
183 |
+
```
|
184 |
+
```py
|
185 |
+
from diffusers import DiffusionPipeline
|
186 |
+
pipe = DiffusionPipeline.from_pretrained(
|
187 |
+
"stabilityai/sdxl-turbo"
|
188 |
+
).to("cuda")
|
189 |
+
results = pipe(
|
190 |
+
prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe",
|
191 |
+
num_inference_steps=1,
|
192 |
+
guidance_scale=0.0,
|
193 |
+
)
|
194 |
+
imga = results.images[0]
|
195 |
+
imga.save("image.png")
|
196 |
+
```
|
197 |
+
"""
|
198 |
+
)
|
199 |
+
|
200 |
+
inputs = [image_input, prompt, strength, steps, seed]
|
201 |
+
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
202 |
+
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
203 |
+
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
204 |
+
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
205 |
+
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
206 |
+
image_input.change(
|
207 |
+
fn=lambda x: x,
|
208 |
+
inputs=image_input,
|
209 |
+
outputs=init_image_state,
|
210 |
+
show_progress=False,
|
211 |
+
queue=False,
|
212 |
+
)
|
213 |
+
|
214 |
+
demo.queue()
|
215 |
+
demo.launch()
|