Spaces:
Sleeping
Sleeping
Commit
·
a13309f
1
Parent(s):
6e04a6e
Update app.py
Browse files
app.py
CHANGED
@@ -41,12 +41,12 @@ t2i_pipe = StableDiffusionPipeline.from_single_file(
|
|
41 |
requires_safety_checker = False
|
42 |
)
|
43 |
|
44 |
-
if SAFETY_CHECKER == "True":
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
# t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
51 |
# #"stabilityai/sdxl-turbo",
|
52 |
# # "wanghuging/demo_model",
|
@@ -55,13 +55,13 @@ if SAFETY_CHECKER == "True":
|
|
55 |
# torch_dtype=torch_dtype,
|
56 |
# variant="fp16" #if torch_dtype == torch.float16 else "fp32",
|
57 |
# )
|
58 |
-
else:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
# t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
66 |
# #"stabilityai/sdxl-turbo",
|
67 |
# # "wanghuging/demo_model",
|
@@ -76,8 +76,8 @@ else:
|
|
76 |
t2i_pipe.safety_checker = lambda images, clip_input: (images, False)
|
77 |
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
78 |
t2i_pipe.set_progress_bar_config(disable=True)
|
79 |
-
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
80 |
-
i2i_pipe.set_progress_bar_config(disable=True)
|
81 |
|
82 |
|
83 |
|
@@ -89,6 +89,7 @@ def resize_crop(image, size=512):
|
|
89 |
|
90 |
|
91 |
async def predict(init_image, prompt, strength, steps, seed=1231231):
|
|
|
92 |
if init_image is not None:
|
93 |
init_image = resize_crop(init_image)
|
94 |
generator = torch.manual_seed(seed)
|
@@ -146,7 +147,7 @@ css = """
|
|
146 |
}
|
147 |
"""
|
148 |
with gr.Blocks(css=css) as demo:
|
149 |
-
init_image_state = gr.State()
|
150 |
with gr.Column(elem_id="container"):
|
151 |
gr.Markdown(
|
152 |
"""# Derm-T2IM Text to Image Skin Cancer
|
@@ -161,14 +162,19 @@ with gr.Blocks(css=css) as demo:
|
|
161 |
scale=5,
|
162 |
container=False,
|
163 |
)
|
|
|
|
|
|
|
|
|
|
|
164 |
generate_bt = gr.Button("Generate", scale=1)
|
165 |
with gr.Row():
|
166 |
-
with gr.Column():
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
with gr.Column():
|
173 |
image = gr.Image(type="filepath")
|
174 |
with gr.Accordion("Advanced options", open=False):
|
@@ -180,7 +186,7 @@ with gr.Blocks(css=css) as demo:
|
|
180 |
step=0.001,
|
181 |
)
|
182 |
steps = gr.Slider(
|
183 |
-
label="Steps", value=2, minimum=1, maximum=
|
184 |
)
|
185 |
seed = gr.Slider(
|
186 |
randomize=True,
|
@@ -211,7 +217,7 @@ with gr.Blocks(css=css) as demo:
|
|
211 |
# ```
|
212 |
# """
|
213 |
# )
|
214 |
-
|
215 |
inputs = [image_input, prompt, strength, steps, seed]
|
216 |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
217 |
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
|
41 |
requires_safety_checker = False
|
42 |
)
|
43 |
|
44 |
+
# if SAFETY_CHECKER == "True":
|
45 |
+
# i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
|
46 |
+
# "stabilityai/sdxl-turbo",
|
47 |
+
# torch_dtype=torch_dtype,
|
48 |
+
# variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
49 |
+
# )
|
50 |
# t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
51 |
# #"stabilityai/sdxl-turbo",
|
52 |
# # "wanghuging/demo_model",
|
|
|
55 |
# torch_dtype=torch_dtype,
|
56 |
# variant="fp16" #if torch_dtype == torch.float16 else "fp32",
|
57 |
# )
|
58 |
+
# else:
|
59 |
+
# i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
|
60 |
+
# "stabilityai/sdxl-turbo",
|
61 |
+
# safety_checker=None,
|
62 |
+
# torch_dtype=torch_dtype,
|
63 |
+
# variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
64 |
+
# )
|
65 |
# t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
66 |
# #"stabilityai/sdxl-turbo",
|
67 |
# # "wanghuging/demo_model",
|
|
|
76 |
t2i_pipe.safety_checker = lambda images, clip_input: (images, False)
|
77 |
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
78 |
t2i_pipe.set_progress_bar_config(disable=True)
|
79 |
+
# i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
80 |
+
# i2i_pipe.set_progress_bar_config(disable=True)
|
81 |
|
82 |
|
83 |
|
|
|
89 |
|
90 |
|
91 |
async def predict(init_image, prompt, strength, steps, seed=1231231):
|
92 |
+
init_image = None
|
93 |
if init_image is not None:
|
94 |
init_image = resize_crop(init_image)
|
95 |
generator = torch.manual_seed(seed)
|
|
|
147 |
}
|
148 |
"""
|
149 |
with gr.Blocks(css=css) as demo:
|
150 |
+
# init_image_state = gr.State()
|
151 |
with gr.Column(elem_id="container"):
|
152 |
gr.Markdown(
|
153 |
"""# Derm-T2IM Text to Image Skin Cancer
|
|
|
162 |
scale=5,
|
163 |
container=False,
|
164 |
)
|
165 |
+
neg_prompt = gr.Textbox(
|
166 |
+
placeholder="Insert your negative prompt here:",
|
167 |
+
scale=5,
|
168 |
+
container=False,
|
169 |
+
)
|
170 |
generate_bt = gr.Button("Generate", scale=1)
|
171 |
with gr.Row():
|
172 |
+
# with gr.Column():
|
173 |
+
# image_input = gr.Image(
|
174 |
+
# sources=["upload", "webcam", "clipboard"],
|
175 |
+
# label="Webcam",
|
176 |
+
# type="pil",
|
177 |
+
# )
|
178 |
with gr.Column():
|
179 |
image = gr.Image(type="filepath")
|
180 |
with gr.Accordion("Advanced options", open=False):
|
|
|
186 |
step=0.001,
|
187 |
)
|
188 |
steps = gr.Slider(
|
189 |
+
label="Steps", value=2, minimum=1, maximum=25, step=1
|
190 |
)
|
191 |
seed = gr.Slider(
|
192 |
randomize=True,
|
|
|
217 |
# ```
|
218 |
# """
|
219 |
# )
|
220 |
+
image_input = None
|
221 |
inputs = [image_input, prompt, strength, steps, seed]
|
222 |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
223 |
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|