Spaces:
Sleeping
Sleeping
File size: 11,451 Bytes
3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c ee1b548 3af593c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import time
import logging
import random
import requests
import arxiv
import xml.etree.ElementTree as ET
from typing import List, Optional
from functools import lru_cache
from scholarly import scholarly
from concurrent.futures import ThreadPoolExecutor, as_completed
from models.paper import Paper
from utils.text_processor import TextProcessor
from bs4 import BeautifulSoup
# Constants
CACHE_SIZE = 128
MAX_PAPERS = 5
SCHOLAR_MAX_PAPERS = 3
ARXIV_MAX_PAPERS = 5
MAX_WORKERS = 3 # One thread per data source
class ResearchFetcher:
def __init__(self):
self.session = requests.Session()
self._last_request_time = 0
self._min_request_interval = 0.34
self._max_retries = 3
self._setup_scholarly()
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
def __del__(self):
"""Cleanup executor on deletion"""
self.executor.shutdown(wait=False)
def _setup_scholarly(self):
"""Configure scholarly with basic settings"""
self.user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0'
]
# Set up a random user agent for scholarly
scholarly._get_page = lambda url: requests.get(url, headers={'User-Agent': random.choice(self.user_agents)})
def _rotate_user_agent(self):
"""Rotate user agent for Google Scholar requests"""
return random.choice(self.user_agents)
def _wait_for_rate_limit(self):
"""Ensure we don't exceed PubMed's rate limit"""
current_time = time.time()
time_since_last = current_time - self._last_request_time
if time_since_last < self._min_request_interval:
time.sleep(self._min_request_interval - time_since_last)
self._last_request_time = time.time()
def _make_request_with_retry(self, url: str, params: dict, timeout: int = 10) -> Optional[requests.Response]:
"""Make a request with retries and rate limiting"""
for attempt in range(self._max_retries):
try:
self._wait_for_rate_limit()
response = self.session.get(url, params=params, timeout=timeout)
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
if isinstance(e, requests.exceptions.HTTPError) and e.response.status_code == 429:
wait_time = (attempt + 1) * self._min_request_interval * 2
logging.warning(f"Rate limit hit, waiting {wait_time} seconds...")
time.sleep(wait_time)
continue
if attempt == self._max_retries - 1:
logging.error(f"Error after {self._max_retries} retries: {str(e)}")
return None
return None
@lru_cache(maxsize=CACHE_SIZE)
def fetch_arxiv_papers(self, query: str) -> List[Paper]:
"""Fetch papers from arXiv"""
try:
# Ensure query includes autism if not already present
if 'autism' not in query.lower():
search_query = f"autism {query}"
else:
search_query = query
# Search arXiv
search = arxiv.Search(
query=search_query,
max_results=ARXIV_MAX_PAPERS,
sort_by=arxiv.SortCriterion.Relevance
)
papers = []
for result in search.results():
# Create Paper object
paper = Paper(
title=result.title,
authors=', '.join([author.name for author in result.authors]),
abstract=result.summary,
url=result.pdf_url,
publication_date=result.published.strftime("%Y-%m-%d"),
relevance_score=1.0 if 'autism' in result.title.lower() else 0.8,
source="arXiv"
)
papers.append(paper)
return papers
except Exception as e:
logging.error(f"Error fetching arXiv papers: {str(e)}")
return []
@lru_cache(maxsize=CACHE_SIZE)
def fetch_pubmed_papers(self, query: str) -> List[Paper]:
"""Fetch papers from PubMed"""
try:
# Ensure query includes autism if not already present
if 'autism' not in query.lower():
search_query = f"autism {query}"
else:
search_query = query
# Encode the query for URL
encoded_query = requests.utils.quote(search_query)
# Search PubMed
search_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term={encoded_query}&retmax=5"
search_response = requests.get(search_url)
search_tree = ET.fromstring(search_response.content)
# Get IDs of papers
id_list = search_tree.findall('.//Id')
if not id_list:
return []
# Get details for each paper
papers = []
for id_elem in id_list:
paper_id = id_elem.text
details_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id={paper_id}&retmode=xml"
details_response = requests.get(details_url)
details_tree = ET.fromstring(details_response.content)
# Extract article data
article = details_tree.find('.//Article')
if article is None:
continue
# Get title
title_elem = article.find('.//ArticleTitle')
title = title_elem.text if title_elem is not None else "No title available"
# Get abstract
abstract_elem = article.find('.//Abstract/AbstractText')
abstract = abstract_elem.text if abstract_elem is not None else "No abstract available"
# Get authors
author_list = article.findall('.//Author')
authors = []
for author in author_list:
last_name = author.find('LastName')
fore_name = author.find('ForeName')
if last_name is not None and fore_name is not None:
authors.append(f"{fore_name.text} {last_name.text}")
# Get publication date
pub_date = article.find('.//PubDate')
if pub_date is not None:
year = pub_date.find('Year')
month = pub_date.find('Month')
day = pub_date.find('Day')
pub_date_str = f"{year.text if year is not None else ''}-{month.text if month is not None else '01'}-{day.text if day is not None else '01'}"
else:
pub_date_str = "Unknown"
# Create Paper object
paper = Paper(
title=title,
authors=', '.join(authors) if authors else "Unknown Authors",
abstract=abstract,
url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
publication_date=pub_date_str,
relevance_score=1.0 if 'autism' in title.lower() else 0.8,
source="PubMed"
)
papers.append(paper)
return papers
except Exception as e:
logging.error(f"Error fetching PubMed papers: {str(e)}")
return []
@lru_cache(maxsize=CACHE_SIZE)
def fetch_scholar_papers(self, query: str) -> List[Paper]:
"""
Fetch papers from Google Scholar
"""
try:
headers = {'User-Agent': random.choice(self.user_agents)}
encoded_query = requests.utils.quote(query)
url = f'https://scholar.google.com/scholar?q={encoded_query}&hl=en&as_sdt=0,5'
response = requests.get(url, headers=headers, timeout=10)
if response.status_code != 200:
logging.error(f"Google Scholar returned status code {response.status_code}")
return []
# Use BeautifulSoup to parse the response
soup = BeautifulSoup(response.text, 'html.parser')
papers = []
for result in soup.select('.gs_ri')[:5]: # Limit to first 5 results
title_elem = result.select_one('.gs_rt')
authors_elem = result.select_one('.gs_a')
snippet_elem = result.select_one('.gs_rs')
if not title_elem:
continue
title = title_elem.get_text(strip=True)
authors = authors_elem.get_text(strip=True) if authors_elem else "Unknown Authors"
abstract = snippet_elem.get_text(strip=True) if snippet_elem else ""
url = title_elem.find('a')['href'] if title_elem.find('a') else ""
paper = Paper(
title=title,
authors=authors,
abstract=abstract,
url=url,
publication_date="", # Date not easily available
relevance_score=0.8, # Default score
source="Google Scholar"
)
papers.append(paper)
return papers
except Exception as e:
logging.error(f"Error fetching Google Scholar papers: {str(e)}")
return []
def fetch_all_papers(self, query: str) -> List[Paper]:
"""Fetch papers from all sources concurrently and combine results"""
all_papers = []
futures = []
# Submit tasks to thread pool
try:
futures.append(self.executor.submit(self.fetch_arxiv_papers, query))
futures.append(self.executor.submit(self.fetch_pubmed_papers, query))
futures.append(self.executor.submit(self.fetch_scholar_papers, query))
# Collect results as they complete
for future in as_completed(futures):
try:
papers = future.result()
all_papers.extend(papers)
except Exception as e:
logging.error(f"Error collecting papers from source: {str(e)}")
except Exception as e:
logging.error(f"Error in concurrent paper fetching: {str(e)}")
# Sort and deduplicate papers
seen_titles = set()
unique_papers = []
for paper in sorted(all_papers, key=lambda x: x.relevance_score, reverse=True):
title_key = paper.title.lower()
if title_key not in seen_titles:
seen_titles.add(title_key)
unique_papers.append(paper)
return unique_papers[:MAX_PAPERS]
|