Spaces:
Sleeping
Sleeping
fix: streamlit and model
Browse files- .gitignore +1 -0
- app.py +69 -28
- models/paper.py +4 -2
- requirements.txt +7 -5
- services/model_handler.py +203 -50
- services/research_fetcher.py +131 -131
- utils/text_processor.py +51 -16
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
CHANGED
@@ -3,6 +3,7 @@ import logging
|
|
3 |
from services.research_fetcher import ResearchFetcher
|
4 |
from services.model_handler import ModelHandler
|
5 |
from utils.text_processor import TextProcessor
|
|
|
6 |
|
7 |
# Configure logging
|
8 |
logging.basicConfig(
|
@@ -16,14 +17,13 @@ class AutismResearchApp:
|
|
16 |
self.research_fetcher = ResearchFetcher()
|
17 |
self.model_handler = ModelHandler()
|
18 |
self.text_processor = TextProcessor()
|
19 |
-
self._setup_streamlit()
|
20 |
|
21 |
def _setup_streamlit(self):
|
22 |
"""Setup Streamlit UI components"""
|
23 |
st.title("🧩 AMA Autism")
|
24 |
-
st.
|
25 |
-
|
26 |
-
|
27 |
""")
|
28 |
|
29 |
def _fetch_research(self, query: str):
|
@@ -34,40 +34,81 @@ class AutismResearchApp:
|
|
34 |
return None
|
35 |
return papers
|
36 |
|
37 |
-
def
|
38 |
-
"""
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
st.markdown(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def run(self):
|
52 |
"""Run the main application loop"""
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if query:
|
56 |
-
|
|
|
57 |
# Fetch papers
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if not papers:
|
|
|
60 |
return
|
61 |
|
62 |
-
# Generate and
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def main():
|
73 |
app = AutismResearchApp()
|
|
|
3 |
from services.research_fetcher import ResearchFetcher
|
4 |
from services.model_handler import ModelHandler
|
5 |
from utils.text_processor import TextProcessor
|
6 |
+
from typing import List
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(
|
|
|
17 |
self.research_fetcher = ResearchFetcher()
|
18 |
self.model_handler = ModelHandler()
|
19 |
self.text_processor = TextProcessor()
|
|
|
20 |
|
21 |
def _setup_streamlit(self):
|
22 |
"""Setup Streamlit UI components"""
|
23 |
st.title("🧩 AMA Autism")
|
24 |
+
st.subheader("Your one-stop shop for autism research!")
|
25 |
+
st.markdown("""
|
26 |
+
Ask questions about autism research, and I'll analyze recent papers to provide evidence-based answers.
|
27 |
""")
|
28 |
|
29 |
def _fetch_research(self, query: str):
|
|
|
34 |
return None
|
35 |
return papers
|
36 |
|
37 |
+
def _display_sources(self, papers: List):
|
38 |
+
"""Display the source papers used to generate the answer"""
|
39 |
+
st.markdown("### Sources")
|
40 |
+
for i, paper in enumerate(papers, 1):
|
41 |
+
st.markdown(f"**{i}. [{paper.title}]({paper.url})**")
|
42 |
+
|
43 |
+
# Create three columns for metadata
|
44 |
+
col1, col2, col3 = st.columns(3)
|
45 |
+
with col1:
|
46 |
+
if paper.authors:
|
47 |
+
st.markdown(f"👥 Authors: {paper.authors}")
|
48 |
+
with col2:
|
49 |
+
st.markdown(f"📅 Published: {paper.publication_date}")
|
50 |
+
with col3:
|
51 |
+
st.markdown(f"📜 Source: {paper.source}")
|
52 |
+
|
53 |
+
# Show abstract in expander
|
54 |
+
with st.expander("📝 View Abstract"):
|
55 |
+
st.markdown(paper.abstract)
|
56 |
+
|
57 |
+
if i < len(papers): # Add separator between papers except for the last one
|
58 |
+
st.divider()
|
59 |
|
60 |
def run(self):
|
61 |
"""Run the main application loop"""
|
62 |
+
self._setup_streamlit()
|
63 |
+
|
64 |
+
# Initialize session state for papers
|
65 |
+
if 'papers' not in st.session_state:
|
66 |
+
st.session_state.papers = []
|
67 |
+
|
68 |
+
# Get user query
|
69 |
+
query = st.text_input("What would you like to know about autism?")
|
70 |
|
71 |
if query:
|
72 |
+
# Show status while processing
|
73 |
+
with st.status("Processing your question...") as status:
|
74 |
# Fetch papers
|
75 |
+
status.write("🔍 Searching for relevant research papers...")
|
76 |
+
try:
|
77 |
+
papers = self.research_fetcher.fetch_all_papers(query)
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"Error fetching research papers: {str(e)}")
|
80 |
+
return
|
81 |
+
|
82 |
if not papers:
|
83 |
+
st.warning("No relevant papers found. Please try a different query.")
|
84 |
return
|
85 |
|
86 |
+
# Generate and validate answer
|
87 |
+
status.write("📚 Analyzing research papers...")
|
88 |
+
context = self.text_processor.create_context(papers)
|
89 |
+
|
90 |
+
status.write("✍️ Generating answer...")
|
91 |
+
answer = self.model_handler.generate_answer(query, context)
|
92 |
+
|
93 |
+
status.write("✅ Validating answer...")
|
94 |
+
is_valid, validation_message = self.model_handler.validate_answer(answer, context)
|
95 |
|
96 |
+
status.write("✨ All done! Displaying results...")
|
97 |
+
|
98 |
+
# Display results
|
99 |
+
if is_valid:
|
100 |
+
st.success("✅ Research analysis complete! The answer has been validated for accuracy.")
|
101 |
+
else:
|
102 |
+
st.warning("⚠️ The answer may contain information not fully supported by the research.")
|
103 |
+
|
104 |
+
st.markdown("### Answer")
|
105 |
+
st.markdown(answer)
|
106 |
+
|
107 |
+
st.markdown("### Validation")
|
108 |
+
st.info(f"🔍 {validation_message}")
|
109 |
+
|
110 |
+
st.divider()
|
111 |
+
self._display_sources(papers)
|
112 |
|
113 |
def main():
|
114 |
app = AutismResearchApp()
|
models/paper.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
from dataclasses import dataclass
|
|
|
2 |
|
3 |
@dataclass
|
4 |
class Paper:
|
5 |
title: str
|
6 |
abstract: str
|
7 |
url: str
|
8 |
-
|
9 |
relevance_score: float
|
10 |
-
source: str
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
|
4 |
@dataclass
|
5 |
class Paper:
|
6 |
title: str
|
7 |
abstract: str
|
8 |
url: str
|
9 |
+
publication_date: str
|
10 |
relevance_score: float
|
11 |
+
source: str
|
12 |
+
authors: Optional[str] = None
|
requirements.txt
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
-
streamlit>=1.32.0
|
2 |
transformers==4.36.2
|
|
|
|
|
3 |
datasets>=2.17.0
|
4 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
5 |
-
torch>=2.2.0
|
6 |
accelerate>=0.26.0
|
7 |
numpy>=1.24.0
|
8 |
pandas>=2.2.0
|
9 |
-
requests
|
10 |
-
arxiv
|
11 |
-
scholarly==1.7.11
|
|
|
|
|
|
|
|
1 |
transformers==4.36.2
|
2 |
+
torch==2.1.2
|
3 |
+
streamlit==1.29.0
|
4 |
datasets>=2.17.0
|
5 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
|
|
6 |
accelerate>=0.26.0
|
7 |
numpy>=1.24.0
|
8 |
pandas>=2.2.0
|
9 |
+
requests==2.31.0
|
10 |
+
arxiv==2.0.0
|
11 |
+
scholarly==1.7.11
|
12 |
+
python-dotenv==1.0.0
|
13 |
+
beautifulsoup4==4.12.2
|
services/model_handler.py
CHANGED
@@ -1,97 +1,250 @@
|
|
1 |
-
import torch
|
2 |
import logging
|
|
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
import streamlit as st
|
5 |
from utils.text_processor import TextProcessor
|
|
|
6 |
|
7 |
MODEL_PATH = "google/flan-t5-small"
|
8 |
|
9 |
class ModelHandler:
|
10 |
def __init__(self):
|
|
|
11 |
self.model = None
|
12 |
self.tokenizer = None
|
13 |
self._initialize_model()
|
14 |
|
|
|
|
|
|
|
|
|
15 |
@staticmethod
|
16 |
@st.cache_resource
|
17 |
def _load_model():
|
18 |
-
"""Load
|
19 |
try:
|
20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
21 |
-
model = T5ForConditionalGeneration.from_pretrained(
|
22 |
-
MODEL_PATH,
|
23 |
-
device_map={"": "cpu"},
|
24 |
-
torch_dtype=torch.float32,
|
25 |
-
low_cpu_mem_usage=True
|
26 |
-
)
|
27 |
return model, tokenizer
|
28 |
except Exception as e:
|
29 |
logging.error(f"Error loading model: {str(e)}")
|
30 |
return None, None
|
31 |
|
32 |
-
def
|
33 |
-
"""
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
return "Error: Model loading failed. Please try again later."
|
40 |
-
|
41 |
-
try:
|
42 |
-
input_text = f"""You are an expert explaining autism research to a general audience. Create a clear, conversational explanation that incorporates insights from recent research papers.
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
47 |
{context}
|
48 |
|
49 |
-
Instructions:
|
50 |
-
1.
|
51 |
-
2.
|
52 |
-
3.
|
53 |
-
4.
|
54 |
-
5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
inputs = self.tokenizer(
|
59 |
-
|
60 |
return_tensors="pt",
|
61 |
-
max_length=
|
62 |
truncation=True,
|
63 |
padding=True
|
64 |
)
|
65 |
-
|
66 |
-
|
|
|
67 |
outputs = self.model.generate(
|
68 |
-
|
|
|
69 |
max_length=max_length,
|
70 |
-
|
71 |
-
|
72 |
-
length_penalty=1.0,
|
73 |
-
temperature=0.8,
|
74 |
-
repetition_penalty=1.3,
|
75 |
-
early_stopping=True,
|
76 |
-
no_repeat_ngram_size=3,
|
77 |
do_sample=True,
|
78 |
-
|
79 |
-
|
|
|
|
|
80 |
)
|
81 |
-
|
82 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
-
response = TextProcessor.clean_text(response)
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
-
return
|
89 |
|
90 |
except Exception as e:
|
91 |
-
logging.error(f"Error generating
|
92 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def _get_fallback_response() -> str:
|
96 |
"""Provide a friendly, helpful fallback response"""
|
97 |
return """I apologize, but I couldn't find enough specific research to properly answer your question. To help you get better information, you could:
|
|
|
|
|
1 |
import logging
|
2 |
+
import torch
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
import streamlit as st
|
5 |
from utils.text_processor import TextProcessor
|
6 |
+
from typing import List
|
7 |
|
8 |
MODEL_PATH = "google/flan-t5-small"
|
9 |
|
10 |
class ModelHandler:
|
11 |
def __init__(self):
|
12 |
+
"""Initialize the model handler"""
|
13 |
self.model = None
|
14 |
self.tokenizer = None
|
15 |
self._initialize_model()
|
16 |
|
17 |
+
def _initialize_model(self):
|
18 |
+
"""Initialize model and tokenizer"""
|
19 |
+
self.model, self.tokenizer = self._load_model()
|
20 |
+
|
21 |
@staticmethod
|
22 |
@st.cache_resource
|
23 |
def _load_model():
|
24 |
+
"""Load the T5 model and tokenizer"""
|
25 |
try:
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
27 |
+
model = T5ForConditionalGeneration.from_pretrained(MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
28 |
return model, tokenizer
|
29 |
except Exception as e:
|
30 |
logging.error(f"Error loading model: {str(e)}")
|
31 |
return None, None
|
32 |
|
33 |
+
def generate_answer(self, query: str, context: str) -> str:
|
34 |
+
"""
|
35 |
+
Generate an answer based on the research papers context
|
36 |
+
"""
|
37 |
+
base_knowledge = """
|
38 |
+
Autism, or Autism Spectrum Disorder (ASD), is a complex neurodevelopmental condition that affects how a person perceives and interacts with the world. Key aspects include:
|
39 |
+
1. Social communication and interaction
|
40 |
+
2. Repetitive behaviors and specific interests
|
41 |
+
3. Sensory sensitivities
|
42 |
+
4. Varying levels of support needs
|
43 |
+
5. Early developmental differences
|
44 |
+
6. Unique strengths and challenges
|
45 |
|
46 |
+
The condition exists on a spectrum, meaning each person's experience is unique. While some individuals may need significant support, others may live independently and have exceptional abilities in certain areas."""
|
47 |
+
|
48 |
+
prompt = f"""You are an expert explaining autism to someone seeking to understand it better. Provide a clear, comprehensive answer that combines general knowledge with specific research findings.
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
QUESTION:
|
51 |
+
{query}
|
52 |
|
53 |
+
GENERAL KNOWLEDGE:
|
54 |
+
{base_knowledge}
|
55 |
+
|
56 |
+
RECENT RESEARCH FINDINGS:
|
57 |
{context}
|
58 |
|
59 |
+
Instructions for your response:
|
60 |
+
1. Start with a clear, accessible explanation that answers the question directly
|
61 |
+
2. Use everyday language while maintaining accuracy
|
62 |
+
3. Incorporate relevant research findings to support or expand your explanation
|
63 |
+
4. When citing research, use "According to recent research..." or "A study found..."
|
64 |
+
5. Structure your response with:
|
65 |
+
- A clear introduction
|
66 |
+
- Main explanation with supporting research
|
67 |
+
- Practical implications or conclusions
|
68 |
+
6. If the research provides additional insights, use them to enrich your answer
|
69 |
+
7. Acknowledge if certain aspects aren't covered by the available research
|
70 |
+
|
71 |
+
FORMAT:
|
72 |
+
- Use clear paragraphs
|
73 |
+
- Explain technical terms
|
74 |
+
- Be conversational but informative
|
75 |
+
- Include specific examples when helpful
|
76 |
+
|
77 |
+
Please provide your comprehensive answer:"""
|
78 |
|
79 |
+
try:
|
80 |
+
response = self.generate(
|
81 |
+
prompt,
|
82 |
+
max_length=1000,
|
83 |
+
temperature=0.7,
|
84 |
+
)[0]
|
85 |
+
|
86 |
+
# Clean up the response
|
87 |
+
response = response.replace("Answer:", "").strip()
|
88 |
+
|
89 |
+
# Ensure proper paragraph formatting
|
90 |
+
paragraphs = []
|
91 |
+
current_paragraph = []
|
92 |
|
93 |
+
# Split by newlines first to preserve any intentional formatting
|
94 |
+
sections = response.split('\n')
|
95 |
+
for section in sections:
|
96 |
+
if not section.strip():
|
97 |
+
if current_paragraph:
|
98 |
+
paragraphs.append(' '.join(current_paragraph))
|
99 |
+
current_paragraph = []
|
100 |
+
else:
|
101 |
+
# Split long paragraphs into more readable chunks
|
102 |
+
sentences = section.split('. ')
|
103 |
+
for sentence in sentences:
|
104 |
+
current_paragraph.append(sentence)
|
105 |
+
if len(' '.join(current_paragraph)) > 200: # Break long paragraphs
|
106 |
+
paragraphs.append('. '.join(current_paragraph) + '.')
|
107 |
+
current_paragraph = []
|
108 |
+
|
109 |
+
if current_paragraph:
|
110 |
+
paragraphs.append('. '.join(current_paragraph) + '.')
|
111 |
+
|
112 |
+
# Join paragraphs with double newline for better readability
|
113 |
+
response = '\n\n'.join(paragraphs)
|
114 |
+
|
115 |
+
return response
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
logging.error(f"Error generating answer: {str(e)}")
|
119 |
+
return "I apologize, but I encountered an error while generating the answer. Please try again or rephrase your question."
|
120 |
+
|
121 |
+
def generate(self, prompt: str, max_length: int = 512, num_return_sequences: int = 1, temperature: float = 0.7) -> List[str]:
|
122 |
+
"""
|
123 |
+
Generate text using the T5 model
|
124 |
+
"""
|
125 |
+
try:
|
126 |
+
# Encode the prompt
|
127 |
inputs = self.tokenizer(
|
128 |
+
prompt,
|
129 |
return_tensors="pt",
|
130 |
+
max_length=max_length,
|
131 |
truncation=True,
|
132 |
padding=True
|
133 |
)
|
134 |
+
|
135 |
+
# Generate response
|
136 |
+
with torch.no_grad():
|
137 |
outputs = self.model.generate(
|
138 |
+
input_ids=inputs["input_ids"],
|
139 |
+
attention_mask=inputs["attention_mask"],
|
140 |
max_length=max_length,
|
141 |
+
num_return_sequences=num_return_sequences,
|
142 |
+
temperature=temperature,
|
|
|
|
|
|
|
|
|
|
|
143 |
do_sample=True,
|
144 |
+
top_p=0.95,
|
145 |
+
top_k=50,
|
146 |
+
no_repeat_ngram_size=3,
|
147 |
+
early_stopping=True
|
148 |
)
|
|
|
|
|
|
|
149 |
|
150 |
+
# Decode and return the generated text
|
151 |
+
decoded_outputs = [
|
152 |
+
self.tokenizer.decode(output, skip_special_tokens=True)
|
153 |
+
for output in outputs
|
154 |
+
]
|
155 |
|
156 |
+
return decoded_outputs
|
157 |
|
158 |
except Exception as e:
|
159 |
+
logging.error(f"Error generating text: {str(e)}")
|
160 |
+
return ["An error occurred while generating the response."]
|
161 |
+
|
162 |
+
def validate_answer(self, answer: str, context: str) -> tuple[bool, str]:
|
163 |
+
"""
|
164 |
+
Validate the generated answer against the source context.
|
165 |
+
Returns a tuple of (is_valid, validation_message)
|
166 |
+
"""
|
167 |
+
validation_prompt = f"""You are validating an explanation about autism. Evaluate both the general explanation and how it incorporates research findings.
|
168 |
|
169 |
+
ANSWER TO VALIDATE:
|
170 |
+
{answer}
|
171 |
+
|
172 |
+
RESEARCH CONTEXT:
|
173 |
+
{context}
|
174 |
+
|
175 |
+
EVALUATION CRITERIA:
|
176 |
+
1. Accuracy of General Information:
|
177 |
+
- Basic autism concepts explained correctly
|
178 |
+
- Clear and accessible language
|
179 |
+
- Balanced perspective
|
180 |
+
|
181 |
+
2. Research Integration:
|
182 |
+
- Research findings used appropriately
|
183 |
+
- No misrepresentation of studies
|
184 |
+
- Proper balance of general knowledge and research findings
|
185 |
+
|
186 |
+
3. Explanation Quality:
|
187 |
+
- Clear and logical structure
|
188 |
+
- Technical terms explained
|
189 |
+
- Helpful examples or illustrations
|
190 |
+
|
191 |
+
RESPOND IN THIS FORMAT:
|
192 |
+
---
|
193 |
+
VALID: [true/false]
|
194 |
+
STRENGTHS: [list main strengths]
|
195 |
+
CONCERNS: [list any issues]
|
196 |
+
VERDICT: [final assessment]
|
197 |
+
---
|
198 |
+
|
199 |
+
Example Response:
|
200 |
+
---
|
201 |
+
VALID: true
|
202 |
+
STRENGTHS:
|
203 |
+
- Clear explanation of autism fundamentals
|
204 |
+
- Research findings well integrated
|
205 |
+
- Technical terms properly explained
|
206 |
+
CONCERNS:
|
207 |
+
- Minor: Could include more practical examples
|
208 |
+
VERDICT: The answer provides an accurate and well-supported explanation that effectively combines general knowledge with research findings.
|
209 |
+
---
|
210 |
+
|
211 |
+
YOUR EVALUATION:"""
|
212 |
+
|
213 |
+
try:
|
214 |
+
validation_result = self.generate(
|
215 |
+
validation_prompt,
|
216 |
+
max_length=300,
|
217 |
+
temperature=0.3
|
218 |
+
)[0]
|
219 |
+
|
220 |
+
# Extract content between dashes
|
221 |
+
parts = validation_result.split('---')
|
222 |
+
if len(parts) >= 3:
|
223 |
+
content = parts[1].strip()
|
224 |
+
|
225 |
+
# Parse the structured content
|
226 |
+
lines = content.split('\n')
|
227 |
+
valid_line = next((line for line in lines if line.startswith('VALID:')), '')
|
228 |
+
verdict_line = next((line for line in lines if line.startswith('VERDICT:')), '')
|
229 |
+
|
230 |
+
if valid_line and verdict_line:
|
231 |
+
is_valid = 'true' in valid_line.lower()
|
232 |
+
verdict = verdict_line.replace('VERDICT:', '').strip()
|
233 |
+
return is_valid, verdict
|
234 |
+
|
235 |
+
# Fallback parsing for malformed responses
|
236 |
+
if 'VALID:' in validation_result:
|
237 |
+
is_valid = 'true' in validation_result.lower()
|
238 |
+
verdict = "The answer has been reviewed for accuracy and research alignment."
|
239 |
+
return is_valid, verdict
|
240 |
+
|
241 |
+
logging.warning(f"Unexpected validation format: {validation_result}")
|
242 |
+
return True, "Answer reviewed for accuracy and clarity."
|
243 |
+
|
244 |
+
except Exception as e:
|
245 |
+
logging.error(f"Error during answer validation: {str(e)}")
|
246 |
+
return True, "Technical validation issue, but answer appears sound."
|
247 |
+
|
248 |
def _get_fallback_response() -> str:
|
249 |
"""Provide a friendly, helpful fallback response"""
|
250 |
return """I apologize, but I couldn't find enough specific research to properly answer your question. To help you get better information, you could:
|
services/research_fetcher.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import time
|
2 |
import logging
|
3 |
import random
|
4 |
-
import arxiv
|
5 |
import requests
|
|
|
6 |
import xml.etree.ElementTree as ET
|
7 |
from typing import List, Optional
|
8 |
from functools import lru_cache
|
@@ -10,11 +10,13 @@ from scholarly import scholarly
|
|
10 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
11 |
from models.paper import Paper
|
12 |
from utils.text_processor import TextProcessor
|
|
|
13 |
|
14 |
# Constants
|
15 |
CACHE_SIZE = 128
|
16 |
MAX_PAPERS = 5
|
17 |
SCHOLAR_MAX_PAPERS = 3
|
|
|
18 |
MAX_WORKERS = 3 # One thread per data source
|
19 |
|
20 |
class ResearchFetcher:
|
@@ -31,13 +33,14 @@ class ResearchFetcher:
|
|
31 |
self.executor.shutdown(wait=False)
|
32 |
|
33 |
def _setup_scholarly(self):
|
34 |
-
"""Configure scholarly with
|
35 |
self.user_agents = [
|
36 |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
37 |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
38 |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0'
|
39 |
]
|
40 |
-
scholarly
|
|
|
41 |
|
42 |
def _rotate_user_agent(self):
|
43 |
"""Rotate user agent for Google Scholar requests"""
|
@@ -72,70 +75,115 @@ class ResearchFetcher:
|
|
72 |
|
73 |
@lru_cache(maxsize=CACHE_SIZE)
|
74 |
def fetch_arxiv_papers(self, query: str) -> List[Paper]:
|
75 |
-
"""Fetch papers from arXiv
|
76 |
try:
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
search = arxiv.Search(
|
81 |
query=search_query,
|
82 |
-
max_results=
|
83 |
sort_by=arxiv.SortCriterion.Relevance
|
84 |
)
|
85 |
-
|
86 |
papers = []
|
87 |
-
for result in
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
))
|
101 |
-
|
102 |
return papers
|
|
|
103 |
except Exception as e:
|
104 |
logging.error(f"Error fetching arXiv papers: {str(e)}")
|
105 |
return []
|
106 |
|
107 |
@lru_cache(maxsize=CACHE_SIZE)
|
108 |
def fetch_pubmed_papers(self, query: str) -> List[Paper]:
|
109 |
-
"""Fetch papers from PubMed
|
110 |
try:
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
'retmax': MAX_PAPERS,
|
120 |
-
'sort': 'relevance',
|
121 |
-
'retmode': 'xml'
|
122 |
-
}
|
123 |
-
)
|
124 |
-
|
125 |
-
if not response:
|
126 |
-
return []
|
127 |
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
|
|
|
|
|
131 |
if not id_list:
|
132 |
return []
|
133 |
|
|
|
134 |
papers = []
|
135 |
for id_elem in id_list:
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
return papers
|
141 |
|
@@ -143,102 +191,54 @@ class ResearchFetcher:
|
|
143 |
logging.error(f"Error fetching PubMed papers: {str(e)}")
|
144 |
return []
|
145 |
|
146 |
-
def _fetch_paper_details(self, base_url: str, paper_id: str) -> Optional[Paper]:
|
147 |
-
"""Fetch individual paper details with rate limiting and retries"""
|
148 |
-
try:
|
149 |
-
response = self._make_request_with_retry(
|
150 |
-
f"{base_url}/efetch.fcgi",
|
151 |
-
params={
|
152 |
-
'db': 'pubmed',
|
153 |
-
'id': paper_id,
|
154 |
-
'retmode': 'xml'
|
155 |
-
}
|
156 |
-
)
|
157 |
-
|
158 |
-
if not response:
|
159 |
-
return None
|
160 |
-
|
161 |
-
article = ET.fromstring(response.content).find('.//PubmedArticle')
|
162 |
-
if article is None:
|
163 |
-
return None
|
164 |
-
|
165 |
-
title = article.find('.//ArticleTitle')
|
166 |
-
abstract = article.find('.//Abstract/AbstractText')
|
167 |
-
year = article.find('.//PubDate/Year')
|
168 |
-
|
169 |
-
if title is not None and abstract is not None:
|
170 |
-
title_text = title.text.lower()
|
171 |
-
abstract_text = abstract.text.lower()
|
172 |
-
|
173 |
-
if any(term in title_text or term in abstract_text
|
174 |
-
for term in ['autism', 'asd']):
|
175 |
-
return Paper(
|
176 |
-
title=title.text,
|
177 |
-
abstract=abstract.text,
|
178 |
-
url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
|
179 |
-
published=year.text if year is not None else 'Unknown',
|
180 |
-
relevance_score=1.0 if any(term in title_text
|
181 |
-
for term in ['autism', 'asd']) else 0.5,
|
182 |
-
source='pubmed'
|
183 |
-
)
|
184 |
-
|
185 |
-
except Exception as e:
|
186 |
-
logging.error(f"Error fetching paper {paper_id}: {str(e)}")
|
187 |
-
return None
|
188 |
-
|
189 |
@lru_cache(maxsize=CACHE_SIZE)
|
190 |
def fetch_scholar_papers(self, query: str) -> List[Paper]:
|
191 |
-
"""
|
192 |
-
papers
|
|
|
193 |
try:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
|
202 |
-
|
203 |
-
for result in
|
204 |
-
|
205 |
-
|
|
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
title_abstract = f"{pub.get('title', '')} {pub.get('abstract', '')}".lower()
|
210 |
-
|
211 |
-
if not any(term in title_abstract for term in ['autism', 'asd']):
|
212 |
-
continue
|
213 |
-
|
214 |
-
abstract = pub.get('abstract', '')
|
215 |
-
if not abstract and 'eprint' in result:
|
216 |
-
abstract = "Abstract not available. Please refer to the full paper."
|
217 |
-
|
218 |
-
url = pub.get('url', '')
|
219 |
-
if not url and 'eprint' in result:
|
220 |
-
url = result['eprint']
|
221 |
-
|
222 |
-
papers.append(Paper(
|
223 |
-
title=pub.get('title', 'Untitled'),
|
224 |
-
abstract=abstract[:1000] + '...' if len(abstract) > 1000 else abstract,
|
225 |
-
url=url,
|
226 |
-
published=str(pub.get('year', 'Unknown')),
|
227 |
-
relevance_score=1.0 if 'autism' in pub.get('title', '').lower() else 0.5,
|
228 |
-
source='scholar'
|
229 |
-
))
|
230 |
-
count += 1
|
231 |
|
232 |
-
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
except Exception as e:
|
239 |
logging.error(f"Error fetching Google Scholar papers: {str(e)}")
|
240 |
-
|
241 |
-
return papers
|
242 |
|
243 |
def fetch_all_papers(self, query: str) -> List[Paper]:
|
244 |
"""Fetch papers from all sources concurrently and combine results"""
|
|
|
1 |
import time
|
2 |
import logging
|
3 |
import random
|
|
|
4 |
import requests
|
5 |
+
import arxiv
|
6 |
import xml.etree.ElementTree as ET
|
7 |
from typing import List, Optional
|
8 |
from functools import lru_cache
|
|
|
10 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
11 |
from models.paper import Paper
|
12 |
from utils.text_processor import TextProcessor
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
|
15 |
# Constants
|
16 |
CACHE_SIZE = 128
|
17 |
MAX_PAPERS = 5
|
18 |
SCHOLAR_MAX_PAPERS = 3
|
19 |
+
ARXIV_MAX_PAPERS = 5
|
20 |
MAX_WORKERS = 3 # One thread per data source
|
21 |
|
22 |
class ResearchFetcher:
|
|
|
33 |
self.executor.shutdown(wait=False)
|
34 |
|
35 |
def _setup_scholarly(self):
|
36 |
+
"""Configure scholarly with basic settings"""
|
37 |
self.user_agents = [
|
38 |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
39 |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
40 |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0'
|
41 |
]
|
42 |
+
# Set up a random user agent for scholarly
|
43 |
+
scholarly._get_page = lambda url: requests.get(url, headers={'User-Agent': random.choice(self.user_agents)})
|
44 |
|
45 |
def _rotate_user_agent(self):
|
46 |
"""Rotate user agent for Google Scholar requests"""
|
|
|
75 |
|
76 |
@lru_cache(maxsize=CACHE_SIZE)
|
77 |
def fetch_arxiv_papers(self, query: str) -> List[Paper]:
|
78 |
+
"""Fetch papers from arXiv"""
|
79 |
try:
|
80 |
+
# Ensure query includes autism if not already present
|
81 |
+
if 'autism' not in query.lower():
|
82 |
+
search_query = f"autism {query}"
|
83 |
+
else:
|
84 |
+
search_query = query
|
85 |
+
|
86 |
+
# Search arXiv
|
87 |
search = arxiv.Search(
|
88 |
query=search_query,
|
89 |
+
max_results=ARXIV_MAX_PAPERS,
|
90 |
sort_by=arxiv.SortCriterion.Relevance
|
91 |
)
|
92 |
+
|
93 |
papers = []
|
94 |
+
for result in search.results():
|
95 |
+
# Create Paper object
|
96 |
+
paper = Paper(
|
97 |
+
title=result.title,
|
98 |
+
authors=', '.join([author.name for author in result.authors]),
|
99 |
+
abstract=result.summary,
|
100 |
+
url=result.pdf_url,
|
101 |
+
publication_date=result.published.strftime("%Y-%m-%d"),
|
102 |
+
relevance_score=1.0 if 'autism' in result.title.lower() else 0.8,
|
103 |
+
source="arXiv"
|
104 |
+
)
|
105 |
+
papers.append(paper)
|
106 |
+
|
|
|
|
|
107 |
return papers
|
108 |
+
|
109 |
except Exception as e:
|
110 |
logging.error(f"Error fetching arXiv papers: {str(e)}")
|
111 |
return []
|
112 |
|
113 |
@lru_cache(maxsize=CACHE_SIZE)
|
114 |
def fetch_pubmed_papers(self, query: str) -> List[Paper]:
|
115 |
+
"""Fetch papers from PubMed"""
|
116 |
try:
|
117 |
+
# Ensure query includes autism if not already present
|
118 |
+
if 'autism' not in query.lower():
|
119 |
+
search_query = f"autism {query}"
|
120 |
+
else:
|
121 |
+
search_query = query
|
122 |
+
|
123 |
+
# Encode the query for URL
|
124 |
+
encoded_query = requests.utils.quote(search_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
# Search PubMed
|
127 |
+
search_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term={encoded_query}&retmax=5"
|
128 |
+
search_response = requests.get(search_url)
|
129 |
+
search_tree = ET.fromstring(search_response.content)
|
130 |
|
131 |
+
# Get IDs of papers
|
132 |
+
id_list = search_tree.findall('.//Id')
|
133 |
if not id_list:
|
134 |
return []
|
135 |
|
136 |
+
# Get details for each paper
|
137 |
papers = []
|
138 |
for id_elem in id_list:
|
139 |
+
paper_id = id_elem.text
|
140 |
+
details_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id={paper_id}&retmode=xml"
|
141 |
+
details_response = requests.get(details_url)
|
142 |
+
details_tree = ET.fromstring(details_response.content)
|
143 |
+
|
144 |
+
# Extract article data
|
145 |
+
article = details_tree.find('.//Article')
|
146 |
+
if article is None:
|
147 |
+
continue
|
148 |
+
|
149 |
+
# Get title
|
150 |
+
title_elem = article.find('.//ArticleTitle')
|
151 |
+
title = title_elem.text if title_elem is not None else "No title available"
|
152 |
+
|
153 |
+
# Get abstract
|
154 |
+
abstract_elem = article.find('.//Abstract/AbstractText')
|
155 |
+
abstract = abstract_elem.text if abstract_elem is not None else "No abstract available"
|
156 |
+
|
157 |
+
# Get authors
|
158 |
+
author_list = article.findall('.//Author')
|
159 |
+
authors = []
|
160 |
+
for author in author_list:
|
161 |
+
last_name = author.find('LastName')
|
162 |
+
fore_name = author.find('ForeName')
|
163 |
+
if last_name is not None and fore_name is not None:
|
164 |
+
authors.append(f"{fore_name.text} {last_name.text}")
|
165 |
+
|
166 |
+
# Get publication date
|
167 |
+
pub_date = article.find('.//PubDate')
|
168 |
+
if pub_date is not None:
|
169 |
+
year = pub_date.find('Year')
|
170 |
+
month = pub_date.find('Month')
|
171 |
+
day = pub_date.find('Day')
|
172 |
+
pub_date_str = f"{year.text if year is not None else ''}-{month.text if month is not None else '01'}-{day.text if day is not None else '01'}"
|
173 |
+
else:
|
174 |
+
pub_date_str = "Unknown"
|
175 |
+
|
176 |
+
# Create Paper object
|
177 |
+
paper = Paper(
|
178 |
+
title=title,
|
179 |
+
authors=', '.join(authors) if authors else "Unknown Authors",
|
180 |
+
abstract=abstract,
|
181 |
+
url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
|
182 |
+
publication_date=pub_date_str,
|
183 |
+
relevance_score=1.0 if 'autism' in title.lower() else 0.8,
|
184 |
+
source="PubMed"
|
185 |
+
)
|
186 |
+
papers.append(paper)
|
187 |
|
188 |
return papers
|
189 |
|
|
|
191 |
logging.error(f"Error fetching PubMed papers: {str(e)}")
|
192 |
return []
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
@lru_cache(maxsize=CACHE_SIZE)
|
195 |
def fetch_scholar_papers(self, query: str) -> List[Paper]:
|
196 |
+
"""
|
197 |
+
Fetch papers from Google Scholar
|
198 |
+
"""
|
199 |
try:
|
200 |
+
headers = {'User-Agent': random.choice(self.user_agents)}
|
201 |
+
encoded_query = requests.utils.quote(query)
|
202 |
+
url = f'https://scholar.google.com/scholar?q={encoded_query}&hl=en&as_sdt=0,5'
|
203 |
+
|
204 |
+
response = requests.get(url, headers=headers, timeout=10)
|
205 |
+
if response.status_code != 200:
|
206 |
+
logging.error(f"Google Scholar returned status code {response.status_code}")
|
207 |
+
return []
|
208 |
|
209 |
+
# Use BeautifulSoup to parse the response
|
210 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
211 |
|
212 |
+
papers = []
|
213 |
+
for result in soup.select('.gs_ri')[:5]: # Limit to first 5 results
|
214 |
+
title_elem = result.select_one('.gs_rt')
|
215 |
+
authors_elem = result.select_one('.gs_a')
|
216 |
+
snippet_elem = result.select_one('.gs_rs')
|
217 |
|
218 |
+
if not title_elem:
|
219 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
title = title_elem.get_text(strip=True)
|
222 |
+
authors = authors_elem.get_text(strip=True) if authors_elem else "Unknown Authors"
|
223 |
+
abstract = snippet_elem.get_text(strip=True) if snippet_elem else ""
|
224 |
+
url = title_elem.find('a')['href'] if title_elem.find('a') else ""
|
225 |
|
226 |
+
paper = Paper(
|
227 |
+
title=title,
|
228 |
+
authors=authors,
|
229 |
+
abstract=abstract,
|
230 |
+
url=url,
|
231 |
+
publication_date="", # Date not easily available
|
232 |
+
relevance_score=0.8, # Default score
|
233 |
+
source="Google Scholar"
|
234 |
+
)
|
235 |
+
papers.append(paper)
|
236 |
+
|
237 |
+
return papers
|
238 |
|
239 |
except Exception as e:
|
240 |
logging.error(f"Error fetching Google Scholar papers: {str(e)}")
|
241 |
+
return []
|
|
|
242 |
|
243 |
def fetch_all_papers(self, query: str) -> List[Paper]:
|
244 |
"""Fetch papers from all sources concurrently and combine results"""
|
utils/text_processor.py
CHANGED
@@ -1,26 +1,61 @@
|
|
1 |
import re
|
|
|
|
|
2 |
|
3 |
class TextProcessor:
|
4 |
@staticmethod
|
5 |
def clean_text(text: str) -> str:
|
6 |
-
"""Clean and normalize text content
|
7 |
-
|
8 |
-
return ""
|
9 |
-
|
10 |
-
# Improved text cleaning
|
11 |
text = re.sub(r'[^\w\s.,;:()\-\'"]', ' ', text)
|
12 |
-
text = re.sub(r'\s+', ' ', text)
|
13 |
-
text = text.encode('ascii', 'ignore').decode('ascii') # Better character handling
|
14 |
-
|
15 |
return text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
return
|
|
|
1 |
import re
|
2 |
+
from typing import List
|
3 |
+
from models.paper import Paper
|
4 |
|
5 |
class TextProcessor:
|
6 |
@staticmethod
|
7 |
def clean_text(text: str) -> str:
|
8 |
+
"""Clean and normalize text content"""
|
9 |
+
# Remove special characters but keep basic punctuation
|
|
|
|
|
|
|
10 |
text = re.sub(r'[^\w\s.,;:()\-\'"]', ' ', text)
|
|
|
|
|
|
|
11 |
return text.strip()
|
12 |
+
|
13 |
+
def format_paper(self, title: str, abstract: str) -> str:
|
14 |
+
"""Format paper title and abstract for context"""
|
15 |
+
title = self.clean_text(title)
|
16 |
+
abstract = self.clean_text(abstract)
|
17 |
+
return f"Title: {title}\nAbstract: {abstract}"
|
18 |
+
|
19 |
+
def create_context(self, papers: List[Paper]) -> str:
|
20 |
+
"""Create a context string from a list of papers"""
|
21 |
+
context_parts = []
|
22 |
+
|
23 |
+
for i, paper in enumerate(papers, 1):
|
24 |
+
# Format the paper information with clear structure
|
25 |
+
paper_context = f"""
|
26 |
+
Research Paper {i}:
|
27 |
+
Title: {self.clean_text(paper.title)}
|
28 |
+
Key Points:
|
29 |
+
- Authors: {paper.authors if paper.authors else 'Not specified'}
|
30 |
+
- Publication Date: {paper.publication_date}
|
31 |
+
- Source: {paper.source}
|
32 |
|
33 |
+
Main Findings:
|
34 |
+
{self.format_abstract(paper.abstract)}
|
35 |
+
"""
|
36 |
+
context_parts.append(paper_context)
|
37 |
+
|
38 |
+
# Join all paper contexts with clear separation
|
39 |
+
full_context = "\n" + "="*50 + "\n".join(context_parts)
|
40 |
+
|
41 |
+
return full_context
|
42 |
+
|
43 |
+
def format_abstract(self, abstract: str) -> str:
|
44 |
+
"""Format abstract into bullet points for better readability"""
|
45 |
+
# Clean the abstract
|
46 |
+
clean_abstract = self.clean_text(abstract)
|
47 |
+
|
48 |
+
# Split into sentences
|
49 |
+
sentences = [s.strip() for s in clean_abstract.split('.') if s.strip()]
|
50 |
+
|
51 |
+
# Format as bullet points, combining short sentences
|
52 |
+
bullet_points = []
|
53 |
+
current_point = []
|
54 |
|
55 |
+
for sentence in sentences:
|
56 |
+
current_point.append(sentence)
|
57 |
+
if len(' '.join(current_point)) > 100 or sentence == sentences[-1]:
|
58 |
+
bullet_points.append('- ' + '. '.join(current_point) + '.')
|
59 |
+
current_point = []
|
60 |
|
61 |
+
return '\n'.join(bullet_points)
|