Spaces:
Sleeping
Sleeping
refactor: structure
Browse files- app.py +60 -324
- models/__init__.py +1 -0
- models/paper.py +10 -0
- requirements.txt +2 -1
- services/__init__.py +1 -0
- services/model_handler.py +133 -0
- services/research_fetcher.py +274 -0
- utils/__init__.py +1 -0
- utils/text_processor.py +26 -0
app.py
CHANGED
@@ -1,341 +1,77 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import torch
|
4 |
import logging
|
5 |
-
import
|
6 |
-
from
|
7 |
-
import
|
8 |
-
import requests
|
9 |
-
import xml.etree.ElementTree as ET
|
10 |
-
import re
|
11 |
-
from functools import lru_cache
|
12 |
-
from typing import List, Dict, Optional
|
13 |
-
from dataclasses import dataclass
|
14 |
-
from concurrent.futures import ThreadPoolExecutor
|
15 |
|
16 |
# Configure logging
|
17 |
-
logging.basicConfig(
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
DATA_DIR = "/data" if os.path.exists("/data") else "."
|
21 |
-
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
|
22 |
-
DATASET_PATH = os.path.join(DATASET_DIR, "dataset")
|
23 |
-
MODEL_PATH = "google/flan-t5-small"
|
24 |
-
|
25 |
-
# Constants for better maintainability
|
26 |
-
MAX_ABSTRACT_LENGTH = 1000
|
27 |
-
MAX_PAPERS = 5
|
28 |
-
CACHE_SIZE = 128
|
29 |
-
|
30 |
-
@dataclass
|
31 |
-
class Paper:
|
32 |
-
title: str
|
33 |
-
abstract: str
|
34 |
-
url: str
|
35 |
-
published: str
|
36 |
-
relevance_score: float
|
37 |
-
|
38 |
-
class TextProcessor:
|
39 |
-
@staticmethod
|
40 |
-
def clean_text(text: str) -> str:
|
41 |
-
"""Clean and normalize text content with improved handling"""
|
42 |
-
if not text:
|
43 |
-
return ""
|
44 |
-
|
45 |
-
# Improved text cleaning
|
46 |
-
text = re.sub(r'[^\w\s.,;:()\-\'"]', ' ', text)
|
47 |
-
text = re.sub(r'\s+', ' ', text)
|
48 |
-
text = text.encode('ascii', 'ignore').decode('ascii') # Better character handling
|
49 |
-
|
50 |
-
return text.strip()
|
51 |
-
|
52 |
-
@staticmethod
|
53 |
-
def format_paper(title: str, abstract: str) -> str:
|
54 |
-
"""Format paper information with improved structure"""
|
55 |
-
title = TextProcessor.clean_text(title)
|
56 |
-
abstract = TextProcessor.clean_text(abstract)
|
57 |
-
|
58 |
-
if len(abstract) > MAX_ABSTRACT_LENGTH:
|
59 |
-
abstract = abstract[:MAX_ABSTRACT_LENGTH-3] + "..."
|
60 |
-
|
61 |
-
return f"""Title: {title}\nAbstract: {abstract}\n---"""
|
62 |
-
|
63 |
-
class ResearchFetcher:
|
64 |
def __init__(self):
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
"
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
)
|
78 |
-
|
79 |
-
|
80 |
-
for result in client.results(search):
|
81 |
-
title_lower = result.title.lower()
|
82 |
-
summary_lower = result.summary.lower()
|
83 |
-
|
84 |
-
if any(term in title_lower or term in summary_lower
|
85 |
-
for term in ['autism', 'asd', 'autism spectrum disorder']):
|
86 |
-
papers.append(Paper(
|
87 |
-
title=result.title,
|
88 |
-
abstract=result.summary,
|
89 |
-
url=result.pdf_url,
|
90 |
-
published=result.published.strftime("%Y-%m-%d"),
|
91 |
-
relevance_score=1.0 if 'autism' in title_lower else 0.8
|
92 |
-
))
|
93 |
-
|
94 |
-
return papers
|
95 |
-
|
96 |
-
@lru_cache(maxsize=CACHE_SIZE)
|
97 |
-
def fetch_pubmed_papers(self, query: str) -> List[Paper]:
|
98 |
-
"""Fetch papers from PubMed with improved error handling"""
|
99 |
-
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
|
100 |
-
search_term = f"(autism[Title/Abstract] OR ASD[Title/Abstract]) AND ({query}[Title/Abstract])"
|
101 |
-
|
102 |
-
try:
|
103 |
-
# Fetch IDs efficiently
|
104 |
-
response = self.session.get(
|
105 |
-
f"{base_url}/esearch.fcgi",
|
106 |
-
params={
|
107 |
-
'db': 'pubmed',
|
108 |
-
'term': search_term,
|
109 |
-
'retmax': MAX_PAPERS,
|
110 |
-
'sort': 'relevance',
|
111 |
-
'retmode': 'xml'
|
112 |
-
},
|
113 |
-
timeout=10
|
114 |
-
)
|
115 |
-
response.raise_for_status()
|
116 |
-
|
117 |
-
root = ET.fromstring(response.content)
|
118 |
-
id_list = root.findall('.//Id')
|
119 |
-
|
120 |
-
if not id_list:
|
121 |
-
return []
|
122 |
-
|
123 |
-
# Fetch details in parallel
|
124 |
-
with ThreadPoolExecutor(max_workers=2) as executor:
|
125 |
-
paper_futures = [
|
126 |
-
executor.submit(self._fetch_paper_details, base_url, id_elem.text)
|
127 |
-
for id_elem in id_list
|
128 |
-
]
|
129 |
-
|
130 |
-
return [paper for future in paper_futures
|
131 |
-
for paper in [future.result()] if paper is not None]
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
logging.error(f"Error fetching PubMed papers: {str(e)}")
|
135 |
-
return []
|
136 |
-
|
137 |
-
def _fetch_paper_details(self, base_url: str, paper_id: str) -> Optional[Paper]:
|
138 |
-
"""Fetch individual paper details with timeout"""
|
139 |
-
try:
|
140 |
-
response = self.session.get(
|
141 |
-
f"{base_url}/efetch.fcgi",
|
142 |
-
params={
|
143 |
-
'db': 'pubmed',
|
144 |
-
'id': paper_id,
|
145 |
-
'retmode': 'xml'
|
146 |
-
},
|
147 |
-
timeout=5
|
148 |
-
)
|
149 |
-
response.raise_for_status()
|
150 |
-
|
151 |
-
article = ET.fromstring(response.content).find('.//PubmedArticle')
|
152 |
-
if article is None:
|
153 |
-
return None
|
154 |
-
|
155 |
-
title = article.find('.//ArticleTitle')
|
156 |
-
abstract = article.find('.//Abstract/AbstractText')
|
157 |
-
year = article.find('.//PubDate/Year')
|
158 |
-
|
159 |
-
if title is not None and abstract is not None:
|
160 |
-
title_text = title.text.lower()
|
161 |
-
abstract_text = abstract.text.lower()
|
162 |
-
|
163 |
-
if any(term in title_text or term in abstract_text
|
164 |
-
for term in ['autism', 'asd']):
|
165 |
-
return Paper(
|
166 |
-
title=title.text,
|
167 |
-
abstract=abstract.text,
|
168 |
-
url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
|
169 |
-
published=year.text if year is not None else 'Unknown',
|
170 |
-
relevance_score=1.0 if any(term in title_text
|
171 |
-
for term in ['autism', 'asd']) else 0.5
|
172 |
-
)
|
173 |
-
|
174 |
-
except Exception as e:
|
175 |
-
logging.error(f"Error fetching paper {paper_id}: {str(e)}")
|
176 |
return None
|
177 |
-
|
178 |
-
class ModelHandler:
|
179 |
-
def __init__(self):
|
180 |
-
self.model = None
|
181 |
-
self.tokenizer = None
|
182 |
-
self._initialize_model()
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
MODEL_PATH,
|
192 |
-
device_map={"": "cpu"},
|
193 |
-
torch_dtype=torch.float32,
|
194 |
-
low_cpu_mem_usage=True
|
195 |
-
)
|
196 |
-
return model, tokenizer
|
197 |
-
except Exception as e:
|
198 |
-
logging.error(f"Error loading model: {str(e)}")
|
199 |
-
return None, None
|
200 |
|
201 |
-
def
|
202 |
-
"""
|
203 |
-
self.model, self.tokenizer = self._load_model()
|
204 |
-
|
205 |
-
def generate_answer(self, question: str, context: str, max_length: int = 512) -> str:
|
206 |
-
"""Generate answer with FLAN-T5 optimized parameters"""
|
207 |
-
if self.model is None or self.tokenizer is None:
|
208 |
-
return "Error: Model loading failed. Please try again later."
|
209 |
-
|
210 |
-
try:
|
211 |
-
# FLAN-T5 responds better to direct instruction prompts
|
212 |
-
input_text = f"""You are an expert in autism research. Provide a clear, structured, and evidence-based explanation of autism using the provided research context.
|
213 |
-
|
214 |
-
Research Context:
|
215 |
-
{context}
|
216 |
-
|
217 |
-
Instructions:
|
218 |
-
1. Start with a concise definition of autism.
|
219 |
-
2. Explain the key characteristics and symptoms.
|
220 |
-
3. Discuss potential causes and contributing factors (e.g., genetic, environmental).
|
221 |
-
4. Mention current research findings and treatments.
|
222 |
-
5. Use clear, accessible language.
|
223 |
-
6. Cite specific studies or papers when relevant.
|
224 |
-
|
225 |
-
Answer:"""
|
226 |
-
|
227 |
-
inputs = self.tokenizer(
|
228 |
-
input_text,
|
229 |
-
return_tensors="pt",
|
230 |
-
max_length=1024,
|
231 |
-
truncation=True,
|
232 |
-
padding=True
|
233 |
-
)
|
234 |
-
|
235 |
-
with torch.inference_mode():
|
236 |
-
outputs = self.model.generate(
|
237 |
-
**inputs,
|
238 |
-
max_length=max_length,
|
239 |
-
min_length=100,
|
240 |
-
num_beams=3,
|
241 |
-
length_penalty=1.0,
|
242 |
-
temperature=0.6,
|
243 |
-
repetition_penalty=1.2,
|
244 |
-
early_stopping=True,
|
245 |
-
no_repeat_ngram_size=2,
|
246 |
-
do_sample=True,
|
247 |
-
top_k=30,
|
248 |
-
top_p=0.92
|
249 |
-
)
|
250 |
-
|
251 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
252 |
-
response = TextProcessor.clean_text(response)
|
253 |
-
|
254 |
-
if len(response.strip()) < 50:
|
255 |
-
return self._get_fallback_response()
|
256 |
-
|
257 |
-
return self._format_response(response)
|
258 |
-
|
259 |
-
except Exception as e:
|
260 |
-
logging.error(f"Error generating response: {str(e)}")
|
261 |
-
return "Error: Could not generate response. Please try again."
|
262 |
-
|
263 |
-
@staticmethod
|
264 |
-
def _get_fallback_response() -> str:
|
265 |
-
"""Provide a structured fallback response"""
|
266 |
-
return """Based on the available research, I cannot provide a specific answer to your question. Please try:
|
267 |
-
|
268 |
-
1. Rephrasing your question to be more specific
|
269 |
-
2. Asking about:
|
270 |
-
- Specific behaviors or characteristics
|
271 |
-
- Intervention strategies
|
272 |
-
- Research findings
|
273 |
-
- Support approaches
|
274 |
-
|
275 |
-
This will help me provide more accurate, research-based information."""
|
276 |
-
|
277 |
-
@staticmethod
|
278 |
-
def _format_response(response: str) -> str:
|
279 |
-
"""Format the response for better readability"""
|
280 |
-
sections = response.split('\n\n')
|
281 |
-
formatted_sections = []
|
282 |
-
|
283 |
-
for i, section in enumerate(sections):
|
284 |
-
if i == 0:
|
285 |
-
formatted_sections.append(f"### Overview\n{section}")
|
286 |
-
elif i == len(sections) - 1:
|
287 |
-
formatted_sections.append(f"### Key Takeaways\n{section}")
|
288 |
-
else:
|
289 |
-
formatted_sections.append(section)
|
290 |
-
|
291 |
-
return '\n\n'.join(formatted_sections)
|
292 |
-
|
293 |
-
def main():
|
294 |
-
st.title("🧩 AMA Autism")
|
295 |
-
st.write("""
|
296 |
-
Ask questions about autism and get research-based answers from scientific papers.
|
297 |
-
For best results, be specific in your questions.
|
298 |
-
""")
|
299 |
-
|
300 |
-
query = st.text_input("What would you like to know about autism? ✨")
|
301 |
-
|
302 |
-
if query:
|
303 |
-
with st.status("Researching your question...") as status:
|
304 |
-
# Initialize handlers
|
305 |
-
research_fetcher = ResearchFetcher()
|
306 |
-
model_handler = ModelHandler()
|
307 |
-
|
308 |
-
# Fetch papers concurrently
|
309 |
-
with ThreadPoolExecutor(max_workers=2) as executor:
|
310 |
-
arxiv_future = executor.submit(research_fetcher.fetch_arxiv_papers, query)
|
311 |
-
pubmed_future = executor.submit(research_fetcher.fetch_pubmed_papers, query)
|
312 |
-
|
313 |
-
papers = arxiv_future.result() + pubmed_future.result()
|
314 |
-
|
315 |
-
if not papers:
|
316 |
-
st.warning("No relevant research papers found. Please try a different search term.")
|
317 |
-
return
|
318 |
-
|
319 |
-
# Sort papers by relevance
|
320 |
-
papers.sort(key=lambda x: x.relevance_score, reverse=True)
|
321 |
-
|
322 |
-
# Prepare context from top papers
|
323 |
-
context = "\n".join(
|
324 |
-
TextProcessor.format_paper(paper.title, paper.abstract)
|
325 |
-
for paper in papers[:3]
|
326 |
-
)
|
327 |
-
|
328 |
-
# Generate answer
|
329 |
-
st.write("Analyzing research papers...")
|
330 |
-
answer = model_handler.generate_answer(query, context)
|
331 |
-
status.write("I've got it!")
|
332 |
-
|
333 |
with st.expander("📚 View source papers"):
|
334 |
for paper in papers:
|
335 |
st.markdown(f"- [{paper.title}]({paper.url}) ({paper.published})")
|
|
|
|
|
|
|
|
|
336 |
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
if __name__ == "__main__":
|
341 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import logging
|
3 |
+
from services.research_fetcher import ResearchFetcher
|
4 |
+
from services.model_handler import ModelHandler
|
5 |
+
from utils.text_processor import TextProcessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Configure logging
|
8 |
+
logging.basicConfig(
|
9 |
+
level=logging.INFO,
|
10 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
11 |
+
)
|
12 |
|
13 |
+
class AutismResearchApp:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
+
"""Initialize the application components"""
|
16 |
+
self.research_fetcher = ResearchFetcher()
|
17 |
+
self.model_handler = ModelHandler()
|
18 |
+
self.text_processor = TextProcessor()
|
19 |
+
self._setup_streamlit()
|
20 |
|
21 |
+
def _setup_streamlit(self):
|
22 |
+
"""Setup Streamlit UI components"""
|
23 |
+
st.title("🧩 AMA Autism")
|
24 |
+
st.write("""
|
25 |
+
Ask questions about autism and get research-based answers from scientific papers.
|
26 |
+
For best results, be specific in your questions.
|
27 |
+
""")
|
28 |
+
|
29 |
+
def _fetch_research(self, query: str):
|
30 |
+
"""Fetch research papers for the given query"""
|
31 |
+
papers = self.research_fetcher.fetch_all_papers(query)
|
32 |
+
if not papers:
|
33 |
+
st.warning("No relevant research papers found. Please try a different search term.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return None
|
35 |
+
return papers
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def _generate_answer(self, query: str, papers):
|
38 |
+
"""Generate answer based on research papers"""
|
39 |
+
context = "\n".join(
|
40 |
+
self.text_processor.format_paper(paper.title, paper.abstract)
|
41 |
+
for paper in papers[:3]
|
42 |
+
)
|
43 |
+
return self.model_handler.generate_answer(query, context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
def _display_sources(self, papers):
|
46 |
+
"""Display source papers in an expander"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
with st.expander("📚 View source papers"):
|
48 |
for paper in papers:
|
49 |
st.markdown(f"- [{paper.title}]({paper.url}) ({paper.published})")
|
50 |
+
|
51 |
+
def run(self):
|
52 |
+
"""Run the main application loop"""
|
53 |
+
query = st.text_input("What would you like to know about autism? ✨")
|
54 |
|
55 |
+
if query:
|
56 |
+
with st.status("Researching your question...") as status:
|
57 |
+
# Fetch papers
|
58 |
+
papers = self._fetch_research(query)
|
59 |
+
if not papers:
|
60 |
+
return
|
61 |
+
|
62 |
+
# Generate and display answer
|
63 |
+
st.write("Analyzing research papers...")
|
64 |
+
answer = self._generate_answer(query, papers)
|
65 |
+
status.write("I've got it!")
|
66 |
+
|
67 |
+
# Display results
|
68 |
+
self._display_sources(papers)
|
69 |
+
st.success("Research analysis complete!")
|
70 |
+
st.markdown(answer)
|
71 |
+
|
72 |
+
def main():
|
73 |
+
app = AutismResearchApp()
|
74 |
+
app.run()
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
main()
|
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
models/paper.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
@dataclass
|
4 |
+
class Paper:
|
5 |
+
title: str
|
6 |
+
abstract: str
|
7 |
+
url: str
|
8 |
+
published: str
|
9 |
+
relevance_score: float
|
10 |
+
source: str = "unknown" # Track where the paper came from
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ accelerate>=0.26.0
|
|
7 |
numpy>=1.24.0
|
8 |
pandas>=2.2.0
|
9 |
requests>=2.31.0
|
10 |
-
arxiv>=2.1.0
|
|
|
|
7 |
numpy>=1.24.0
|
8 |
pandas>=2.2.0
|
9 |
requests>=2.31.0
|
10 |
+
arxiv>=2.1.0
|
11 |
+
scholarly==1.7.11
|
services/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
services/model_handler.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import logging
|
3 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
4 |
+
import streamlit as st
|
5 |
+
from utils.text_processor import TextProcessor
|
6 |
+
|
7 |
+
MODEL_PATH = "google/flan-t5-small"
|
8 |
+
|
9 |
+
class ModelHandler:
|
10 |
+
def __init__(self):
|
11 |
+
self.model = None
|
12 |
+
self.tokenizer = None
|
13 |
+
self._initialize_model()
|
14 |
+
|
15 |
+
@staticmethod
|
16 |
+
@st.cache_resource
|
17 |
+
def _load_model():
|
18 |
+
"""Load FLAN-T5 Small model with optimized settings"""
|
19 |
+
try:
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
21 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
22 |
+
MODEL_PATH,
|
23 |
+
device_map={"": "cpu"},
|
24 |
+
torch_dtype=torch.float32,
|
25 |
+
low_cpu_mem_usage=True
|
26 |
+
)
|
27 |
+
return model, tokenizer
|
28 |
+
except Exception as e:
|
29 |
+
logging.error(f"Error loading model: {str(e)}")
|
30 |
+
return None, None
|
31 |
+
|
32 |
+
def _initialize_model(self):
|
33 |
+
"""Initialize model and tokenizer"""
|
34 |
+
self.model, self.tokenizer = self._load_model()
|
35 |
+
|
36 |
+
def generate_answer(self, question: str, context: str, max_length: int = 512) -> str:
|
37 |
+
"""Generate natural, human-readable answers using research context"""
|
38 |
+
if self.model is None or self.tokenizer is None:
|
39 |
+
return "Error: Model loading failed. Please try again later."
|
40 |
+
|
41 |
+
try:
|
42 |
+
input_text = f"""You are an expert explaining autism research to a general audience. Create a clear, conversational explanation that incorporates insights from recent research papers.
|
43 |
+
|
44 |
+
Question: {question}
|
45 |
+
|
46 |
+
Available Research:
|
47 |
+
{context}
|
48 |
+
|
49 |
+
Instructions:
|
50 |
+
1. Write in a clear, conversational style
|
51 |
+
2. Start with a brief, general explanation
|
52 |
+
3. Support your points with research, using phrases like "According to [Paper Title]..." or "Research has shown..."
|
53 |
+
4. Focus on making complex concepts understandable
|
54 |
+
5. Maintain a helpful and informative tone
|
55 |
+
|
56 |
+
Remember to write like you're explaining to someone interested in learning about autism, not like you're writing a technical paper."""
|
57 |
+
|
58 |
+
inputs = self.tokenizer(
|
59 |
+
input_text,
|
60 |
+
return_tensors="pt",
|
61 |
+
max_length=1024,
|
62 |
+
truncation=True,
|
63 |
+
padding=True
|
64 |
+
)
|
65 |
+
|
66 |
+
with torch.inference_mode():
|
67 |
+
outputs = self.model.generate(
|
68 |
+
**inputs,
|
69 |
+
max_length=max_length,
|
70 |
+
min_length=150,
|
71 |
+
num_beams=4,
|
72 |
+
length_penalty=1.0,
|
73 |
+
temperature=0.8,
|
74 |
+
repetition_penalty=1.3,
|
75 |
+
early_stopping=True,
|
76 |
+
no_repeat_ngram_size=3,
|
77 |
+
do_sample=True,
|
78 |
+
top_k=40,
|
79 |
+
top_p=0.95
|
80 |
+
)
|
81 |
+
|
82 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
+
response = TextProcessor.clean_text(response)
|
84 |
+
|
85 |
+
if len(response.strip()) < 50:
|
86 |
+
return self._get_fallback_response()
|
87 |
+
|
88 |
+
return self._format_response(response)
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
logging.error(f"Error generating response: {str(e)}")
|
92 |
+
return "Error: Could not generate response. Please try again."
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def _get_fallback_response() -> str:
|
96 |
+
"""Provide a friendly, helpful fallback response"""
|
97 |
+
return """I apologize, but I couldn't find enough specific research to properly answer your question. To help you get better information, you could:
|
98 |
+
|
99 |
+
• Ask about specific aspects of autism you're interested in
|
100 |
+
• Focus on particular topics like:
|
101 |
+
- Early signs and diagnosis
|
102 |
+
- Treatment approaches
|
103 |
+
- Latest research findings
|
104 |
+
- Support strategies
|
105 |
+
|
106 |
+
This will help me provide more detailed, research-backed information that's relevant to your interests."""
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def _format_response(response: str) -> str:
|
110 |
+
"""Format the response to be more readable and engaging"""
|
111 |
+
# Clean up the response
|
112 |
+
response = response.replace(" 1.", "\n\n1.")
|
113 |
+
response = response.replace(" 2.", "\n2.")
|
114 |
+
response = response.replace(" 3.", "\n3.")
|
115 |
+
|
116 |
+
# Split into paragraphs for better readability
|
117 |
+
paragraphs = response.split('\n\n')
|
118 |
+
formatted_paragraphs = []
|
119 |
+
|
120 |
+
for paragraph in paragraphs:
|
121 |
+
# Format citations to stand out
|
122 |
+
if "According to" in paragraph or "Research" in paragraph:
|
123 |
+
paragraph = f"*{paragraph}*"
|
124 |
+
|
125 |
+
# Add bullet points for lists
|
126 |
+
if paragraph.strip().startswith(('1.', '2.', '3.')):
|
127 |
+
paragraph = paragraph.replace('1.', '•')
|
128 |
+
paragraph = paragraph.replace('2.', '•')
|
129 |
+
paragraph = paragraph.replace('3.', '•')
|
130 |
+
|
131 |
+
formatted_paragraphs.append(paragraph)
|
132 |
+
|
133 |
+
return '\n\n'.join(formatted_paragraphs)
|
services/research_fetcher.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import logging
|
3 |
+
import random
|
4 |
+
import arxiv
|
5 |
+
import requests
|
6 |
+
import xml.etree.ElementTree as ET
|
7 |
+
from typing import List, Optional
|
8 |
+
from functools import lru_cache
|
9 |
+
from scholarly import scholarly
|
10 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
11 |
+
from models.paper import Paper
|
12 |
+
from utils.text_processor import TextProcessor
|
13 |
+
|
14 |
+
# Constants
|
15 |
+
CACHE_SIZE = 128
|
16 |
+
MAX_PAPERS = 5
|
17 |
+
SCHOLAR_MAX_PAPERS = 3
|
18 |
+
MAX_WORKERS = 3 # One thread per data source
|
19 |
+
|
20 |
+
class ResearchFetcher:
|
21 |
+
def __init__(self):
|
22 |
+
self.session = requests.Session()
|
23 |
+
self._last_request_time = 0
|
24 |
+
self._min_request_interval = 0.34
|
25 |
+
self._max_retries = 3
|
26 |
+
self._setup_scholarly()
|
27 |
+
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
28 |
+
|
29 |
+
def __del__(self):
|
30 |
+
"""Cleanup executor on deletion"""
|
31 |
+
self.executor.shutdown(wait=False)
|
32 |
+
|
33 |
+
def _setup_scholarly(self):
|
34 |
+
"""Configure scholarly with rotating user agents"""
|
35 |
+
self.user_agents = [
|
36 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
37 |
+
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
38 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0'
|
39 |
+
]
|
40 |
+
scholarly.use_proxy(None)
|
41 |
+
|
42 |
+
def _rotate_user_agent(self):
|
43 |
+
"""Rotate user agent for Google Scholar requests"""
|
44 |
+
return random.choice(self.user_agents)
|
45 |
+
|
46 |
+
def _wait_for_rate_limit(self):
|
47 |
+
"""Ensure we don't exceed PubMed's rate limit"""
|
48 |
+
current_time = time.time()
|
49 |
+
time_since_last = current_time - self._last_request_time
|
50 |
+
if time_since_last < self._min_request_interval:
|
51 |
+
time.sleep(self._min_request_interval - time_since_last)
|
52 |
+
self._last_request_time = time.time()
|
53 |
+
|
54 |
+
def _make_request_with_retry(self, url: str, params: dict, timeout: int = 10) -> Optional[requests.Response]:
|
55 |
+
"""Make a request with retries and rate limiting"""
|
56 |
+
for attempt in range(self._max_retries):
|
57 |
+
try:
|
58 |
+
self._wait_for_rate_limit()
|
59 |
+
response = self.session.get(url, params=params, timeout=timeout)
|
60 |
+
response.raise_for_status()
|
61 |
+
return response
|
62 |
+
except requests.exceptions.RequestException as e:
|
63 |
+
if isinstance(e, requests.exceptions.HTTPError) and e.response.status_code == 429:
|
64 |
+
wait_time = (attempt + 1) * self._min_request_interval * 2
|
65 |
+
logging.warning(f"Rate limit hit, waiting {wait_time} seconds...")
|
66 |
+
time.sleep(wait_time)
|
67 |
+
continue
|
68 |
+
if attempt == self._max_retries - 1:
|
69 |
+
logging.error(f"Error after {self._max_retries} retries: {str(e)}")
|
70 |
+
return None
|
71 |
+
return None
|
72 |
+
|
73 |
+
@lru_cache(maxsize=CACHE_SIZE)
|
74 |
+
def fetch_arxiv_papers(self, query: str) -> List[Paper]:
|
75 |
+
"""Fetch papers from arXiv with improved filtering"""
|
76 |
+
try:
|
77 |
+
client = arxiv.Client()
|
78 |
+
search_query = f"(ti:autism OR abs:autism) AND (ti:\"{query}\" OR abs:\"{query}\") AND cat:q-bio"
|
79 |
+
|
80 |
+
search = arxiv.Search(
|
81 |
+
query=search_query,
|
82 |
+
max_results=MAX_PAPERS,
|
83 |
+
sort_by=arxiv.SortCriterion.Relevance
|
84 |
+
)
|
85 |
+
|
86 |
+
papers = []
|
87 |
+
for result in client.results(search):
|
88 |
+
title_lower = result.title.lower()
|
89 |
+
summary_lower = result.summary.lower()
|
90 |
+
|
91 |
+
if any(term in title_lower or term in summary_lower
|
92 |
+
for term in ['autism', 'asd', 'autism spectrum disorder']):
|
93 |
+
papers.append(Paper(
|
94 |
+
title=result.title,
|
95 |
+
abstract=result.summary,
|
96 |
+
url=result.pdf_url,
|
97 |
+
published=result.published.strftime("%Y-%m-%d"),
|
98 |
+
relevance_score=1.0 if 'autism' in title_lower else 0.8,
|
99 |
+
source='arxiv'
|
100 |
+
))
|
101 |
+
|
102 |
+
return papers
|
103 |
+
except Exception as e:
|
104 |
+
logging.error(f"Error fetching arXiv papers: {str(e)}")
|
105 |
+
return []
|
106 |
+
|
107 |
+
@lru_cache(maxsize=CACHE_SIZE)
|
108 |
+
def fetch_pubmed_papers(self, query: str) -> List[Paper]:
|
109 |
+
"""Fetch papers from PubMed with improved error handling and rate limiting"""
|
110 |
+
try:
|
111 |
+
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
|
112 |
+
search_term = f"(autism[Title/Abstract] OR ASD[Title/Abstract]) AND ({query}[Title/Abstract])"
|
113 |
+
|
114 |
+
response = self._make_request_with_retry(
|
115 |
+
f"{base_url}/esearch.fcgi",
|
116 |
+
params={
|
117 |
+
'db': 'pubmed',
|
118 |
+
'term': search_term,
|
119 |
+
'retmax': MAX_PAPERS,
|
120 |
+
'sort': 'relevance',
|
121 |
+
'retmode': 'xml'
|
122 |
+
}
|
123 |
+
)
|
124 |
+
|
125 |
+
if not response:
|
126 |
+
return []
|
127 |
+
|
128 |
+
root = ET.fromstring(response.content)
|
129 |
+
id_list = root.findall('.//Id')
|
130 |
+
|
131 |
+
if not id_list:
|
132 |
+
return []
|
133 |
+
|
134 |
+
papers = []
|
135 |
+
for id_elem in id_list:
|
136 |
+
paper = self._fetch_paper_details(base_url, id_elem.text)
|
137 |
+
if paper:
|
138 |
+
papers.append(paper)
|
139 |
+
|
140 |
+
return papers
|
141 |
+
|
142 |
+
except Exception as e:
|
143 |
+
logging.error(f"Error fetching PubMed papers: {str(e)}")
|
144 |
+
return []
|
145 |
+
|
146 |
+
def _fetch_paper_details(self, base_url: str, paper_id: str) -> Optional[Paper]:
|
147 |
+
"""Fetch individual paper details with rate limiting and retries"""
|
148 |
+
try:
|
149 |
+
response = self._make_request_with_retry(
|
150 |
+
f"{base_url}/efetch.fcgi",
|
151 |
+
params={
|
152 |
+
'db': 'pubmed',
|
153 |
+
'id': paper_id,
|
154 |
+
'retmode': 'xml'
|
155 |
+
}
|
156 |
+
)
|
157 |
+
|
158 |
+
if not response:
|
159 |
+
return None
|
160 |
+
|
161 |
+
article = ET.fromstring(response.content).find('.//PubmedArticle')
|
162 |
+
if article is None:
|
163 |
+
return None
|
164 |
+
|
165 |
+
title = article.find('.//ArticleTitle')
|
166 |
+
abstract = article.find('.//Abstract/AbstractText')
|
167 |
+
year = article.find('.//PubDate/Year')
|
168 |
+
|
169 |
+
if title is not None and abstract is not None:
|
170 |
+
title_text = title.text.lower()
|
171 |
+
abstract_text = abstract.text.lower()
|
172 |
+
|
173 |
+
if any(term in title_text or term in abstract_text
|
174 |
+
for term in ['autism', 'asd']):
|
175 |
+
return Paper(
|
176 |
+
title=title.text,
|
177 |
+
abstract=abstract.text,
|
178 |
+
url=f"https://pubmed.ncbi.nlm.nih.gov/{paper_id}/",
|
179 |
+
published=year.text if year is not None else 'Unknown',
|
180 |
+
relevance_score=1.0 if any(term in title_text
|
181 |
+
for term in ['autism', 'asd']) else 0.5,
|
182 |
+
source='pubmed'
|
183 |
+
)
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
logging.error(f"Error fetching paper {paper_id}: {str(e)}")
|
187 |
+
return None
|
188 |
+
|
189 |
+
@lru_cache(maxsize=CACHE_SIZE)
|
190 |
+
def fetch_scholar_papers(self, query: str) -> List[Paper]:
|
191 |
+
"""Fetch papers from Google Scholar with rate limiting"""
|
192 |
+
papers = []
|
193 |
+
try:
|
194 |
+
if 'autism' not in query.lower():
|
195 |
+
search_query = f"autism {query}"
|
196 |
+
else:
|
197 |
+
search_query = query
|
198 |
+
|
199 |
+
scholarly.set_headers({'User-Agent': self._rotate_user_agent()})
|
200 |
+
search_results = scholarly.search_pubs(search_query)
|
201 |
+
|
202 |
+
count = 0
|
203 |
+
for result in search_results:
|
204 |
+
if count >= SCHOLAR_MAX_PAPERS:
|
205 |
+
break
|
206 |
+
|
207 |
+
try:
|
208 |
+
pub = result['bib']
|
209 |
+
title_abstract = f"{pub.get('title', '')} {pub.get('abstract', '')}".lower()
|
210 |
+
|
211 |
+
if not any(term in title_abstract for term in ['autism', 'asd']):
|
212 |
+
continue
|
213 |
+
|
214 |
+
abstract = pub.get('abstract', '')
|
215 |
+
if not abstract and 'eprint' in result:
|
216 |
+
abstract = "Abstract not available. Please refer to the full paper."
|
217 |
+
|
218 |
+
url = pub.get('url', '')
|
219 |
+
if not url and 'eprint' in result:
|
220 |
+
url = result['eprint']
|
221 |
+
|
222 |
+
papers.append(Paper(
|
223 |
+
title=pub.get('title', 'Untitled'),
|
224 |
+
abstract=abstract[:1000] + '...' if len(abstract) > 1000 else abstract,
|
225 |
+
url=url,
|
226 |
+
published=str(pub.get('year', 'Unknown')),
|
227 |
+
relevance_score=1.0 if 'autism' in pub.get('title', '').lower() else 0.5,
|
228 |
+
source='scholar'
|
229 |
+
))
|
230 |
+
count += 1
|
231 |
+
|
232 |
+
time.sleep(random.uniform(1.0, 2.0))
|
233 |
+
|
234 |
+
except Exception as e:
|
235 |
+
logging.error(f"Error processing Scholar result: {str(e)}")
|
236 |
+
continue
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
logging.error(f"Error fetching Google Scholar papers: {str(e)}")
|
240 |
+
|
241 |
+
return papers
|
242 |
+
|
243 |
+
def fetch_all_papers(self, query: str) -> List[Paper]:
|
244 |
+
"""Fetch papers from all sources concurrently and combine results"""
|
245 |
+
all_papers = []
|
246 |
+
futures = []
|
247 |
+
|
248 |
+
# Submit tasks to thread pool
|
249 |
+
try:
|
250 |
+
futures.append(self.executor.submit(self.fetch_arxiv_papers, query))
|
251 |
+
futures.append(self.executor.submit(self.fetch_pubmed_papers, query))
|
252 |
+
futures.append(self.executor.submit(self.fetch_scholar_papers, query))
|
253 |
+
|
254 |
+
# Collect results as they complete
|
255 |
+
for future in as_completed(futures):
|
256 |
+
try:
|
257 |
+
papers = future.result()
|
258 |
+
all_papers.extend(papers)
|
259 |
+
except Exception as e:
|
260 |
+
logging.error(f"Error collecting papers from source: {str(e)}")
|
261 |
+
except Exception as e:
|
262 |
+
logging.error(f"Error in concurrent paper fetching: {str(e)}")
|
263 |
+
|
264 |
+
# Sort and deduplicate papers
|
265 |
+
seen_titles = set()
|
266 |
+
unique_papers = []
|
267 |
+
|
268 |
+
for paper in sorted(all_papers, key=lambda x: x.relevance_score, reverse=True):
|
269 |
+
title_key = paper.title.lower()
|
270 |
+
if title_key not in seen_titles:
|
271 |
+
seen_titles.add(title_key)
|
272 |
+
unique_papers.append(paper)
|
273 |
+
|
274 |
+
return unique_papers[:MAX_PAPERS]
|
utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
utils/text_processor.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
class TextProcessor:
|
4 |
+
@staticmethod
|
5 |
+
def clean_text(text: str) -> str:
|
6 |
+
"""Clean and normalize text content with improved handling"""
|
7 |
+
if not text:
|
8 |
+
return ""
|
9 |
+
|
10 |
+
# Improved text cleaning
|
11 |
+
text = re.sub(r'[^\w\s.,;:()\-\'"]', ' ', text)
|
12 |
+
text = re.sub(r'\s+', ' ', text)
|
13 |
+
text = text.encode('ascii', 'ignore').decode('ascii') # Better character handling
|
14 |
+
|
15 |
+
return text.strip()
|
16 |
+
|
17 |
+
@staticmethod
|
18 |
+
def format_paper(title: str, abstract: str, max_length: int = 1000) -> str:
|
19 |
+
"""Format paper information with improved structure"""
|
20 |
+
title = TextProcessor.clean_text(title)
|
21 |
+
abstract = TextProcessor.clean_text(abstract)
|
22 |
+
|
23 |
+
if len(abstract) > max_length:
|
24 |
+
abstract = abstract[:max_length-3] + "..."
|
25 |
+
|
26 |
+
return f"""Title: {title}\nAbstract: {abstract}\n---"""
|