Spaces:
Sleeping
Sleeping
File size: 8,218 Bytes
99637f2 f91cc3b 0f8445a 8108db5 4a9703a 8108db5 99637f2 0452175 99637f2 8108db5 f68ac31 cc0b0d6 cc41495 4a9703a cc41495 cc0b0d6 62b3157 4a9703a cc41495 cc0b0d6 f68ac31 cc0b0d6 4a9703a cc0b0d6 f68ac31 cc0b0d6 cc41495 62b3157 cc41495 62b3157 cc41495 4a9703a cc41495 62b3157 4a9703a cc41495 62b3157 cc41495 99637f2 4a9703a 0452175 8108db5 54a5022 f99a008 42d1dd5 f68ac31 f99a008 f68ac31 f99a008 42d1dd5 f68ac31 42d1dd5 92c1c48 42d1dd5 92c1c48 f68ac31 92c1c48 42d1dd5 f68ac31 42d1dd5 f68ac31 42d1dd5 92c1c48 42d1dd5 f68ac31 42d1dd5 f68ac31 42d1dd5 f68ac31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import numpy as np
import faiss
import arxiv
from datasets import Dataset
import os
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
import torch
import logging
import requests
from datetime import datetime
import xml.etree.ElementTree as ET
from time import sleep
# Configure logging
logging.basicConfig(level=logging.INFO)
# Define data paths
DATA_DIR = os.getenv("DATA_DIR", "/data" if os.path.exists("/data") else ".")
DATASET_DIR = os.path.join(DATA_DIR, "rag_dataset")
def fetch_arxiv_papers(query, max_results=10):
"""Fetch papers from arXiv and format them for RAG"""
client = arxiv.Client()
# Clean and prepare the search query
query = query.replace('and', '').strip()
terms = [term.strip() for term in query.split() if term.strip()]
# Always include autism in the search
if 'autism' not in [t.lower() for t in terms]:
terms.insert(0, 'autism')
# Create search query with required autism term
term_queries = []
for term in terms:
if term.lower() != "autism":
term_queries.append(f'abs:"{term}" OR ti:"{term}"')
search_query = '(abs:"autism" OR ti:"autism")'
if term_queries:
search_query += f' AND ({" OR ".join(term_queries)})'
search_query = f'({search_query}) AND (cat:q-bio* OR cat:med*)'
logging.info(f"Searching arXiv with query: {search_query}")
search = arxiv.Search(
query=search_query,
max_results=max_results * 2,
sort_by=arxiv.SortCriterion.Relevance
)
try:
results = list(client.results(search))
papers = []
for i, result in enumerate(results):
# Only include papers that mention autism
text = (result.title + " " + result.summary).lower()
if 'autism' in text:
papers.append({
"id": f"arxiv_{i}",
"text": result.summary,
"title": result.title,
"url": result.entry_id,
"published": result.published.strftime("%Y-%m-%d")
})
if len(papers) >= max_results:
break
logging.info(f"Found {len(papers)} relevant papers about autism from arXiv")
return papers
except Exception as e:
logging.error(f"Error fetching papers from arXiv: {str(e)}")
return []
def fetch_pubmed_papers(query, max_results=10):
"""Fetch papers from PubMed using E-utilities"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
# Search for papers
search_url = f"{base_url}/esearch.fcgi"
search_params = {
'db': 'pubmed',
'term': f"{query} AND autism",
'retmax': max_results,
'sort': 'relevance',
'retmode': 'xml'
}
try:
# Get paper IDs
response = requests.get(search_url, params=search_params)
root = ET.fromstring(response.content)
id_list = [id_elem.text for id_elem in root.findall('.//Id')]
if not id_list:
return []
# Fetch paper details
fetch_url = f"{base_url}/efetch.fcgi"
fetch_params = {
'db': 'pubmed',
'id': ','.join(id_list),
'retmode': 'xml'
}
response = requests.get(fetch_url, params=fetch_params)
root = ET.fromstring(response.content)
papers = []
for article in root.findall('.//PubmedArticle'):
try:
# Extract article information
title = article.find('.//ArticleTitle').text
abstract = article.find('.//Abstract/AbstractText')
abstract = abstract.text if abstract is not None else ""
if 'autism' in (title + abstract).lower():
pmid = article.find('.//PMID').text
date = article.find('.//PubDate')
year = date.find('Year').text if date.find('Year') is not None else "Unknown"
papers.append({
"id": f"pubmed_{pmid}",
"text": abstract,
"title": title,
"url": f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/",
"published": year
})
except Exception as e:
logging.warning(f"Error processing PubMed article: {str(e)}")
continue
logging.info(f"Found {len(papers)} relevant papers from PubMed")
return papers
except Exception as e:
logging.error(f"Error fetching papers from PubMed: {str(e)}")
return []
def fetch_papers(query, max_results=10):
"""Fetch papers from both arXiv and PubMed"""
arxiv_papers = fetch_arxiv_papers(query, max_results=max_results)
sleep(1) # Respect rate limits
pubmed_papers = fetch_pubmed_papers(query, max_results=max_results)
# Combine and deduplicate papers based on title similarity
all_papers = arxiv_papers + pubmed_papers
unique_papers = []
seen_titles = set()
for paper in all_papers:
title_lower = paper['title'].lower()
if not any(title_lower in seen_title or seen_title in title_lower for seen_title in seen_titles):
unique_papers.append(paper)
seen_titles.add(title_lower)
# Sort by relevance (papers with 'autism' in title first)
unique_papers.sort(key=lambda x: 'autism' in x['title'].lower(), reverse=True)
return unique_papers[:max_results]
def build_faiss_index(papers, dataset_dir=DATASET_DIR):
"""Build and save dataset with FAISS index for RAG"""
if not papers:
logging.warning("No papers found. Creating empty dataset.")
# Create an empty dataset with the expected structure
dataset = Dataset.from_dict({
"text": [],
"embeddings": [],
"title": []
})
os.makedirs(dataset_dir, exist_ok=True)
dataset.save_to_disk(os.path.join(dataset_dir, "dataset"))
return dataset_dir
# Initialize smaller DPR encoder
ctx_encoder = DPRContextEncoder.from_pretrained(
"facebook/dpr-ctx_encoder-single-nq-base",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
# Create embeddings with smaller batches and memory optimization
texts = [p["text"] for p in papers]
embeddings = []
batch_size = 4 # Smaller batch size
with torch.inference_mode():
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
inputs = ctx_tokenizer(
batch_texts,
max_length=256, # Reduced from default
padding=True,
truncation=True,
return_tensors="pt"
)
outputs = ctx_encoder(**inputs)
embeddings.extend(outputs.pooler_output.cpu().numpy())
# Clear memory
del outputs
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Convert to numpy array and build FAISS index
embeddings = np.array(embeddings, dtype=np.float32) # Ensure float32 type
dimension = embeddings.shape[1]
# Normalize the vectors manually
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
embeddings = embeddings / norms
# Create FAISS index
index = faiss.IndexFlatIP(dimension)
index.add(embeddings)
# Create and save the dataset
dataset = Dataset.from_dict({
"text": texts,
"embeddings": embeddings.tolist(), # Convert to list for storage
"title": [p["title"] for p in papers]
})
# Create directory if it doesn't exist
os.makedirs(dataset_dir, exist_ok=True)
# Save dataset
dataset.save_to_disk(os.path.join(dataset_dir, "dataset"))
logging.info(f"Dataset saved to {dataset_dir}")
return dataset_dir
|