Spaces:
Sleeping
Sleeping
fix: faiss error
Browse files- app.py +12 -18
- faiss.index.py +36 -0
app.py
CHANGED
@@ -23,32 +23,23 @@ def fetch_arxiv_papers(query, max_results=5):
|
|
23 |
papers = [{"title": result.title, "summary": result.summary, "pdf_url": result.pdf_url} for result in results]
|
24 |
return papers
|
25 |
|
|
|
|
|
|
|
|
|
26 |
# RAG Pipeline
|
27 |
-
def rag_pipeline(query, papers):
|
28 |
# Load pre-trained RAG model
|
29 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
30 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom")
|
31 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
32 |
|
33 |
-
# Encode papers into embeddings
|
34 |
-
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
35 |
-
paper_embeddings = embedder.encode([paper["summary"] for paper in papers])
|
36 |
-
|
37 |
-
# Build FAISS index
|
38 |
-
index = faiss.IndexFlatL2(paper_embeddings.shape[1])
|
39 |
-
index.add(paper_embeddings)
|
40 |
-
|
41 |
-
# Retrieve relevant papers
|
42 |
-
query_embedding = embedder.encode([query])
|
43 |
-
distances, indices = index.search(query_embedding, k=2) # Top 2 relevant papers
|
44 |
-
relevant_papers = [papers[i] for i in indices[0]]
|
45 |
-
|
46 |
# Generate answer using RAG
|
47 |
inputs = tokenizer(query, return_tensors="pt")
|
48 |
generated_ids = model.generate(inputs["input_ids"])
|
49 |
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
|
51 |
-
return answer
|
52 |
|
53 |
# Run the app
|
54 |
if query:
|
@@ -56,14 +47,17 @@ if query:
|
|
56 |
papers = fetch_arxiv_papers(query)
|
57 |
st.write(f"Found {len(papers)} papers.")
|
58 |
|
|
|
|
|
|
|
59 |
st.write("Running RAG pipeline...")
|
60 |
-
answer
|
61 |
|
62 |
st.write("### Answer:")
|
63 |
st.write(answer)
|
64 |
|
65 |
st.write("### Relevant Papers:")
|
66 |
-
for paper in
|
67 |
st.write(f"**Title:** {paper['title']}")
|
68 |
st.write(f"**Summary:** {paper['summary']}")
|
69 |
st.write(f"**PDF URL:** {paper['pdf_url']}")
|
|
|
23 |
papers = [{"title": result.title, "summary": result.summary, "pdf_url": result.pdf_url} for result in results]
|
24 |
return papers
|
25 |
|
26 |
+
# Load FAISS index
|
27 |
+
def load_faiss_index(index_file="faiss_index.index"):
|
28 |
+
return faiss.read_index(index_file)
|
29 |
+
|
30 |
# RAG Pipeline
|
31 |
+
def rag_pipeline(query, papers, index):
|
32 |
# Load pre-trained RAG model
|
33 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
34 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", passages=papers, index=index)
|
35 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Generate answer using RAG
|
38 |
inputs = tokenizer(query, return_tensors="pt")
|
39 |
generated_ids = model.generate(inputs["input_ids"])
|
40 |
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
41 |
|
42 |
+
return answer
|
43 |
|
44 |
# Run the app
|
45 |
if query:
|
|
|
47 |
papers = fetch_arxiv_papers(query)
|
48 |
st.write(f"Found {len(papers)} papers.")
|
49 |
|
50 |
+
st.write("Loading FAISS index...")
|
51 |
+
index = load_faiss_index()
|
52 |
+
|
53 |
st.write("Running RAG pipeline...")
|
54 |
+
answer = rag_pipeline(query, papers, index)
|
55 |
|
56 |
st.write("### Answer:")
|
57 |
st.write(answer)
|
58 |
|
59 |
st.write("### Relevant Papers:")
|
60 |
+
for paper in papers:
|
61 |
st.write(f"**Title:** {paper['title']}")
|
62 |
st.write(f"**Summary:** {paper['summary']}")
|
63 |
st.write(f"**PDF URL:** {paper['pdf_url']}")
|
faiss.index.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import faiss
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import arxiv
|
5 |
+
|
6 |
+
# Fetch arXiv papers
|
7 |
+
def fetch_arxiv_papers(query, max_results=10):
|
8 |
+
client = arxiv.Client()
|
9 |
+
search = arxiv.Search(
|
10 |
+
query=query,
|
11 |
+
max_results=max_results,
|
12 |
+
sort_by=arxiv.SortCriterion.SubmittedDate
|
13 |
+
)
|
14 |
+
results = list(client.results(search))
|
15 |
+
papers = [{"title": result.title, "summary": result.summary, "pdf_url": result.pdf_url} for result in results]
|
16 |
+
return papers
|
17 |
+
|
18 |
+
# Build and save FAISS index
|
19 |
+
def build_faiss_index(papers, index_file="faiss_index.index"):
|
20 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
+
paper_embeddings = embedder.encode([paper["summary"] for paper in papers])
|
22 |
+
|
23 |
+
# Create FAISS index
|
24 |
+
dimension = paper_embeddings.shape[1]
|
25 |
+
index = faiss.IndexFlatL2(dimension)
|
26 |
+
index.add(paper_embeddings)
|
27 |
+
|
28 |
+
# Save index to disk
|
29 |
+
faiss.write_index(index, index_file)
|
30 |
+
print(f"FAISS index saved to {index_file}")
|
31 |
+
|
32 |
+
# Example usage
|
33 |
+
if __name__ == "__main__":
|
34 |
+
query = "quantum computing"
|
35 |
+
papers = fetch_arxiv_papers(query)
|
36 |
+
build_faiss_index(papers)
|