Spaces:
Sleeping
Sleeping
fix: embeddings
Browse files- app.py +27 -20
- faiss_index/index.py +12 -0
app.py
CHANGED
|
@@ -34,8 +34,12 @@ def load_dataset(query):
|
|
| 34 |
with st.spinner("Searching autism research papers..."):
|
| 35 |
import faiss_index.index as idx
|
| 36 |
# Make the query more specific to autism and b12
|
| 37 |
-
search_query = f"
|
| 38 |
papers = idx.fetch_arxiv_papers(search_query, max_results=25)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
idx.build_faiss_index(papers, dataset_dir=DATASET_DIR)
|
| 40 |
|
| 41 |
# Load and convert to pandas for easier handling
|
|
@@ -91,22 +95,25 @@ if query:
|
|
| 91 |
# Load dataset
|
| 92 |
df = load_dataset(query)
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
with st.spinner("Searching autism research papers..."):
|
| 35 |
import faiss_index.index as idx
|
| 36 |
# Make the query more specific to autism and b12
|
| 37 |
+
search_query = f"{query} AND (cat:q-bio.NC OR cat:q-bio.QM OR cat:q-bio.GN OR cat:q-bio.CB OR cat:q-bio.MN)"
|
| 38 |
papers = idx.fetch_arxiv_papers(search_query, max_results=25)
|
| 39 |
+
if not papers:
|
| 40 |
+
st.warning("No relevant papers found. Please try rephrasing your question.")
|
| 41 |
+
return pd.DataFrame(columns=['title', 'text'])
|
| 42 |
+
|
| 43 |
idx.build_faiss_index(papers, dataset_dir=DATASET_DIR)
|
| 44 |
|
| 45 |
# Load and convert to pandas for easier handling
|
|
|
|
| 95 |
# Load dataset
|
| 96 |
df = load_dataset(query)
|
| 97 |
|
| 98 |
+
if df.empty:
|
| 99 |
+
st.warning("I couldn't find any relevant research papers about this topic. Please try rephrasing your question or ask something else about autism.")
|
| 100 |
+
else:
|
| 101 |
+
# Get relevant context
|
| 102 |
+
context = "\n".join([
|
| 103 |
+
f"{text[:1000]}" for text in df['text'].head(3)
|
| 104 |
+
])
|
| 105 |
+
|
| 106 |
+
# Generate answer
|
| 107 |
+
answer = generate_answer(query, context)
|
| 108 |
+
|
| 109 |
+
if answer and not answer.isspace():
|
| 110 |
+
st.success("Answer found!")
|
| 111 |
+
st.write(answer)
|
| 112 |
+
|
| 113 |
+
st.write("### Sources used:")
|
| 114 |
+
for _, row in df.head(3).iterrows():
|
| 115 |
+
st.write(f"**Title:** {row['title']}")
|
| 116 |
+
st.write(f"**Summary:** {row['text'][:200]}...")
|
| 117 |
+
st.write("---")
|
| 118 |
+
else:
|
| 119 |
+
st.warning("I couldn't find a specific answer in the research papers. Try rephrasing your question.")
|
faiss_index/index.py
CHANGED
|
@@ -49,6 +49,18 @@ def fetch_arxiv_papers(query, max_results=10):
|
|
| 49 |
|
| 50 |
def build_faiss_index(papers, dataset_dir=DATASET_DIR):
|
| 51 |
"""Build and save dataset with FAISS index for RAG"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# Initialize smaller DPR encoder
|
| 53 |
ctx_encoder = DPRContextEncoder.from_pretrained(
|
| 54 |
"facebook/dpr-ctx_encoder-single-nq-base",
|
|
|
|
| 49 |
|
| 50 |
def build_faiss_index(papers, dataset_dir=DATASET_DIR):
|
| 51 |
"""Build and save dataset with FAISS index for RAG"""
|
| 52 |
+
if not papers:
|
| 53 |
+
logging.warning("No papers found. Creating empty dataset.")
|
| 54 |
+
# Create an empty dataset with the expected structure
|
| 55 |
+
dataset = Dataset.from_dict({
|
| 56 |
+
"text": [],
|
| 57 |
+
"embeddings": [],
|
| 58 |
+
"title": []
|
| 59 |
+
})
|
| 60 |
+
os.makedirs(dataset_dir, exist_ok=True)
|
| 61 |
+
dataset.save_to_disk(os.path.join(dataset_dir, "dataset"))
|
| 62 |
+
return dataset_dir
|
| 63 |
+
|
| 64 |
# Initialize smaller DPR encoder
|
| 65 |
ctx_encoder = DPRContextEncoder.from_pretrained(
|
| 66 |
"facebook/dpr-ctx_encoder-single-nq-base",
|