File size: 2,717 Bytes
f1586e3
5a09d5c
3af593c
 
 
5a09d5c
 
3af593c
 
 
 
f1586e3
3af593c
87866cd
3af593c
 
 
 
 
4660a83
3af593c
 
 
 
 
 
 
 
 
 
 
 
 
87866cd
3af593c
8f85101
3af593c
 
 
 
 
 
 
8f85101
3af593c
 
5771d92
 
 
3af593c
 
 
 
5771d92
3af593c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1586e3
87866cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import streamlit as st
import logging
from services.research_fetcher import ResearchFetcher
from services.model_handler import ModelHandler
from utils.text_processor import TextProcessor

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

class AutismResearchApp:
    def __init__(self):
        """Initialize the application components"""
        self.research_fetcher = ResearchFetcher()
        self.model_handler = ModelHandler()
        self.text_processor = TextProcessor()
        self._setup_streamlit()
    
    def _setup_streamlit(self):
        """Setup Streamlit UI components"""
        st.title("🧩 AMA Autism")
        st.write("""
        Ask questions about autism and get research-based answers from scientific papers.
        For best results, be specific in your questions.
        """)
    
    def _fetch_research(self, query: str):
        """Fetch research papers for the given query"""
        papers = self.research_fetcher.fetch_all_papers(query)
        if not papers:
            st.warning("No relevant research papers found. Please try a different search term.")
            return None
        return papers
    
    def _generate_answer(self, query: str, papers):
        """Generate answer based on research papers"""
        context = "\n".join(
            self.text_processor.format_paper(paper.title, paper.abstract)
            for paper in papers[:3]
        )
        return self.model_handler.generate_answer(query, context)
    
    def _display_sources(self, papers):
        """Display source papers in an expander"""
        with st.expander("📚 View source papers"):
            for paper in papers:
                st.markdown(f"- [{paper.title}]({paper.url}) ({paper.published})")
    
    def run(self):
        """Run the main application loop"""
        query = st.text_input("What would you like to know about autism? ✨")
        
        if query:
            with st.status("Researching your question...") as status:
                # Fetch papers
                papers = self._fetch_research(query)
                if not papers:
                    return
                
                # Generate and display answer
                st.write("Analyzing research papers...")
                answer = self._generate_answer(query, papers)
                status.write("I've got it!")
                
                # Display results
                self._display_sources(papers)
                st.success("Research analysis complete!")
                st.markdown(answer)

def main():
    app = AutismResearchApp()
    app.run()

if __name__ == "__main__":
    main()