tstone87's picture
Update app.py
eadcbdc verified
raw
history blame
9.83 kB
import sys
import gradio as gr
import os
import tempfile
import cv2
import requests
from ultralytics import YOLO
# Remove extra CLI arguments that Spaces might pass.
sys.argv = [arg for arg in sys.argv if arg != "--import"]
# Load the YOLO11-pose model (auto-downloads if needed)
model = YOLO("yolo11n-pose.pt")
def process_input(uploaded_file, youtube_link, image_url, sensitivity):
"""
Process input from one of three methods (Upload, YouTube, Image URL).
Priority: YouTube link > Image URL > Uploaded file.
The sensitivity slider value is passed as the confidence threshold.
Returns a tuple of 4 items:
1. download_file_path (for gr.File)
2. image_result (for gr.Image) or None
3. video_result (for gr.Video) or None
4. status message
"""
input_path = None
# Priority 1: YouTube link
if youtube_link and youtube_link.strip():
try:
from pytube import YouTube
yt = YouTube(youtube_link)
stream = yt.streams.filter(file_extension='mp4', progressive=True)\
.order_by("resolution").desc().first()
if stream is None:
return None, None, None, "No suitable mp4 stream found."
input_path = stream.download()
except Exception as e:
return None, None, None, f"Error downloading video: {e}"
# Priority 2: Image URL
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True)
if response.status_code != 200:
return None, None, None, f"Error downloading image: HTTP {response.status_code}"
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
with open(temp_image_path, "wb") as f:
f.write(response.content)
input_path = temp_image_path
except Exception as e:
return None, None, None, f"Error downloading image: {e}"
# Priority 3: Uploaded file
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, None, "Please provide an input using one of the methods."
try:
# Run prediction; pass slider value as confidence threshold.
results = model.predict(source=input_path, save=True, conf=sensitivity)
except Exception as e:
return None, None, None, f"Error running prediction: {e}"
output_path = None
try:
if hasattr(results[0], "save_path"):
output_path = results[0].save_path
else:
# If no save_path, generate annotated image using plot()
annotated = results[0].plot() # returns a numpy array
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
cv2.imwrite(output_path, annotated)
except Exception as e:
return None, None, None, f"Error processing the file: {e}"
# Clean up temporary input if it was downloaded.
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) \
and input_path and os.path.exists(input_path):
os.remove(input_path)
# Determine if output is video or image based on extension.
ext = os.path.splitext(output_path)[1].lower()
video_exts = [".mp4", ".mov", ".avi", ".webm"]
if ext in video_exts:
image_result = None
video_result = output_path
else:
image_result = output_path
video_result = None
return output_path, image_result, video_result, "Success!"
# Build the Gradio interface.
with gr.Blocks(css="""
.result_img > img {
width: 100%;
height: auto;
object-fit: contain;
}
""") as demo:
# Layout: two columns in a row.
with gr.Row():
# Left column: Header image, title, input method tabs, and shared sensitivity slider.
with gr.Column(scale=1):
gr.HTML("<div style='text-align:center;'><img src='https://huggingface.co/spaces/tstone87/stance-detection/resolve/main/crowdresult.jpg' style='width:25%;'/></div>")
gr.Markdown("## Pose Detection with YOLO11-pose")
with gr.Tabs():
with gr.TabItem("Upload File"):
file_input = gr.File(label="Upload Image/Video")
with gr.TabItem("YouTube Link"):
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
with gr.TabItem("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
sensitivity_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.5,
label="Sensitivity (Confidence Threshold)")
# Right column: Results displayed at the top.
with gr.Column(scale=2):
output_image = gr.Image(label="Annotated Output (Image)", elem_classes="result_img")
output_video = gr.Video(label="Annotated Output (Video)")
output_file = gr.File(label="Download Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
# Set up automatic triggers for each input type.
file_input.change(
fn=process_input,
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
youtube_input.change(
fn=process_input,
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
image_url_input.change(
fn=process_input,
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
if __name__ == "__main__":
demo.launch()
return None, None, f"Error downloading video: {e}", ""
# Priority 2: Image URL
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True)
if response.status_code != 200:
return None, None, f"Error downloading image: HTTP {response.status_code}", ""
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
with open(temp_image_path, "wb") as f:
f.write(response.content)
input_path = temp_image_path
except Exception as e:
return None, None, f"Error downloading image: {e}", ""
# Priority 3: Uploaded file
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, "Please provide an input using one of the methods.", ""
try:
results = model.predict(source=input_path, save=True, conf=sensitivity)
except Exception as e:
return None, None, f"Error running prediction: {e}", ""
output_path = None
try:
if hasattr(results[0], "save_path"):
output_path = results[0].save_path
else:
annotated = results[0].plot() # returns a numpy array
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
cv2.imwrite(output_path, annotated)
except Exception as e:
return None, None, f"Error processing the file: {e}", ""
# Clean up temporary input if it was downloaded.
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) and input_path and os.path.exists(input_path):
os.remove(input_path)
return output_path, output_path, "Success!", ""
# Build the Gradio interface with custom CSS for the result image.
with gr.Blocks(css="""
.result_img > img {
width: 100%;
height: auto;
object-fit: contain;
}
""") as demo:
with gr.Row():
# Left Column: Header image, title, input tabs and sensitivity slider.
with gr.Column(scale=1):
gr.HTML("<div style='text-align:center;'><img src='https://huggingface.co/spaces/tstone87/stance-detection/resolve/main/crowdresult.jpg' style='width:25%;'/></div>")
gr.Markdown("## Pose Detection with YOLO11-pose")
with gr.Tabs():
with gr.TabItem("Upload File"):
file_input = gr.File(label="Upload Image/Video")
with gr.TabItem("YouTube Link"):
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
with gr.TabItem("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
sensitivity_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5,
label="Sensitivity (Confidence Threshold)")
# Right Column: Results display at the top.
with gr.Column(scale=2):
output_display = gr.Image(label="Annotated Output", elem_classes="result_img")
output_file = gr.File(label="Download Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
# Set up automatic triggers for each input type.
file_input.change(
fn=process_input,
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
youtube_input.change(
fn=process_input,
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
image_url_input.change(
fn=process_input,
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
if __name__ == "__main__":
demo.launch()