Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,15 @@ model = YOLO("yolo11n-pose.pt")
|
|
14 |
|
15 |
def process_input(uploaded_file, youtube_link, image_url, sensitivity):
|
16 |
"""
|
17 |
-
Process input from one of
|
18 |
Priority: YouTube link > Image URL > Uploaded file.
|
19 |
The sensitivity slider value is passed as the confidence threshold.
|
20 |
|
21 |
-
Returns a tuple:
|
22 |
-
|
|
|
|
|
|
|
23 |
"""
|
24 |
input_path = None
|
25 |
|
@@ -31,9 +34,112 @@ def process_input(uploaded_file, youtube_link, image_url, sensitivity):
|
|
31 |
stream = yt.streams.filter(file_extension='mp4', progressive=True)\
|
32 |
.order_by("resolution").desc().first()
|
33 |
if stream is None:
|
34 |
-
return None, None, "No suitable mp4 stream found."
|
35 |
input_path = stream.download()
|
36 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return None, None, f"Error downloading video: {e}", ""
|
38 |
# Priority 2: Image URL
|
39 |
elif image_url and image_url.strip():
|
|
|
14 |
|
15 |
def process_input(uploaded_file, youtube_link, image_url, sensitivity):
|
16 |
"""
|
17 |
+
Process input from one of three methods (Upload, YouTube, Image URL).
|
18 |
Priority: YouTube link > Image URL > Uploaded file.
|
19 |
The sensitivity slider value is passed as the confidence threshold.
|
20 |
|
21 |
+
Returns a tuple of 4 items:
|
22 |
+
1. download_file_path (for gr.File)
|
23 |
+
2. image_result (for gr.Image) or None
|
24 |
+
3. video_result (for gr.Video) or None
|
25 |
+
4. status message
|
26 |
"""
|
27 |
input_path = None
|
28 |
|
|
|
34 |
stream = yt.streams.filter(file_extension='mp4', progressive=True)\
|
35 |
.order_by("resolution").desc().first()
|
36 |
if stream is None:
|
37 |
+
return None, None, None, "No suitable mp4 stream found."
|
38 |
input_path = stream.download()
|
39 |
except Exception as e:
|
40 |
+
return None, None, None, f"Error downloading video: {e}"
|
41 |
+
# Priority 2: Image URL
|
42 |
+
elif image_url and image_url.strip():
|
43 |
+
try:
|
44 |
+
response = requests.get(image_url, stream=True)
|
45 |
+
if response.status_code != 200:
|
46 |
+
return None, None, None, f"Error downloading image: HTTP {response.status_code}"
|
47 |
+
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
|
48 |
+
with open(temp_image_path, "wb") as f:
|
49 |
+
f.write(response.content)
|
50 |
+
input_path = temp_image_path
|
51 |
+
except Exception as e:
|
52 |
+
return None, None, None, f"Error downloading image: {e}"
|
53 |
+
# Priority 3: Uploaded file
|
54 |
+
elif uploaded_file is not None:
|
55 |
+
input_path = uploaded_file.name
|
56 |
+
else:
|
57 |
+
return None, None, None, "Please provide an input using one of the methods."
|
58 |
+
|
59 |
+
try:
|
60 |
+
# Run prediction; pass slider value as confidence threshold.
|
61 |
+
results = model.predict(source=input_path, save=True, conf=sensitivity)
|
62 |
+
except Exception as e:
|
63 |
+
return None, None, None, f"Error running prediction: {e}"
|
64 |
+
|
65 |
+
output_path = None
|
66 |
+
try:
|
67 |
+
if hasattr(results[0], "save_path"):
|
68 |
+
output_path = results[0].save_path
|
69 |
+
else:
|
70 |
+
# If no save_path, generate annotated image using plot()
|
71 |
+
annotated = results[0].plot() # returns a numpy array
|
72 |
+
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
|
73 |
+
cv2.imwrite(output_path, annotated)
|
74 |
+
except Exception as e:
|
75 |
+
return None, None, None, f"Error processing the file: {e}"
|
76 |
+
|
77 |
+
# Clean up temporary input if it was downloaded.
|
78 |
+
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) \
|
79 |
+
and input_path and os.path.exists(input_path):
|
80 |
+
os.remove(input_path)
|
81 |
+
|
82 |
+
# Determine if output is video or image based on extension.
|
83 |
+
ext = os.path.splitext(output_path)[1].lower()
|
84 |
+
video_exts = [".mp4", ".mov", ".avi", ".webm"]
|
85 |
+
if ext in video_exts:
|
86 |
+
image_result = None
|
87 |
+
video_result = output_path
|
88 |
+
else:
|
89 |
+
image_result = output_path
|
90 |
+
video_result = None
|
91 |
+
|
92 |
+
return output_path, image_result, video_result, "Success!"
|
93 |
+
|
94 |
+
# Build the Gradio interface.
|
95 |
+
with gr.Blocks(css="""
|
96 |
+
.result_img > img {
|
97 |
+
width: 100%;
|
98 |
+
height: auto;
|
99 |
+
object-fit: contain;
|
100 |
+
}
|
101 |
+
""") as demo:
|
102 |
+
# Layout: two columns in a row.
|
103 |
+
with gr.Row():
|
104 |
+
# Left column: Header image, title, input method tabs, and shared sensitivity slider.
|
105 |
+
with gr.Column(scale=1):
|
106 |
+
gr.HTML("<div style='text-align:center;'><img src='https://huggingface.co/spaces/tstone87/stance-detection/resolve/main/crowdresult.jpg' style='width:25%;'/></div>")
|
107 |
+
gr.Markdown("## Pose Detection with YOLO11-pose")
|
108 |
+
with gr.Tabs():
|
109 |
+
with gr.TabItem("Upload File"):
|
110 |
+
file_input = gr.File(label="Upload Image/Video")
|
111 |
+
with gr.TabItem("YouTube Link"):
|
112 |
+
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
|
113 |
+
with gr.TabItem("Image URL"):
|
114 |
+
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
|
115 |
+
sensitivity_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.5,
|
116 |
+
label="Sensitivity (Confidence Threshold)")
|
117 |
+
# Right column: Results displayed at the top.
|
118 |
+
with gr.Column(scale=2):
|
119 |
+
output_image = gr.Image(label="Annotated Output (Image)", elem_classes="result_img")
|
120 |
+
output_video = gr.Video(label="Annotated Output (Video)")
|
121 |
+
output_file = gr.File(label="Download Annotated Output")
|
122 |
+
output_text = gr.Textbox(label="Status", interactive=False)
|
123 |
+
|
124 |
+
# Set up automatic triggers for each input type.
|
125 |
+
file_input.change(
|
126 |
+
fn=process_input,
|
127 |
+
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
|
128 |
+
outputs=[output_file, output_image, output_video, output_text]
|
129 |
+
)
|
130 |
+
youtube_input.change(
|
131 |
+
fn=process_input,
|
132 |
+
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
|
133 |
+
outputs=[output_file, output_image, output_video, output_text]
|
134 |
+
)
|
135 |
+
image_url_input.change(
|
136 |
+
fn=process_input,
|
137 |
+
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
|
138 |
+
outputs=[output_file, output_image, output_video, output_text]
|
139 |
+
)
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
demo.launch()
|
143 |
return None, None, f"Error downloading video: {e}", ""
|
144 |
# Priority 2: Image URL
|
145 |
elif image_url and image_url.strip():
|