Spaces:
Running
Running
File size: 9,826 Bytes
5260c34 7c90da7 5260c34 7afb01c 7c90da7 fc38e58 5260c34 ef829ca 7c90da7 fc38e58 7c90da7 eadcbdc fc38e58 eadcbdc 7c90da7 5260c34 7afb01c 7c90da7 eadcbdc 7c90da7 eadcbdc fc38e58 7afb01c fc38e58 7afb01c fc38e58 7afb01c 7c90da7 fc38e58 5260c34 7c90da7 fc38e58 7c90da7 fc38e58 5260c34 7afb01c 5260c34 fc38e58 5260c34 0a58097 fc38e58 7c90da7 bbc9616 fc38e58 7c90da7 fc38e58 04e7cfc fc38e58 04e7cfc fc38e58 04e7cfc fc38e58 04e7cfc fc38e58 ef829ca 7c90da7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import sys
import gradio as gr
import os
import tempfile
import cv2
import requests
from ultralytics import YOLO
# Remove extra CLI arguments that Spaces might pass.
sys.argv = [arg for arg in sys.argv if arg != "--import"]
# Load the YOLO11-pose model (auto-downloads if needed)
model = YOLO("yolo11n-pose.pt")
def process_input(uploaded_file, youtube_link, image_url, sensitivity):
"""
Process input from one of three methods (Upload, YouTube, Image URL).
Priority: YouTube link > Image URL > Uploaded file.
The sensitivity slider value is passed as the confidence threshold.
Returns a tuple of 4 items:
1. download_file_path (for gr.File)
2. image_result (for gr.Image) or None
3. video_result (for gr.Video) or None
4. status message
"""
input_path = None
# Priority 1: YouTube link
if youtube_link and youtube_link.strip():
try:
from pytube import YouTube
yt = YouTube(youtube_link)
stream = yt.streams.filter(file_extension='mp4', progressive=True)\
.order_by("resolution").desc().first()
if stream is None:
return None, None, None, "No suitable mp4 stream found."
input_path = stream.download()
except Exception as e:
return None, None, None, f"Error downloading video: {e}"
# Priority 2: Image URL
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True)
if response.status_code != 200:
return None, None, None, f"Error downloading image: HTTP {response.status_code}"
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
with open(temp_image_path, "wb") as f:
f.write(response.content)
input_path = temp_image_path
except Exception as e:
return None, None, None, f"Error downloading image: {e}"
# Priority 3: Uploaded file
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, None, "Please provide an input using one of the methods."
try:
# Run prediction; pass slider value as confidence threshold.
results = model.predict(source=input_path, save=True, conf=sensitivity)
except Exception as e:
return None, None, None, f"Error running prediction: {e}"
output_path = None
try:
if hasattr(results[0], "save_path"):
output_path = results[0].save_path
else:
# If no save_path, generate annotated image using plot()
annotated = results[0].plot() # returns a numpy array
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
cv2.imwrite(output_path, annotated)
except Exception as e:
return None, None, None, f"Error processing the file: {e}"
# Clean up temporary input if it was downloaded.
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) \
and input_path and os.path.exists(input_path):
os.remove(input_path)
# Determine if output is video or image based on extension.
ext = os.path.splitext(output_path)[1].lower()
video_exts = [".mp4", ".mov", ".avi", ".webm"]
if ext in video_exts:
image_result = None
video_result = output_path
else:
image_result = output_path
video_result = None
return output_path, image_result, video_result, "Success!"
# Build the Gradio interface.
with gr.Blocks(css="""
.result_img > img {
width: 100%;
height: auto;
object-fit: contain;
}
""") as demo:
# Layout: two columns in a row.
with gr.Row():
# Left column: Header image, title, input method tabs, and shared sensitivity slider.
with gr.Column(scale=1):
gr.HTML("<div style='text-align:center;'><img src='https://huggingface.co/spaces/tstone87/stance-detection/resolve/main/crowdresult.jpg' style='width:25%;'/></div>")
gr.Markdown("## Pose Detection with YOLO11-pose")
with gr.Tabs():
with gr.TabItem("Upload File"):
file_input = gr.File(label="Upload Image/Video")
with gr.TabItem("YouTube Link"):
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
with gr.TabItem("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
sensitivity_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.5,
label="Sensitivity (Confidence Threshold)")
# Right column: Results displayed at the top.
with gr.Column(scale=2):
output_image = gr.Image(label="Annotated Output (Image)", elem_classes="result_img")
output_video = gr.Video(label="Annotated Output (Video)")
output_file = gr.File(label="Download Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
# Set up automatic triggers for each input type.
file_input.change(
fn=process_input,
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
youtube_input.change(
fn=process_input,
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
image_url_input.change(
fn=process_input,
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
if __name__ == "__main__":
demo.launch()
return None, None, f"Error downloading video: {e}", ""
# Priority 2: Image URL
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True)
if response.status_code != 200:
return None, None, f"Error downloading image: HTTP {response.status_code}", ""
temp_image_path = os.path.join(tempfile.gettempdir(), "downloaded_image.jpg")
with open(temp_image_path, "wb") as f:
f.write(response.content)
input_path = temp_image_path
except Exception as e:
return None, None, f"Error downloading image: {e}", ""
# Priority 3: Uploaded file
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, "Please provide an input using one of the methods.", ""
try:
results = model.predict(source=input_path, save=True, conf=sensitivity)
except Exception as e:
return None, None, f"Error running prediction: {e}", ""
output_path = None
try:
if hasattr(results[0], "save_path"):
output_path = results[0].save_path
else:
annotated = results[0].plot() # returns a numpy array
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
cv2.imwrite(output_path, annotated)
except Exception as e:
return None, None, f"Error processing the file: {e}", ""
# Clean up temporary input if it was downloaded.
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) and input_path and os.path.exists(input_path):
os.remove(input_path)
return output_path, output_path, "Success!", ""
# Build the Gradio interface with custom CSS for the result image.
with gr.Blocks(css="""
.result_img > img {
width: 100%;
height: auto;
object-fit: contain;
}
""") as demo:
with gr.Row():
# Left Column: Header image, title, input tabs and sensitivity slider.
with gr.Column(scale=1):
gr.HTML("<div style='text-align:center;'><img src='https://huggingface.co/spaces/tstone87/stance-detection/resolve/main/crowdresult.jpg' style='width:25%;'/></div>")
gr.Markdown("## Pose Detection with YOLO11-pose")
with gr.Tabs():
with gr.TabItem("Upload File"):
file_input = gr.File(label="Upload Image/Video")
with gr.TabItem("YouTube Link"):
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
with gr.TabItem("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
sensitivity_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5,
label="Sensitivity (Confidence Threshold)")
# Right Column: Results display at the top.
with gr.Column(scale=2):
output_display = gr.Image(label="Annotated Output", elem_classes="result_img")
output_file = gr.File(label="Download Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
# Set up automatic triggers for each input type.
file_input.change(
fn=process_input,
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
youtube_input.change(
fn=process_input,
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
image_url_input.change(
fn=process_input,
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
outputs=[output_file, output_display, output_text, gr.State()]
)
if __name__ == "__main__":
demo.launch()
|