Spaces:
Running
Running
File size: 7,452 Bytes
030641e 5260c34 7c90da7 5260c34 7afb01c 7c90da7 030641e 5260c34 7c90da7 fc38e58 5260c34 7aa805e 5260c34 44c5569 7c90da7 44c5569 7c90da7 f34aee4 7aa805e eadcbdc 7aa805e 7c90da7 7aa805e eadcbdc 7aa805e eadcbdc 7aa805e eadcbdc 7aa805e eadcbdc 7aa805e eadcbdc 44c5569 7aa805e 680b8e8 eadcbdc 7aa805e 680b8e8 44c5569 7aa805e 680b8e8 44c5569 7aa805e 4eb9029 7aa805e 44c5569 4eb9029 44c5569 30fd2ce 7aa805e 44c5569 7aa805e 44c5569 7aa805e 44c5569 7aa805e 30fd2ce 680b8e8 7aa805e 44c5569 030641e 4eb9029 7aa805e 44c5569 680b8e8 7aa805e eadcbdc 7aa805e 44c5569 7aa805e 44c5569 7aa805e eadcbdc 7aa805e eadcbdc 7c90da7 7aa805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# This script is designed for Hugging Face Spaces
# Dependencies are specified in requirements.txt in the Space's repository root
# Expected dependencies:
# gradio>=4.0.0
# opencv-python>=4.8.0
# requests>=2.28.0
# ultralytics>=8.2.0
# pytubefix>=6.0.0
# numpy>=1.23.0
import sys
import gradio as gr
import os
import tempfile
import cv2
import requests
from ultralytics import YOLO
# Remove extra CLI arguments that Spaces might pass
sys.argv = [arg for arg in sys.argv if arg != "--import"]
model = YOLO("yolo11n-pose.pt")
def process_input(uploaded_file, youtube_link, image_url, sensitivity):
input_path = None
temp_files = []
# Input priority handling
if youtube_link and youtube_link.strip():
try:
from pytubefix import YouTube
yt = YouTube(youtube_link)
stream = yt.streams.filter(file_extension='mp4', progressive=True).order_by("resolution").desc().first()
if not stream:
return None, None, None, "No suitable mp4 stream found."
temp_path = os.path.join(tempfile.gettempdir(), f"yt_{os.urandom(8).hex()}.mp4")
stream.download(output_path=tempfile.gettempdir(), filename=os.path.basename(temp_path))
input_path = temp_path
temp_files.append(input_path)
except Exception as e:
return None, None, None, f"Error downloading YouTube video: {str(e)}"
elif image_url and image_url.strip():
try:
response = requests.get(image_url, stream=True, timeout=10)
response.raise_for_status()
temp_path = os.path.join(tempfile.gettempdir(), f"img_{os.urandom(8).hex()}.jpg")
with open(temp_path, "wb") as f:
f.write(response.content)
input_path = temp_path
temp_files.append(input_path)
except Exception as e:
return None, None, None, f"Error downloading image: {str(e)}"
elif uploaded_file is not None:
input_path = uploaded_file.name
else:
return None, None, None, "Please provide an input."
# Process file
ext = os.path.splitext(input_path)[1].lower()
video_exts = [".mp4", ".mov", ".avi", ".webm"]
output_path = None
try:
if ext in video_exts:
# Video processing
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
return None, None, None, f"Cannot open video file: {input_path}"
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if fps <= 0 or width <= 0 or height <= 0:
return None, None, None, "Invalid video properties detected."
output_path = os.path.join(tempfile.gettempdir(), f"out_{os.urandom(8).hex()}.mp4")
# Use 'mp4v' instead of 'avc1' as it might work better with Spaces' OpenCV
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
if not out.isOpened():
# Fallback message if VideoWriter fails
return None, None, None, "Video processing failed: No suitable encoder available in this environment. Try a different input format or contact support."
processed_frames = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Process frame
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(source=frame_rgb, conf=sensitivity)[0]
annotated_frame = results.plot()
annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
out.write(annotated_frame_bgr)
processed_frames += 1
cap.release()
out.release()
temp_files.append(output_path)
if processed_frames == 0:
return None, None, None, "No frames processed from video."
if not os.path.exists(output_path) or os.path.getsize(output_path) < 1024:
return None, None, None, f"Output video created but too small ({os.path.getsize(output_path)} bytes) - processing failed. Codec support might be limited."
return output_path, None, output_path, f"Video processed successfully! ({processed_frames}/{frame_count} frames)"
else:
# Image processing
results = model.predict(source=input_path, conf=sensitivity)[0]
annotated = results.plot()
output_path = os.path.join(tempfile.gettempdir(), f"out_{os.urandom(8).hex()}.jpg")
cv2.imwrite(output_path, annotated)
temp_files.append(output_path)
return output_path, output_path, None, "Image processed successfully!"
except Exception as e:
return None, None, None, f"Processing error: {str(e)}"
finally:
for f in temp_files[:-1]:
if f and os.path.exists(f):
try:
os.remove(f)
except:
pass
with gr.Blocks(css="""
.result_img > img {
width: 100%;
height: auto;
object-fit: contain;
}
""") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<div style='text-align:center;'><img src='https://huggingface.co/spaces/tstone87/stance-detection/resolve/main/crowdresult.jpg' style='width:25%;'/></div>")
gr.Markdown("## Pose Detection with YOLO11-pose")
with gr.Tabs():
with gr.TabItem("Upload File"):
file_input = gr.File(label="Upload Image/Video")
with gr.TabItem("YouTube Link"):
youtube_input = gr.Textbox(label="YouTube Link", placeholder="https://...")
with gr.TabItem("Image URL"):
image_url_input = gr.Textbox(label="Image URL", placeholder="https://...")
sensitivity_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2,
label="Sensitivity (Confidence Threshold)")
with gr.Column(scale=2):
output_image = gr.Image(label="Annotated Output (Image)", elem_classes="result_img")
output_video = gr.Video(label="Annotated Output (Video)")
output_file = gr.File(label="Download Annotated Output")
output_text = gr.Textbox(label="Status", interactive=False)
file_input.change(
fn=process_input,
inputs=[file_input, gr.State(""), gr.State(""), sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
youtube_input.change(
fn=process_input,
inputs=[gr.State(None), youtube_input, gr.State(""), sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
image_url_input.change(
fn=process_input,
inputs=[gr.State(None), gr.State(""), image_url_input, sensitivity_slider],
outputs=[output_file, output_image, output_video, output_text]
)
if __name__ == "__main__":
demo.launch() |