Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -18,11 +18,14 @@ def process_input(uploaded_file, youtube_link, image_url, sensitivity):
|
|
18 |
Priority: YouTube link > Image URL > Uploaded file.
|
19 |
The sensitivity slider value is passed as the confidence threshold.
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
"""
|
27 |
input_path = None
|
28 |
|
@@ -55,28 +58,68 @@ def process_input(uploaded_file, youtube_link, image_url, sensitivity):
|
|
55 |
else:
|
56 |
return None, None, None, "Please provide an input using one of the methods."
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return None, None, None, f"Error running prediction: {e}"
|
62 |
|
63 |
output_path = None
|
64 |
-
try:
|
65 |
-
if hasattr(results[0], "save_path"):
|
66 |
-
output_path = results[0].save_path
|
67 |
-
else:
|
68 |
-
annotated = results[0].plot() # returns a numpy array
|
69 |
-
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
|
70 |
-
cv2.imwrite(output_path, annotated)
|
71 |
-
except Exception as e:
|
72 |
-
return None, None, None, f"Error processing the file: {e}"
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) and input_path and os.path.exists(input_path):
|
75 |
os.remove(input_path)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
if
|
80 |
image_result = None
|
81 |
video_result = output_path
|
82 |
else:
|
|
|
18 |
Priority: YouTube link > Image URL > Uploaded file.
|
19 |
The sensitivity slider value is passed as the confidence threshold.
|
20 |
|
21 |
+
For video files (mp4, mov, avi, webm), we use streaming mode to obtain annotated frames and encode them into a video.
|
22 |
+
For images, we use the normal prediction and either use the built‑in save_path or plot() method.
|
23 |
+
|
24 |
+
Returns a tuple:
|
25 |
+
- download_file_path (for gr.File)
|
26 |
+
- image_result (for gr.Image) or None
|
27 |
+
- video_result (for gr.Video) or None
|
28 |
+
- status message
|
29 |
"""
|
30 |
input_path = None
|
31 |
|
|
|
58 |
else:
|
59 |
return None, None, None, "Please provide an input using one of the methods."
|
60 |
|
61 |
+
# Determine if input is a video (by extension).
|
62 |
+
ext_input = os.path.splitext(input_path)[1].lower()
|
63 |
+
video_exts = [".mp4", ".mov", ".avi", ".webm"]
|
|
|
64 |
|
65 |
output_path = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
if ext_input in video_exts:
|
68 |
+
# Process video using streaming mode.
|
69 |
+
try:
|
70 |
+
# Open video to get properties.
|
71 |
+
cap = cv2.VideoCapture(input_path)
|
72 |
+
if not cap.isOpened():
|
73 |
+
return None, None, None, "Error opening video file."
|
74 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
75 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
76 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
77 |
+
cap.release()
|
78 |
+
|
79 |
+
# Use streaming mode to process each frame.
|
80 |
+
frames = []
|
81 |
+
for result in model.predict(source=input_path, stream=True, conf=sensitivity):
|
82 |
+
# result.plot() returns an annotated frame (numpy array)
|
83 |
+
annotated_frame = result.plot()
|
84 |
+
frames.append(annotated_frame)
|
85 |
+
if not frames:
|
86 |
+
return None, None, None, "No detections were returned from video streaming."
|
87 |
+
# Write frames to a temporary video file.
|
88 |
+
temp_video_path = os.path.join(tempfile.gettempdir(), "annotated_video.mp4")
|
89 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
90 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
|
91 |
+
for frame in frames:
|
92 |
+
out.write(frame)
|
93 |
+
out.release()
|
94 |
+
output_path = temp_video_path
|
95 |
+
except Exception as e:
|
96 |
+
return None, None, None, f"Error processing video: {e}"
|
97 |
+
else:
|
98 |
+
# Process as an image.
|
99 |
+
try:
|
100 |
+
results = model.predict(source=input_path, save=True, conf=sensitivity)
|
101 |
+
except Exception as e:
|
102 |
+
return None, None, None, f"Error running prediction: {e}"
|
103 |
+
|
104 |
+
try:
|
105 |
+
if not results or len(results) == 0:
|
106 |
+
return None, None, None, "No detections were returned."
|
107 |
+
if hasattr(results[0], "save_path"):
|
108 |
+
output_path = results[0].save_path
|
109 |
+
else:
|
110 |
+
annotated = results[0].plot() # returns a numpy array
|
111 |
+
output_path = os.path.join(tempfile.gettempdir(), "annotated.jpg")
|
112 |
+
cv2.imwrite(output_path, annotated)
|
113 |
+
except Exception as e:
|
114 |
+
return None, None, None, f"Error processing the file: {e}"
|
115 |
+
|
116 |
+
# Clean up temporary input if downloaded.
|
117 |
if ((youtube_link and youtube_link.strip()) or (image_url and image_url.strip())) and input_path and os.path.exists(input_path):
|
118 |
os.remove(input_path)
|
119 |
|
120 |
+
# Set outputs based on output file extension.
|
121 |
+
ext_output = os.path.splitext(output_path)[1].lower()
|
122 |
+
if ext_output in video_exts:
|
123 |
image_result = None
|
124 |
video_result = output_path
|
125 |
else:
|