Spaces:
Sleeping
Sleeping
File size: 12,438 Bytes
0707d05 f98a043 0707d05 f0f9dff debd205 0ba77f1 2f1733d f0f9dff 24fa59e 0707d05 36fbec5 0707d05 36fbec5 0707d05 d44cea7 cac62cc d44cea7 36fbec5 0707d05 cac62cc 36fbec5 24c4f17 cac62cc 24c4f17 0707d05 24c4f17 36fbec5 9d79b23 24fa59e 2f1733d 0ba77f1 0707d05 24fa59e 0ba77f1 cac62cc 36fbec5 0707d05 f0f9dff 24fa59e 0707d05 f0f9dff 3bcd916 0ba77f1 0707d05 24fa59e 36fbec5 0707d05 36fbec5 3bcd916 0707d05 24fa59e 13a0ff7 24c4f17 3bcd916 2f1733d 3bcd916 2f1733d 3bcd916 2f1733d 3bcd916 f0f9dff 2f1733d 0ba77f1 24fa59e 36fbec5 d44cea7 5c1fa0a 36fbec5 d44cea7 36fbec5 cac62cc 24fa59e cac62cc 24c4f17 cac62cc d44cea7 c0792b2 0707d05 c0792b2 d44cea7 0707d05 c0792b2 0707d05 2f1733d c0792b2 5c1fa0a c0792b2 0707d05 d44cea7 5c1fa0a d44cea7 0707d05 c0792b2 0707d05 c0792b2 5c1fa0a 0707d05 5c1fa0a c0792b2 0707d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import PIL
import cv2
import streamlit as st
from ultralytics import YOLO
import tempfile
import time
import requests
import numpy as np
import os
# Page Config
st.set_page_config(page_title="WildfireWatch", page_icon="🔥", layout="wide")
# CSS for layout stability and dark tab text
st.markdown(
"""
<style>
.stApp {
background-color: #f5f5f5;
color: #1a1a1a;
}
h1 {
color: #1a1a1a;
}
.stTabs > div > button {
background-color: #e0e0e0;
color: #333333;
font-weight: bold;
}
.stTabs > div > button:hover {
background-color: #d0d0d0;
color: #333333;
}
.stTabs > div > button[aria-selected="true"] {
background-color: #ffffff;
color: #333333;
}
.main .block-container {
max-height: 100vh;
overflow-y: auto;
}
.stImage > img {
max-height: 50vh;
object-fit: contain;
}
</style>
""",
unsafe_allow_html=True
)
# Load Model
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
try:
model = YOLO(model_path)
except Exception as ex:
st.error(f"Unable to load model. Check the specified path: {model_path}")
st.error(ex)
st.stop()
# Initialize Session State
if 'monitoring' not in st.session_state:
st.session_state.monitoring = False
if 'current_webcam_url' not in st.session_state:
st.session_state.current_webcam_url = None
# Header
st.title("WildfireWatch: Detecting Wildfire using AI")
st.markdown("""
Wildfires are a major environmental issue, causing substantial losses to ecosystems, human livelihoods, and potentially leading to loss of life. Early detection of wildfires can prevent these losses. Our application uses state-of-the-art YOLOv8 model for real-time wildfire and smoke detection.
""")
st.markdown("---")
# Tabs
tabs = st.tabs(["Upload", "Webcam"])
# Tab 1: Upload (Simplified with diagnostics)
with tabs[0]:
col1, col2 = st.columns(2)
with col1:
st.markdown("**Add Your File**")
st.write("Upload an image or video to scan for fire or smoke.")
source_file = st.file_uploader("", type=["jpg", "jpeg", "png", "mp4"], label_visibility="collapsed")
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="upload_conf")
sampling_options = {"Every Frame": 0, "1 FPS": 1, "2 FPS": 2, "5 FPS": 5}
sampling_rate = st.selectbox("Analysis Rate", list(sampling_options.keys()), index=1, key="sampling_rate")
with col2:
frame_placeholder = st.empty()
status_placeholder = st.empty()
progress_placeholder = st.empty()
download_placeholder = st.empty()
if source_file:
st.write(f"File size: {source_file.size / 1024 / 1024:.2f} MB") # Diagnostic
if st.button("Detect Wildfire", key="upload_detect"):
file_type = source_file.type.split('/')[0]
if file_type == 'image':
uploaded_image = PIL.Image.open(source_file)
res = model.predict(uploaded_image, conf=confidence)
detected_image = res[0].plot()[:, :, ::-1]
frame_placeholder.image(detected_image, use_column_width=True)
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
elif file_type == 'video':
try:
# Save input video
input_tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
input_tfile.write(source_file.read())
input_tfile.close()
# Open video
vidcap = cv2.VideoCapture(input_tfile.name)
if not vidcap.isOpened():
status_placeholder.error("Failed to open video file.")
else:
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(vidcap.get(cv2.CAP_PROP_FPS)) or 30
frame_width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Frame sampling
target_fps = sampling_options[sampling_rate]
frame_skip = 1 if target_fps == 0 else max(1, int(fps / target_fps))
# Output video
output_tfile = tempfile.NamedTemporaryFile(delete=False, suffix='_detected.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_tfile.name, fourcc, fps, (frame_width, frame_height))
success, frame = vidcap.read()
frame_count = 0
processed_count = 0
last_detected_frame = None
while success:
if frame_count % frame_skip == 0:
res = model.predict(frame, conf=confidence)
detected_frame = res[0].plot()[:, :, ::-1]
last_detected_frame = detected_frame
frame_placeholder.image(detected_frame, use_column_width=True)
status_placeholder.write(f"Frame {frame_count}: Objects detected: {len(res[0].boxes)}")
processed_count += 1
elif last_detected_frame is not None:
frame_placeholder.image(last_detected_frame, use_column_width=True)
if last_detected_frame is not None:
out.write(last_detected_frame[:, :, ::-1])
# Progress
if total_frames > 0:
progress_percent = (frame_count + 1) / total_frames * 100
progress_placeholder.write(f"Progress: {progress_percent:.1f}% (Processed {processed_count} frames)")
else:
progress_placeholder.write(f"Progress: {frame_count} frames processed")
success, frame = vidcap.read()
frame_count += 1
time.sleep(0.05)
vidcap.release()
out.release()
os.unlink(input_tfile.name)
with open(output_tfile.name, 'rb') as f:
download_placeholder.download_button(
label="Download Analyzed Video",
data=f,
file_name="analyzed_video.mp4",
mime="video/mp4"
)
status_placeholder.write(f"Video processing complete. Processed {processed_count} of {frame_count} frames.")
except Exception as e:
status_placeholder.error(f"Error processing video: {str(e)}")
# Tab 2: Webcam (Unchanged)
with tabs[1]:
col1, col2 = st.columns([1, 1])
with col1:
st.markdown("**Webcam Feed**")
st.write("Provide a webcam URL (image or video stream) to monitor for hazards.")
webcam_url = st.text_input("Webcam URL", "http://<your_webcam_ip>/current.jpg", label_visibility="collapsed")
confidence = st.slider("Detection Threshold", 0.25, 1.0, 0.4, key="webcam_conf")
refresh_rate = st.slider("Refresh Rate (seconds)", 1, 60, 30, key="webcam_rate")
start = st.button("Begin Monitoring", key="webcam_start")
stop = st.button("Stop Monitoring", key="webcam_stop")
if start:
st.session_state.monitoring = True
st.session_state.current_webcam_url = webcam_url
if stop or (st.session_state.monitoring and webcam_url != st.session_state.current_webcam_url):
st.session_state.monitoring = False
st.session_state.current_webcam_url = None
with col2:
frame_placeholder = st.empty()
status_placeholder = st.empty()
timer_placeholder = st.empty()
if st.session_state.monitoring and st.session_state.current_webcam_url:
cap = cv2.VideoCapture(webcam_url)
is_video_stream = cap.isOpened()
if is_video_stream:
status_placeholder.write("Connected to video stream...")
while st.session_state.monitoring and cap.isOpened():
try:
ret, frame = cap.read()
if not ret:
status_placeholder.error("Video stream interrupted.")
break
if webcam_url != st.session_state.current_webcam_url:
status_placeholder.write("URL changed. Stopping video monitoring.")
break
res = model.predict(frame, conf=confidence)
detected_frame = res[0].plot()[:, :, ::-1]
frame_placeholder.image(detected_frame, use_column_width=True)
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
time.sleep(0.1)
except Exception as e:
status_placeholder.error(f"Video error: {e}")
st.session_state.monitoring = False
break
cap.release()
else:
status_placeholder.write("Monitoring image-based webcam...")
while st.session_state.monitoring:
try:
start_time = time.time()
if webcam_url != st.session_state.current_webcam_url:
status_placeholder.write("URL changed. Stopping image monitoring.")
break
response = requests.get(webcam_url, timeout=5)
if response.status_code != 200:
status_placeholder.error(f"Fetch failed: HTTP {response.status_code}")
break
image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
if frame is None:
status_placeholder.error("Image decoding failed.")
break
res = model.predict(frame, conf=confidence)
detected_frame = res[0].plot()[:, :, ::-1]
frame_placeholder.image(detected_frame, use_column_width=True)
status_placeholder.write(f"Objects detected: {len(res[0].boxes)}")
elapsed = time.time() - start_time
remaining = max(0, refresh_rate - elapsed)
for i in range(int(remaining), -1, -1):
if not st.session_state.monitoring or webcam_url != st.session_state.current_webcam_url:
status_placeholder.write("Monitoring interrupted or URL changed.")
break
timer_placeholder.write(f"Next scan: {i}s")
time.sleep(1)
except Exception as e:
status_placeholder.error(f"Image fetch error: {e}")
st.session_state.monitoring = False
break
if not st.session_state.monitoring:
timer_placeholder.write("Monitoring stopped.") |