File size: 9,333 Bytes
056829f
 
 
 
 
f1a05f0
056829f
 
 
 
 
f1a05f0
056829f
 
f1a05f0
 
056829f
 
f1a05f0
056829f
 
f1a05f0
056829f
 
 
 
 
f1a05f0
056829f
 
 
f1a05f0
056829f
f1a05f0
056829f
 
 
fc65614
 
056829f
 
 
 
 
 
fc65614
056829f
 
fc65614
056829f
 
 
fc65614
056829f
 
 
fc65614
056829f
 
 
fc65614
056829f
 
f1a05f0
056829f
 
f1a05f0
fc65614
056829f
 
 
 
 
 
f1a05f0
056829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300ca95
056829f
 
 
 
 
 
 
 
 
 
 
be22e58
056829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be22e58
056829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a05f0
 
056829f
 
f1a05f0
056829f
fc65614
056829f
fc65614
056829f
2a19412
056829f
 
fc65614
056829f
 
2a19412
056829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
Copyright NewGenAI
Code can't be included in commercial app used for monetary gain. No derivative code allowed.
"""
import json
import torch
import gradio as gr
import random
import time
from datetime import datetime
import os

from diffusers.utils import export_to_video
from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from pathlib import Path
from datetime import datetime
from huggingface_hub import hf_hub_download

STATE_FILE = "LTX091_I2V_state.json"
queue = []

def load_state():
    if os.path.exists(STATE_FILE):
        with open(STATE_FILE, "r") as file:
            return json.load(file)
    return {}

def save_state(state):
    with open(STATE_FILE, "w") as file:
        json.dump(state, file)

initial_state = load_state()

def add_to_queue(image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
    task = {
        "image": image,
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "height": height,
        "width": width,
        "num_frames": num_frames,
        "num_inference_steps": num_inference_steps,
        "fps": fps,
        "seed": seed,
    }
    queue.append(task)
    return f"Task added to queue. Current queue length: {len(queue)}"

def clear_queue():
    queue.clear()
    return "Queue cleared."

def process_queue():
    if not queue:
        return "Queue is empty."

    for i, task in enumerate(queue):
        generate_video(**task)
        time.sleep(1)

    queue.clear()
    return "All tasks in the queue have been processed."

def save_ui_state(prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
    state = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "height": height,
        "width": width,
        "num_frames": num_frames,
        "num_inference_steps": num_inference_steps,
        "fps": fps,
        "seed": seed,
    }
    save_state(state)
    return "State saved!"

# [Previous model loading code remains the same...]
repo_id = "a-r-r-o-w/LTX-Video-0.9.1-diffusers"
base_path = repo_id
files_to_download = [
        "model_index.json",
        "scheduler/scheduler_config.json",
        "text_encoder/config.json",
        "text_encoder/model-00001-of-00004.safetensors",
        "text_encoder/model-00002-of-00004.safetensors",
        "text_encoder/model-00003-of-00004.safetensors",
        "text_encoder/model-00004-of-00004.safetensors",
        "text_encoder/model.safetensors.index.json",
        "tokenizer/added_tokens.json",
        "tokenizer/special_tokens_map.json",
        "tokenizer/spiece.model",
        "tokenizer/tokenizer_config.json",
        "transformer/config.json",
        "transformer/diffusion_pytorch_model.safetensors",
        "vae/config.json",
        "vae/diffusion_pytorch_model.safetensors",
    ]
os.makedirs(base_path, exist_ok=True)
for file_path in files_to_download:
    try:
        full_dir = os.path.join(base_path, os.path.dirname(file_path))
        os.makedirs(full_dir, exist_ok=True)
        
        downloaded_path = hf_hub_download(
            repo_id=repo_id,
            filename=file_path,
            local_dir=base_path,
        )
        
        print(f"Successfully downloaded: {file_path}")
        
    except Exception as e:
        print(f"Error downloading {file_path}: {str(e)}")
        raise

try:
    full_dir = os.path.join(base_path, os.path.dirname(file_path))
    os.makedirs(full_dir, exist_ok=True)
    
    downloaded_path = hf_hub_download(
        repo_id="Lightricks/LTX-Video",
        filename="ltx-video-2b-v0.9.1.safetensors",
        local_dir=repo_id,
    )
    print(f"Successfully downloaded: ltx-video-2b-v0.9.1.safetensors")
except Exception as e:
    print(f"Error downloading 0.9.1 model: {str(e)}")
    raise

single_file_url = repo_id+"/ltx-video-2b-v0.9.1.safetensors"
text_encoder = T5EncoderModel.from_pretrained(
  repo_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
)
tokenizer = T5Tokenizer.from_pretrained(
  repo_id, subfolder="tokenizer", torch_dtype=torch.bfloat16
)
pipe = LTXImageToVideoPipeline.from_single_file(
    single_file_url, 
    text_encoder=text_encoder, 
    tokenizer=tokenizer, 
    torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()

def generate_video(image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed):
    if seed == 0:
        seed = random.randint(0, 999999)
    
    video = pipe(
        image=image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        num_frames=num_frames,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device='cuda').manual_seed(seed),
    ).frames[0]

    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"{prompt[:10]}_{timestamp}.mp4"
    
    os.makedirs("output_LTX091_i2v", exist_ok=True)
    output_path = f"./output_LTX091_i2v/{filename}"
    export_to_video(video, output_path, fps=fps)
    
    return output_path

def randomize_seed():
    return random.randint(0, 999999)

with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.Tab("Generate Video"):
            with gr.Row():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", lines=3, value=initial_state.get("prompt", "A dramatic view of the pyramids at Giza during sunset."))
                negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value=initial_state.get("negative_prompt", "worst quality, blurry, distorted"))
            with gr.Row():
                height = gr.Slider(label="Height", minimum=240, maximum=1080, step=1, value=initial_state.get("height", 480))
                width = gr.Slider(label="Width", minimum=320, maximum=1920, step=1, value=initial_state.get("width", 704))
            with gr.Row():
                num_frames = gr.Slider(label="Number of Frames", minimum=1, maximum=500, step=1, value=initial_state.get("num_frames", 161))
                num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=initial_state.get("num_inference_steps", 50))
            with gr.Row():
                fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=initial_state.get("fps", 24))
                seed = gr.Number(label="Seed", value=initial_state.get("seed", 0))
                random_seed_button = gr.Button("Randomize Seed")

            output_video = gr.Video(label="Generated Video", show_label=True)
            generate_button = gr.Button("Generate Video")
            save_state_button = gr.Button("Save State")

            random_seed_button.click(lambda: random.randint(0, 999999), outputs=seed)
            generate_button.click(
                generate_video,
                inputs=[input_image, prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed],
                outputs=output_video
            )
            save_state_button.click(
                save_ui_state,
                inputs=[prompt, negative_prompt, height, width, num_frames, num_inference_steps, fps, seed],
                outputs=gr.Text(label="State Status")
            )

        with gr.Tab("Batch Processing"):
            with gr.Row():
                batch_input_image = gr.Image(label="Input Image", type="pil")
            with gr.Row():
                batch_prompt = gr.Textbox(label="Prompt", lines=3, value="A batch of videos depicting different landscapes.")
                batch_negative_prompt = gr.Textbox(label="Negative Prompt", lines=3, value="low quality, inconsistent, jittery")
            with gr.Row():
                batch_height = gr.Slider(label="Height", minimum=240, maximum=1080, step=1, value=480)
                batch_width = gr.Slider(label="Width", minimum=320, maximum=1920, step=1, value=704)
            with gr.Row():
                batch_num_frames = gr.Slider(label="Number of Frames", minimum=1, maximum=500, step=1, value=161)
                batch_num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, step=1, value=50)
            with gr.Row():
                batch_fps = gr.Slider(label="FPS", minimum=1, maximum=60, step=1, value=24)
                batch_seed = gr.Number(label="Seed", value=0)
                random_seed_batch_button = gr.Button("Randomize Seed")

            add_to_queue_button = gr.Button("Add to Queue")
            clear_queue_button = gr.Button("Clear Queue")
            process_queue_button = gr.Button("Process Queue")

            queue_status = gr.Text(label="Queue Status")

            random_seed_batch_button.click(lambda: random.randint(0, 999999), outputs=batch_seed)
            add_to_queue_button.click(
                add_to_queue,
                inputs=[batch_input_image, batch_prompt, batch_negative_prompt, batch_height, batch_width, batch_num_frames, batch_num_inference_steps, batch_fps, batch_seed],
                outputs=queue_status
            )
            clear_queue_button.click(clear_queue, outputs=queue_status)
            process_queue_button.click(process_queue, outputs=queue_status)

demo.launch()