File size: 6,223 Bytes
7da056c
1fd2df8
f3beecc
056829f
1fd2df8
056829f
1fd2df8
056829f
f1a05f0
1fd2df8
056829f
f1a05f0
1fd2df8
be22e58
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d37981
f3beecc
1fd2df8
 
 
f3beecc
1fd2df8
 
 
c1ee18a
1fd2df8
 
c1ee18a
1fd2df8
 
 
 
 
 
 
056829f
 
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3beecc
056829f
1fd2df8
 
 
056829f
f3beecc
1fd2df8
f3beecc
f1a05f0
 
 
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056829f
1fd2df8
 
 
 
 
056829f
 
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056829f
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056829f
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056829f
1fd2df8
056829f
1fd2df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056829f
1fd2df8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import spaces
from datetime import datetime
import gc
import gradio as gr
import numpy as np
import random
from pathlib import Path
import os

from diffusers import AutoencoderKLLTXVideo, LTXPipeline, LTXVideoTransformer3DModel
from diffusers.utils import export_to_video
from transformers import T5EncoderModel, T5Tokenizer
import torch

from utils import install_packages

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.jit._state.disable()
torch.set_grad_enabled(False)

gc.collect()
torch.cuda.empty_cache()

ckpt_path = Path("a-r-r-o-w/LTX-Video-0.9.1-diffusers")
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(
    single_file_url, torch_dtype=torch.bfloat16
)
vae = AutoencoderKLLTXVideo.from_single_file(
    single_file_url, torch_dtype=torch.bfloat16)
vae.eval()
vae = vae.to("cuda")

text_encoder = T5EncoderModel.from_pretrained(
    ckpt_path,
    subfolder="text_encoder",
    torch_dtype=torch.bfloat16
)
text_encoder.eval()
text_encoder = text_encoder.to("cuda")

tokenizer = T5Tokenizer.from_pretrained(
    ckpt_path,
    subfolder="tokenizer"
)

pipeline = LTXPipeline.from_single_file(
    single_file_url,
    transformer=transformer,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    vae=vae,
    torch_dtype=torch.bfloat16
)
# pipeline.enable_model_cpu_offload()

pipeline.vae.enable_tiling()
pipeline.vae.enable_slicing()

pipeline = pipeline.to("cuda")


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280


@spaces.GPU()
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width=704,
    height=448,
    num_frames=129,
    fps=24,
    num_inference_steps=30,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device='cuda').manual_seed(seed)

    with torch.amp.autocast_mode.autocast('cuda', torch.bfloat16), torch.no_grad(), torch.inference_mode():
        video = pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            num_frames=num_frames,
            # guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            # decode_timestep=decode_timestep,
            # decode_noise_scale=decode_noise_scale,
            generator=generator,
            # max_sequence_length=512,
        ).frames[0]

    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"output_{timestamp}.mp4"
    os.makedirs("output", exist_ok=True)
    output_path = f"./output/{filename}"
    export_to_video(video, output_path, fps=fps)

    gc.collect
    torch.cuda.empty_cache()
    return output_path


css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                lines=3,
                value=str("A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"),
            )

            negative_prompt = gr.Textbox(
                label="Negative prompt",
                lines=3,
                value=str("worst quality, blurry, distorted"),
            )

        with gr.Row():
            run_button = gr.Button("Run", scale=0, variant="huggingface")

        with gr.Row():
            result = gr.Video(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=704,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=448,  # Replace with defaults that work for your model
                )

            with gr.Row():
                num_frames = gr.Slider(
                    label="Number of frames",
                    minimum=1,
                    maximum=257,
                    step=32,
                    value=129,  # Replace with defaults that work for your model
                )

                fps = gr.Slider(
                    label="Number of frames per second",
                    minimum=1,
                    maximum=30,
                    step=1,
                    value=24,  # Replace with defaults that work for your model
                )

            with gr.Row():

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,  # Replace with defaults that work for your model
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            num_frames,
            fps,
            num_inference_steps,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    install_packages()
    demo.launch()