Spaces:
Paused
Paused
File size: 9,997 Bytes
424c696 6bbfa6b 542042e 424c696 542042e 424c696 542042e 33c2b59 542042e 6195c34 542042e 424c696 542042e 424c696 542042e 6bbfa6b 71b65a7 424c696 6bbfa6b 08c7cdd 6bbfa6b 542042e 424c696 542042e 424c696 542042e 424c696 542042e 424c696 542042e 424c696 542042e 33c2b59 542042e 424c696 542042e 424c696 542042e 424c696 542042e 424c696 33c2b59 424c696 33c2b59 424c696 33c2b59 424c696 33c2b59 542042e 424c696 542042e 424c696 542042e 424c696 542042e 424c696 542042e 114e54c 542042e 114e54c 542042e 114e54c 542042e 71b65a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
# Define maximum dimensions for the fortune image (in pixels)
MAX_SIZE = (400, 400)
# Initialize button click count in session state
if "button_count_temp" not in st.session_state:
st.session_state.button_count_temp = 0
# Set page configuration
st.set_page_config(page_title="Fortuen Stick Enquiry", layout="wide")
st.title("Fortuen Stick Enquiry")
# Initialize session state variables
if "submitted_text" not in st.session_state:
st.session_state.submitted_text = False
if "fortune_number" not in st.session_state:
st.session_state.fortune_number = None
if "fortune_row" not in st.session_state:
st.session_state.fortune_row = None
if "error_message" not in st.session_state:
st.session_state.error_message = ""
if "cfu_explain_text" not in st.session_state:
st.session_state.cfu_explain_text = ""
if "stick_clicked" not in st.session_state:
st.session_state.stick_clicked = False
if "fortune_data" not in st.session_state:
try:
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
except Exception as e:
st.error(f"Error loading CSV: {e}")
st.session_state.fortune_data = None
def load_finetuned_classifier_model(question):
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
# Create a mapping dictionary to convert the default "LABEL_x" output.
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
prediction = pipe(question)[0]['label']
predicted_label = mapping.get(prediction, prediction)
print(predicted_label)
return predicted_label
# Define your inference function
def generate_answer(question, fortune):
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen")
input_text = "Question: " + question + " Fortune: " + fortune
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
outputs = model.generate(
**inputs,
max_length=256,
num_beams=4,
early_stopping=True,
repetition_penalty=2.0,
no_repeat_ngram_size=3
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def analysis(row_detail, classifiy, question):
# Use the classifier's output (e.g. "Personal Well-Being") in the regex.
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
match = pattern.search(row_detail)
if match:
result = match.group(1)
# If you want to generate a custom answer, you can call generate_answer()
return generate_answer(question, result)
else:
return "Heaven's secret cannot be revealed."
def check_sentence_is_english_model(question):
pipe_english = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
return pipe_english(question)[0]['label'] == 'en'
def check_sentence_is_question_model(question):
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
return pipe_question(question)[0]['label'] == 'LABEL_1'
def submit_text_callback():
question = st.session_state.get("user_sentence", "")
# Clear any previous error message
st.session_state.error_message = ""
if not check_sentence_is_english_model(question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit again!"
st.session_state.button_count_temp = 1
return
st.session_state.submitted_text = True
st.session_state.button_count_temp = 0 # Reset the counter once submission is accepted
# Randomly generate a number from 1 to 100
st.session_state.fortune_number = random.randint(1, 100)
# Look up the row in the CSV where CNumber matches the generated fortune number.
df = st.session_state.fortune_data
row_detail = ''
if df is not None:
matching_row = df[df['CNumber'] == st.session_state.fortune_number]
if not matching_row.empty:
row = matching_row.iloc[0]
row_detail = row.get("Detail", "No detail available.")
st.session_state.fortune_row = {
"Header": row.get("Header", "N/A"),
"Luck": row.get("Luck", "N/A"),
"Description": row.get("Description", "No description available."),
"Detail": row_detail,
"HeaderLink": row.get("link", None)
}
else:
st.session_state.fortune_row = {
"Header": "N/A",
"Luck": "N/A",
"Description": "No description available.",
"Detail": "No detail available.",
"HeaderLink": None
}
print(row_detail)
def load_and_resize_image(path, max_size=MAX_SIZE):
try:
img = Image.open(path)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image: {e}")
return None
def download_and_resize_image(url, max_size=MAX_SIZE):
try:
response = requests.get(url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
img = Image.open(image_bytes)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
def stick_enquiry_callback():
# Retrieve the user's question and the fortune detail
question = st.session_state.get("user_sentence", "")
if not st.session_state.fortune_row:
st.error("Fortune data is not available. Please submit your question first.")
return
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
# Run the classifier model after the image has loaded
classifiy = load_finetuned_classifier_model(question)
# Generate the explanation using the analysis function
cfu_explain = analysis(row_detail, classifiy, question)
# Save the returned value in session state for later display
st.session_state.cfu_explain_text = cfu_explain
st.session_state.stick_clicked = True
# Main layout: Left (input) and Right (fortune display)
left_col, _, right_col = st.columns([3, 1, 5])
# ---- Left Column ----
with left_col:
left_top = st.container()
left_bottom = st.container()
with left_top:
st.text_area("Enter your question in English", key="user_sentence", height=150)
st.button("submit", key="submit_button", on_click=submit_text_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
if st.session_state.submitted_text:
with left_bottom:
for _ in range(5):
st.write("")
col1, col2, col3 = st.columns(3)
with col2:
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
if st.session_state.stick_clicked:
# Display the explanation text saved from analysis()
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
# ---- Right Column ----
with right_col:
with st.container():
col_left, col_center, col_right = st.columns([1, 2, 1])
with col_center:
if st.session_state.submitted_text and st.session_state.fortune_row:
header_link = st.session_state.fortune_row.get("HeaderLink")
if header_link:
img_from_url = download_and_resize_image(header_link)
if img_from_url:
st.image(img_from_url, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/resources/fortune.png")
if img:
st.image(img, caption="Your Fortune", use_container_width=False)
with st.container():
if st.session_state.fortune_row:
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
description_text = st.session_state.fortune_row.get("Description", "No description available.")
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
summary = f"""
<div style="font-size: 28px; font-weight: bold;">
Fortune stick number: {st.session_state.fortune_number}<br>
Luck: {luck_text}
</div>
"""
st.markdown(summary, unsafe_allow_html=True)
st.text_area("Description", value=description_text, height=150, disabled=True)
st.text_area("Detail", value=detail_text, height=150, disabled=True) |