Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,24 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import random
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import requests
|
| 5 |
-
from io import BytesIO
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
-
import re
|
| 9 |
-
|
| 10 |
-
# This script implements a Fortune Stick Enquiry app.
|
| 11 |
-
# Users enter a question, which is validated and processed.
|
| 12 |
-
# A random fortune is chosen from a CSV, and NLP models classify and generate custom answers.
|
| 13 |
|
| 14 |
# Define maximum dimensions for the fortune image (in pixels)
|
| 15 |
MAX_SIZE = (400, 400)
|
| 16 |
|
| 17 |
-
# Initialize
|
| 18 |
if "button_count_temp" not in st.session_state:
|
| 19 |
st.session_state.button_count_temp = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if "submitted_text" not in st.session_state:
|
| 21 |
st.session_state.submitted_text = False
|
| 22 |
if "fortune_number" not in st.session_state:
|
|
@@ -30,7 +32,6 @@ if "cfu_explain_text" not in st.session_state:
|
|
| 30 |
if "stick_clicked" not in st.session_state:
|
| 31 |
st.session_state.stick_clicked = False
|
| 32 |
|
| 33 |
-
# Load fortune data from CSV file
|
| 34 |
if "fortune_data" not in st.session_state:
|
| 35 |
try:
|
| 36 |
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
|
|
@@ -38,69 +39,25 @@ if "fortune_data" not in st.session_state:
|
|
| 38 |
st.error(f"Error loading CSV: {e}")
|
| 39 |
st.session_state.fortune_data = None
|
| 40 |
|
| 41 |
-
# ----------------------------------------------------
|
| 42 |
-
# CACHED MODEL LOADING FUNCTIONS
|
| 43 |
-
# ----------------------------------------------------
|
| 44 |
-
|
| 45 |
-
@st.cache_resource
|
| 46 |
-
def load_classifier_pipeline():
|
| 47 |
-
"""
|
| 48 |
-
Load and cache the finetuned classifier pipeline.
|
| 49 |
-
This model classifies the input question into one of the fortune categories.
|
| 50 |
-
"""
|
| 51 |
-
return pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
|
| 52 |
-
|
| 53 |
-
@st.cache_resource
|
| 54 |
-
def load_tokenizer_and_model():
|
| 55 |
-
"""
|
| 56 |
-
Load and cache the tokenizer and model for generating custom answers.
|
| 57 |
-
Uses a finetuned sequence-to-sequence model from Hugging Face.
|
| 58 |
-
"""
|
| 59 |
-
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
| 60 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
| 61 |
-
return tokenizer, model
|
| 62 |
-
|
| 63 |
-
@st.cache_resource
|
| 64 |
-
def load_english_detection_pipeline():
|
| 65 |
-
"""
|
| 66 |
-
Load and cache the English language detection pipeline.
|
| 67 |
-
This ensures that the user's question is in English.
|
| 68 |
-
"""
|
| 69 |
-
return pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
|
| 70 |
-
|
| 71 |
-
@st.cache_resource
|
| 72 |
-
def load_question_detection_pipeline():
|
| 73 |
-
"""
|
| 74 |
-
Load and cache the question vs. statement detection pipeline.
|
| 75 |
-
This checks if the input text is a question.
|
| 76 |
-
"""
|
| 77 |
-
return pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
|
| 78 |
-
|
| 79 |
-
# ----------------------------------------------------
|
| 80 |
-
# FUNCTION DEFINITIONS
|
| 81 |
-
# ----------------------------------------------------
|
| 82 |
-
|
| 83 |
def load_finetuned_classifier_model(question):
|
| 84 |
-
"""
|
| 85 |
-
Classify the input question into a specific fortune category.
|
| 86 |
-
Maps the classifier's output label to a human-readable format.
|
| 87 |
-
"""
|
| 88 |
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
|
| 89 |
-
#
|
| 90 |
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
prediction =
|
| 94 |
predicted_label = mapping.get(prediction, prediction)
|
| 95 |
print(predicted_label)
|
| 96 |
return predicted_label
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def generate_answer(question, fortune):
|
| 99 |
-
|
| 100 |
-
Generate a custom answer using a finetuned sequence-to-sequence model.
|
| 101 |
-
Combines the user's question with the fortune message to produce a response.
|
| 102 |
-
"""
|
| 103 |
-
tokenizer, model = load_tokenizer_and_model()
|
| 104 |
input_text = "Question: " + question + " Fortune: " + fortune
|
| 105 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
| 106 |
outputs = model.generate(
|
|
@@ -115,38 +72,27 @@ def generate_answer(question, fortune):
|
|
| 115 |
return answer
|
| 116 |
|
| 117 |
def analysis(row_detail, classifiy, question):
|
| 118 |
-
""
|
| 119 |
-
Analyze the fortune detail based on the classifier's output.
|
| 120 |
-
Extracts the specific fortune message using regex and generates an answer.
|
| 121 |
-
"""
|
| 122 |
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
|
| 123 |
match = pattern.search(row_detail)
|
| 124 |
if match:
|
| 125 |
result = match.group(1)
|
|
|
|
| 126 |
return generate_answer(question, result)
|
| 127 |
else:
|
| 128 |
return "Heaven's secret cannot be revealed."
|
| 129 |
|
| 130 |
def check_sentence_is_english_model(question):
|
| 131 |
-
"""
|
| 132 |
-
Check if the input question is in English using a language detection model.
|
| 133 |
-
"""
|
| 134 |
-
pipe_english = load_english_detection_pipeline()
|
| 135 |
return pipe_english(question)[0]['label'] == 'en'
|
| 136 |
|
| 137 |
def check_sentence_is_question_model(question):
|
| 138 |
-
"""
|
| 139 |
-
Check if the input text is a question using a question vs. statement classifier.
|
| 140 |
-
"""
|
| 141 |
-
pipe_question = load_question_detection_pipeline()
|
| 142 |
return pipe_question(question)[0]['label'] == 'LABEL_1'
|
| 143 |
|
| 144 |
def submit_text_callback():
|
| 145 |
-
"""
|
| 146 |
-
Callback function executed when the user submits their question.
|
| 147 |
-
Validates the input and retrieves a corresponding fortune based on a random number.
|
| 148 |
-
"""
|
| 149 |
question = st.session_state.get("user_sentence", "")
|
|
|
|
| 150 |
st.session_state.error_message = ""
|
| 151 |
|
| 152 |
if not check_sentence_is_english_model(question):
|
|
@@ -165,12 +111,12 @@ def submit_text_callback():
|
|
| 165 |
return
|
| 166 |
|
| 167 |
st.session_state.submitted_text = True
|
| 168 |
-
st.session_state.button_count_temp = 0 # Reset the counter
|
| 169 |
|
| 170 |
-
# Randomly generate a
|
| 171 |
st.session_state.fortune_number = random.randint(1, 100)
|
| 172 |
|
| 173 |
-
#
|
| 174 |
df = st.session_state.fortune_data
|
| 175 |
row_detail = ''
|
| 176 |
if df is not None:
|
|
@@ -196,9 +142,6 @@ def submit_text_callback():
|
|
| 196 |
print(row_detail)
|
| 197 |
|
| 198 |
def load_and_resize_image(path, max_size=MAX_SIZE):
|
| 199 |
-
"""
|
| 200 |
-
Load an image from a local path and resize it to fit within MAX_SIZE.
|
| 201 |
-
"""
|
| 202 |
try:
|
| 203 |
img = Image.open(path)
|
| 204 |
img.thumbnail(max_size, Image.Resampling.LANCZOS)
|
|
@@ -208,9 +151,6 @@ def load_and_resize_image(path, max_size=MAX_SIZE):
|
|
| 208 |
return None
|
| 209 |
|
| 210 |
def download_and_resize_image(url, max_size=MAX_SIZE):
|
| 211 |
-
"""
|
| 212 |
-
Download an image from a URL and resize it to fit within MAX_SIZE.
|
| 213 |
-
"""
|
| 214 |
try:
|
| 215 |
response = requests.get(url)
|
| 216 |
response.raise_for_status()
|
|
@@ -223,32 +163,24 @@ def download_and_resize_image(url, max_size=MAX_SIZE):
|
|
| 223 |
return None
|
| 224 |
|
| 225 |
def stick_enquiry_callback():
|
| 226 |
-
|
| 227 |
-
Callback function executed when the user clicks "Cfu Explain".
|
| 228 |
-
Uses the classifier to analyze the fortune details and generate a custom answer.
|
| 229 |
-
"""
|
| 230 |
question = st.session_state.get("user_sentence", "")
|
| 231 |
if not st.session_state.fortune_row:
|
| 232 |
st.error("Fortune data is not available. Please submit your question first.")
|
| 233 |
return
|
| 234 |
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
|
|
|
|
| 235 |
classifiy = load_finetuned_classifier_model(question)
|
|
|
|
| 236 |
cfu_explain = analysis(row_detail, classifiy, question)
|
|
|
|
| 237 |
st.session_state.cfu_explain_text = cfu_explain
|
| 238 |
st.session_state.stick_clicked = True
|
| 239 |
|
| 240 |
-
#
|
| 241 |
-
# STREAMLIT APP LAYOUT
|
| 242 |
-
# ----------------------------------------------------
|
| 243 |
-
|
| 244 |
-
# Set page configuration and title
|
| 245 |
-
st.set_page_config(page_title="Fortuen Stick Enquiry", layout="wide")
|
| 246 |
-
st.title("Fortuen Stick Enquiry")
|
| 247 |
-
|
| 248 |
-
# Define the main layout columns: Left for user input, Right for fortune display
|
| 249 |
left_col, _, right_col = st.columns([3, 1, 5])
|
| 250 |
|
| 251 |
-
# ---- Left Column
|
| 252 |
with left_col:
|
| 253 |
left_top = st.container()
|
| 254 |
left_bottom = st.container()
|
|
@@ -259,17 +191,16 @@ with left_col:
|
|
| 259 |
st.error(st.session_state.error_message)
|
| 260 |
if st.session_state.submitted_text:
|
| 261 |
with left_bottom:
|
| 262 |
-
# Add spacing
|
| 263 |
for _ in range(5):
|
| 264 |
st.write("")
|
| 265 |
col1, col2, col3 = st.columns(3)
|
| 266 |
with col2:
|
| 267 |
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
|
| 268 |
if st.session_state.stick_clicked:
|
| 269 |
-
# Display the
|
| 270 |
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
|
| 271 |
|
| 272 |
-
# ---- Right Column
|
| 273 |
with right_col:
|
| 274 |
with st.container():
|
| 275 |
col_left, col_center, col_right = st.columns([1, 2, 1])
|
|
@@ -308,3 +239,21 @@ with right_col:
|
|
| 308 |
|
| 309 |
st.text_area("Description", value=description_text, height=150, disabled=True)
|
| 310 |
st.text_area("Detail", value=detail_text, height=150, disabled=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import random
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Define maximum dimensions for the fortune image (in pixels)
|
| 11 |
MAX_SIZE = (400, 400)
|
| 12 |
|
| 13 |
+
# Initialize button click count in session state
|
| 14 |
if "button_count_temp" not in st.session_state:
|
| 15 |
st.session_state.button_count_temp = 0
|
| 16 |
+
|
| 17 |
+
# Set page configuration
|
| 18 |
+
st.set_page_config(page_title="Fortuen Stick Enquiry", layout="wide")
|
| 19 |
+
st.title("Fortuen Stick Enquiry")
|
| 20 |
+
|
| 21 |
+
# Initialize session state variables
|
| 22 |
if "submitted_text" not in st.session_state:
|
| 23 |
st.session_state.submitted_text = False
|
| 24 |
if "fortune_number" not in st.session_state:
|
|
|
|
| 32 |
if "stick_clicked" not in st.session_state:
|
| 33 |
st.session_state.stick_clicked = False
|
| 34 |
|
|
|
|
| 35 |
if "fortune_data" not in st.session_state:
|
| 36 |
try:
|
| 37 |
st.session_state.fortune_data = pd.read_csv("/home/user/app/resources/detail.csv")
|
|
|
|
| 39 |
st.error(f"Error loading CSV: {e}")
|
| 40 |
st.session_state.fortune_data = None
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def load_finetuned_classifier_model(question):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
|
| 44 |
+
# Create a mapping dictionary to convert the default "LABEL_x" output.
|
| 45 |
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
|
| 46 |
+
|
| 47 |
+
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
|
| 48 |
+
prediction = pipe(question)[0]['label']
|
| 49 |
predicted_label = mapping.get(prediction, prediction)
|
| 50 |
print(predicted_label)
|
| 51 |
return predicted_label
|
| 52 |
|
| 53 |
+
@st.cache_resource
|
| 54 |
+
def load_model_and_tokenizer():
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
| 56 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
| 57 |
+
return tokenizer, model
|
| 58 |
+
|
| 59 |
def generate_answer(question, fortune):
|
| 60 |
+
tokenizer, model = load_model_and_tokenizer()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
input_text = "Question: " + question + " Fortune: " + fortune
|
| 62 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
| 63 |
outputs = model.generate(
|
|
|
|
| 72 |
return answer
|
| 73 |
|
| 74 |
def analysis(row_detail, classifiy, question):
|
| 75 |
+
# Use the classifier's output (e.g. "Personal Well-Being") in the regex.
|
|
|
|
|
|
|
|
|
|
| 76 |
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
|
| 77 |
match = pattern.search(row_detail)
|
| 78 |
if match:
|
| 79 |
result = match.group(1)
|
| 80 |
+
# If you want to generate a custom answer, you can call generate_answer()
|
| 81 |
return generate_answer(question, result)
|
| 82 |
else:
|
| 83 |
return "Heaven's secret cannot be revealed."
|
| 84 |
|
| 85 |
def check_sentence_is_english_model(question):
|
| 86 |
+
pipe_english = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
|
|
|
|
|
|
|
|
|
|
| 87 |
return pipe_english(question)[0]['label'] == 'en'
|
| 88 |
|
| 89 |
def check_sentence_is_question_model(question):
|
| 90 |
+
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
|
|
|
|
|
|
|
|
|
|
| 91 |
return pipe_question(question)[0]['label'] == 'LABEL_1'
|
| 92 |
|
| 93 |
def submit_text_callback():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
question = st.session_state.get("user_sentence", "")
|
| 95 |
+
# Clear any previous error message
|
| 96 |
st.session_state.error_message = ""
|
| 97 |
|
| 98 |
if not check_sentence_is_english_model(question):
|
|
|
|
| 111 |
return
|
| 112 |
|
| 113 |
st.session_state.submitted_text = True
|
| 114 |
+
st.session_state.button_count_temp = 0 # Reset the counter once submission is accepted
|
| 115 |
|
| 116 |
+
# Randomly generate a number from 1 to 100
|
| 117 |
st.session_state.fortune_number = random.randint(1, 100)
|
| 118 |
|
| 119 |
+
# Look up the row in the CSV where CNumber matches the generated fortune number.
|
| 120 |
df = st.session_state.fortune_data
|
| 121 |
row_detail = ''
|
| 122 |
if df is not None:
|
|
|
|
| 142 |
print(row_detail)
|
| 143 |
|
| 144 |
def load_and_resize_image(path, max_size=MAX_SIZE):
|
|
|
|
|
|
|
|
|
|
| 145 |
try:
|
| 146 |
img = Image.open(path)
|
| 147 |
img.thumbnail(max_size, Image.Resampling.LANCZOS)
|
|
|
|
| 151 |
return None
|
| 152 |
|
| 153 |
def download_and_resize_image(url, max_size=MAX_SIZE):
|
|
|
|
|
|
|
|
|
|
| 154 |
try:
|
| 155 |
response = requests.get(url)
|
| 156 |
response.raise_for_status()
|
|
|
|
| 163 |
return None
|
| 164 |
|
| 165 |
def stick_enquiry_callback():
|
| 166 |
+
# Retrieve the user's question and the fortune detail
|
|
|
|
|
|
|
|
|
|
| 167 |
question = st.session_state.get("user_sentence", "")
|
| 168 |
if not st.session_state.fortune_row:
|
| 169 |
st.error("Fortune data is not available. Please submit your question first.")
|
| 170 |
return
|
| 171 |
row_detail = st.session_state.fortune_row.get("Detail", "No detail available.")
|
| 172 |
+
# Run the classifier model after the image has loaded
|
| 173 |
classifiy = load_finetuned_classifier_model(question)
|
| 174 |
+
# Generate the explanation using the analysis function
|
| 175 |
cfu_explain = analysis(row_detail, classifiy, question)
|
| 176 |
+
# Save the returned value in session state for later display
|
| 177 |
st.session_state.cfu_explain_text = cfu_explain
|
| 178 |
st.session_state.stick_clicked = True
|
| 179 |
|
| 180 |
+
# Main layout: Left (input) and Right (fortune display)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
left_col, _, right_col = st.columns([3, 1, 5])
|
| 182 |
|
| 183 |
+
# ---- Left Column ----
|
| 184 |
with left_col:
|
| 185 |
left_top = st.container()
|
| 186 |
left_bottom = st.container()
|
|
|
|
| 191 |
st.error(st.session_state.error_message)
|
| 192 |
if st.session_state.submitted_text:
|
| 193 |
with left_bottom:
|
|
|
|
| 194 |
for _ in range(5):
|
| 195 |
st.write("")
|
| 196 |
col1, col2, col3 = st.columns(3)
|
| 197 |
with col2:
|
| 198 |
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
|
| 199 |
if st.session_state.stick_clicked:
|
| 200 |
+
# Display the explanation text saved from analysis()
|
| 201 |
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
|
| 202 |
|
| 203 |
+
# ---- Right Column ----
|
| 204 |
with right_col:
|
| 205 |
with st.container():
|
| 206 |
col_left, col_center, col_right = st.columns([1, 2, 1])
|
|
|
|
| 239 |
|
| 240 |
st.text_area("Description", value=description_text, height=150, disabled=True)
|
| 241 |
st.text_area("Detail", value=detail_text, height=150, disabled=True)
|
| 242 |
+
|
| 243 |
+
why when loading the function
|
| 244 |
+
# Define your inference function
|
| 245 |
+
def generate_answer(question, fortune):
|
| 246 |
+
tokenizer = AutoTokenizer.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
| 247 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("tonyhui2234/finetuned_model_text_gen")
|
| 248 |
+
input_text = "Question: " + question + " Fortune: " + fortune
|
| 249 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
| 250 |
+
outputs = model.generate(
|
| 251 |
+
**inputs,
|
| 252 |
+
max_length=256,
|
| 253 |
+
num_beams=4,
|
| 254 |
+
early_stopping=True,
|
| 255 |
+
repetition_penalty=2.0,
|
| 256 |
+
no_repeat_ngram_size=3
|
| 257 |
+
)
|
| 258 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 259 |
+
return answer
|