Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
|
3 |
+
# Load the saved model and tokenizer
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("/home/user/app/my_finetuned_model_2/")
|
5 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("/home/user/app/my_finetuned_model_2/")
|
6 |
+
|
7 |
+
# Define your inference function
|
8 |
+
def generate_answer(question, fortune):
|
9 |
+
input_text = "Question: " + question + " Fortune: " + fortune
|
10 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
11 |
+
outputs = model.generate(**inputs, max_length=256, num_beams=4, early_stopping=True, repetition_penalty=2.0, no_repeat_ngram_size=3)
|
12 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
13 |
+
return answer
|
14 |
+
|
15 |
+
# Test the model with a sample input
|
16 |
+
sample_question = "Should I start my own business now?"
|
17 |
+
sample_fortune = "absence of rain causes worry."
|
18 |
+
print("Generated Answer:")
|
19 |
+
print(generate_answer(sample_question, sample_fortune))
|