Spaces:
Running
Running
File size: 12,100 Bytes
d4ff2d1 2669301 d4ff2d1 af2dd62 bd26425 d4ff2d1 2669301 d4ff2d1 bd26425 2669301 d4ff2d1 2669301 d4ff2d1 2669301 d4ff2d1 e993919 d4ff2d1 6316ef5 d4ff2d1 2669301 bd26425 fcec301 bd26425 2669301 bd26425 d4ff2d1 16d5f81 d4ff2d1 16d5f81 d4ff2d1 16d5f81 d4ff2d1 16d5f81 d4ff2d1 16d5f81 fcec301 16d5f81 eaadf1d 16d5f81 d4ff2d1 16d5f81 d4ff2d1 fcec301 eaadf1d d4ff2d1 eaadf1d 16d5f81 eaadf1d 16d5f81 eaadf1d d4ff2d1 16d5f81 fcec301 d4ff2d1 bd26425 d4ff2d1 bd26425 d4ff2d1 bd26425 d4ff2d1 fcec301 bd26425 fcec301 bd26425 fcec301 bd26425 fcec301 bd26425 54d6416 bd26425 0bcf830 d4ff2d1 f2d7f1f d4ff2d1 bd26425 d4ff2d1 fcec301 d4ff2d1 fcec301 bd26425 d4ff2d1 bd26425 d4ff2d1 bd26425 d4ff2d1 caa6729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import fnmatch
import gradio as gr
import pandas as pd
import plotly.express as px
from rapidfuzz import fuzz
import re
def load_leaderboard():
# Load validation / test CSV files
results_csv_files = {
'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv',
'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv',
'v2': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv',
'sketch': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv',
'a': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv',
'r': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv',
}
# Load benchmark CSV files
benchmark_csv_files = {
'amp-nchw-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv',
'amp-nhwc-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx4090.csv',
'amp-nchw-pt240-cu124-rtx4090-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090-dynamo.csv',
'amp-nchw-pt240-cu124-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx3090.csv',
'amp-nhwc-pt240-cu124-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv',
'fp32-nchw-pt240-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv',
'fp32-nchw-pt240-cpu-i7_12700h-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv',
}
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
bench_dataframes = {name: df for name, df in bench_dataframes.items() if 'infer_gmacs' in df.columns}
# Clean up dataframes
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"]
for df in dataframes.values():
for col in remove_column_names:
if col in df.columns:
df.drop(columns=[col], inplace=True)
# Rename / process results columns
for name, df in dataframes.items():
df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True)
df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0])
# Process benchmark dataframes
for name, df in bench_dataframes.items():
df['arch_name'] = df['model']
df.rename(columns={'infer_img_size': 'img_size'}, inplace=True)
# Merge all result dataframes
result = dataframes['imagenet']
for name, df in dataframes.items():
if name != 'imagenet':
result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer')
# Calculate average scores
top1_columns = [col for col in result.columns if col.endswith('_top1') and not col == 'a_top1']
top5_columns = [col for col in result.columns if col.endswith('_top5') and not col == 'a_top5']
result['avg_top1'] = result[top1_columns].mean(axis=1)
result['avg_top5'] = result[top5_columns].mean(axis=1)
# Create fully merged dataframes for each benchmark set
merged_dataframes = {}
for bench_name, bench_df in bench_dataframes.items():
merged_df = pd.merge(result, bench_df, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark'))
# Calculate TFLOP/s
merged_df['infer_tflop_s'] = merged_df['infer_samples_per_sec'] * merged_df['infer_gmacs'] * 2 / 1000
# Reorder columns
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
other_columns = [col for col in merged_df.columns if col not in first_columns]
merged_df = merged_df[first_columns + other_columns].copy(deep=True)
# Drop columns that are no longer needed / add too much noise
merged_df.drop('arch_name', axis=1, inplace=True)
merged_df.drop('crop_pct', axis=1, inplace=True)
merged_df.drop('interpolation', axis=1, inplace=True)
merged_df.drop('model_benchmark', axis=1, inplace=True)
merged_df['infer_usec_per_sample'] = 1e6 / merged_df.infer_samples_per_sec
merged_df['highlighted'] = False
merged_df = merged_df.round(2)
merged_dataframes[bench_name] = merged_df
return merged_dataframes
REGEX_PREFIX = "re:"
def auto_match(pattern, text):
# Check if it's a regex pattern (starts with 're:')
if pattern.startswith(REGEX_PREFIX):
regex_pattern = pattern[len(REGEX_PREFIX):].strip()
try:
return bool(re.match(regex_pattern, text, re.IGNORECASE))
except re.error:
# If it's an invalid regex, return False
return False
# Check if it's a wildcard pattern
elif any(char in pattern for char in ['*', '?']):
return fnmatch.fnmatch(text.lower(), pattern.lower())
# If not regex or wildcard, use fuzzy matching
else:
return fuzz.partial_ratio(
pattern.lower(), text.lower(), score_cutoff=90) > 0
def filter_leaderboard(df, model_name, sort_by):
if not model_name:
return df.sort_values(by=sort_by, ascending=False)
mask = df['model'].apply(lambda x: auto_match(model_name, x))
filtered_df = df[mask].sort_values(by=sort_by, ascending=False)
return filtered_df
def create_scatter_plot(df, x_axis, y_axis, model_filter, highlight_filter, log_x, log_y):
selected_color = 'orange'
fig = px.scatter(
df,
x=x_axis,
y=y_axis,
log_x=log_x,
log_y=log_y,
hover_data=['model'],
trendline='ols',
trendline_options=dict(log_x=True, log_y=True),
color='highlighted',
color_discrete_map={True: selected_color, False: 'blue'},
title=f'{y_axis} vs {x_axis}'
)
# Create legend labels
legend_labels = {}
if highlight_filter:
legend_labels[True] = f'{highlight_filter}'
legend_labels[False] = f'{model_filter or "all models"}'
else:
legend_labels[False] = f'{model_filter or "all models"}'
# Update legend
for trace in fig.data:
if isinstance(trace.marker.color, str): # This is for the scatter traces
trace.name = legend_labels.get(trace.marker.color == selected_color, '')
fig.update_layout(
showlegend=True,
legend_title_text='Model Selection'
)
return fig
# Load the leaderboard data
merged_dataframes = load_leaderboard()
# Define the available columns for sorting and plotting
sort_columns = ['avg_top1', 'avg_top5', 'imagenet_top1', 'imagenet_top5', 'infer_samples_per_sec', 'infer_usec_per_sample', 'param_count', 'infer_gmacs', 'infer_macts', 'infer_tflop_s']
plot_columns = ['infer_samples_per_sec', 'infer_usec_per_sample', 'infer_gmacs', 'infer_macts', 'infer_tflop_s', 'param_count', 'avg_top1', 'avg_top5', 'imagenet_top1', 'imagenet_top5']
DEFAULT_SEARCH = ""
DEFAULT_SORT = "avg_top1"
DEFAULT_X = "infer_samples_per_sec"
DEFAULT_Y = "avg_top1"
DEFAULT_BM = 'amp-nchw-pt240-cu124-rtx4090'
def col_formatter(value, precision=None):
if isinstance(value, int):
return f'{value:d}'
elif isinstance(value, float):
return f'{value:.{precision}f}' if precision is not None else f'{value:g}'
return str(value)
def update_leaderboard_and_plot(
model_name=DEFAULT_SEARCH,
highlight_name=None,
sort_by=DEFAULT_SORT,
x_axis=DEFAULT_X,
y_axis=DEFAULT_Y,
benchmark_selection=DEFAULT_BM,
log_x=True,
log_y=True,
):
df = merged_dataframes[benchmark_selection].copy()
filtered_df = filter_leaderboard(df, model_name, sort_by)
# Apply the highlight filter to the entire dataset so the output will be union (comparison) if the filters are disjoint
highlight_df = filter_leaderboard(df, highlight_name, sort_by) if highlight_name else None
# Combine filtered_df and highlight_df, removing duplicates
if highlight_df is not None:
combined_df = pd.concat([filtered_df, highlight_df]).drop_duplicates().reset_index(drop=True)
combined_df = combined_df.sort_values(by=sort_by, ascending=False)
combined_df['highlighted'] = combined_df['model'].isin(highlight_df['model'])
else:
combined_df = filtered_df
combined_df['highlighted'] = False
fig = create_scatter_plot(combined_df, x_axis, y_axis, model_name, highlight_name, log_x, log_y)
display_df = combined_df.drop(columns=['highlighted'])
display_df = display_df.style.apply(lambda x: ['background-color: #FFA500' if combined_df.loc[x.name, 'highlighted'] else '' for _ in x], axis=1).format(
#{
# 'infer_batch_size': lambda x: col_formatter(x), # Integer column
#},
precision=2,
)
return display_df, fig
with gr.Blocks(title="The timm Leaderboard") as app:
gr.HTML("<center><h1>The timm (PyTorch Image Models) Leaderboard</h1></center>")
gr.HTML("<p>This leaderboard is based on the results of the models from <a href='https://github.com/huggingface/pytorch-image-models'>timm</a>.</p>")
gr.HTML("<p>Search tips:<br>- Use wildcards (* or ?) for pattern matching<br>- Use 're:' prefix for regex search<br>- Otherwise, fuzzy matching will be used</p>")
with gr.Row():
search_bar = gr.Textbox(lines=1, label="Model Filter", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3)
sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1)
with gr.Row():
highlight_bar = gr.Textbox(lines=1, label="Model Highlight/Compare Filter", placeholder="e.g. convnext*, re:^efficient")
with gr.Row():
x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X)
y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y)
with gr.Row():
benchmark_dropdown = gr.Dropdown(
choices=list(merged_dataframes.keys()),
label="Benchmark Selection",
value=DEFAULT_BM,
)
with gr.Row():
log_x = gr.Checkbox(label="Log scale X-axis", value=True)
log_y = gr.Checkbox(label="Log scale Y-axis", value=True)
update_btn = gr.Button(value="Update", variant="primary")
leaderboard = gr.Dataframe()
plot = gr.Plot()
inputs = [search_bar, highlight_bar, sort_dropdown, x_axis, y_axis, benchmark_dropdown, log_x, log_y]
outputs = [leaderboard, plot]
app.load(update_leaderboard_and_plot, outputs=outputs)
search_bar.submit(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
highlight_bar.submit(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
sort_dropdown.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
x_axis.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
y_axis.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
benchmark_dropdown.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
log_x.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
log_y.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
update_btn.click(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
app.launch() |