Spaces:
Running
Running
Update app.py
Browse filesAdd support for selecting between multiple benchmark sets. Change log scale of x/y
app.py
CHANGED
@@ -17,16 +17,19 @@ def load_leaderboard():
|
|
17 |
}
|
18 |
|
19 |
# Load benchmark CSV files
|
20 |
-
main_bench = 'amp-nchw-pt240-cu124-rtx4090'
|
21 |
benchmark_csv_files = {
|
22 |
'amp-nchw-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv',
|
23 |
-
'amp-nhwc-
|
24 |
-
'
|
|
|
|
|
|
|
|
|
25 |
}
|
26 |
-
# FIXME support selecting benchmark 'infer_samples_per_sec' / 'infer_step_time' from different benchmark files.
|
27 |
|
28 |
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
|
29 |
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
|
|
|
30 |
main_bench_dataframe = bench_dataframes[main_bench]
|
31 |
|
32 |
# Clean up dataframes
|
@@ -68,17 +71,31 @@ def load_leaderboard():
|
|
68 |
other_columns = [col for col in result.columns if col not in first_columns and col != 'model_benchmark']
|
69 |
result = result[first_columns + other_columns]
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
REGEX_PREFIX = "re:"
|
@@ -152,16 +169,26 @@ def create_scatter_plot(df, x_axis, y_axis, model_filter, highlight_filter):
|
|
152 |
|
153 |
|
154 |
# Load the leaderboard data
|
155 |
-
|
156 |
|
157 |
# Define the available columns for sorting and plotting
|
158 |
-
sort_columns = ['avg_top1', 'avg_top5', 'infer_samples_per_sec', 'param_count', 'infer_gmacs', 'infer_macts', 'infer_tflop_s']
|
159 |
-
plot_columns = ['infer_samples_per_sec', 'infer_gmacs', 'infer_macts', 'infer_tflop_s', 'param_count', 'avg_top1', 'avg_top5']
|
160 |
|
161 |
DEFAULT_SEARCH = ""
|
162 |
DEFAULT_SORT = "avg_top1"
|
163 |
DEFAULT_X = "infer_samples_per_sec"
|
164 |
DEFAULT_Y = "avg_top1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
def update_leaderboard_and_plot(
|
167 |
model_name=DEFAULT_SEARCH,
|
@@ -169,12 +196,17 @@ def update_leaderboard_and_plot(
|
|
169 |
sort_by=DEFAULT_SORT,
|
170 |
x_axis=DEFAULT_X,
|
171 |
y_axis=DEFAULT_Y,
|
|
|
|
|
|
|
172 |
):
|
173 |
-
|
174 |
-
|
|
|
|
|
175 |
# Apply the highlight filter to the entire dataset so the output will be union (comparison) if the filters are disjoint
|
176 |
-
highlight_df = filter_leaderboard(
|
177 |
-
|
178 |
# Combine filtered_df and highlight_df, removing duplicates
|
179 |
if highlight_df is not None:
|
180 |
combined_df = pd.concat([filtered_df, highlight_df]).drop_duplicates().reset_index(drop=True)
|
@@ -182,10 +214,17 @@ def update_leaderboard_and_plot(
|
|
182 |
combined_df['highlighted'] = combined_df['model'].isin(highlight_df['model'])
|
183 |
else:
|
184 |
combined_df = filtered_df
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
display_df =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
return display_df, fig
|
190 |
|
191 |
|
@@ -193,39 +232,47 @@ with gr.Blocks(title="The timm Leaderboard") as app:
|
|
193 |
gr.HTML("<center><h1>The timm (PyTorch Image Models) Leaderboard</h1></center>")
|
194 |
gr.HTML("<p>This leaderboard is based on the results of the models from <a href='https://github.com/huggingface/pytorch-image-models'>timm</a>.</p>")
|
195 |
gr.HTML("<p>Search tips:<br>- Use wildcards (* or ?) for pattern matching<br>- Use 're:' prefix for regex search<br>- Otherwise, fuzzy matching will be used</p>")
|
196 |
-
|
197 |
with gr.Row():
|
198 |
search_bar = gr.Textbox(lines=1, label="Model Filter", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3)
|
199 |
sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1)
|
200 |
|
201 |
with gr.Row():
|
202 |
highlight_bar = gr.Textbox(lines=1, label="Model Highlight/Compare Filter", placeholder="e.g. convnext*, re:^efficient")
|
203 |
-
|
204 |
with gr.Row():
|
205 |
x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X)
|
206 |
y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y)
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
update_btn = gr.Button(value="Update", variant="primary")
|
209 |
|
210 |
leaderboard = gr.Dataframe()
|
211 |
plot = gr.Plot()
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
)
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
)
|
225 |
-
|
226 |
-
|
227 |
-
inputs=[search_bar, highlight_bar, sort_dropdown, x_axis, y_axis],
|
228 |
-
outputs=[leaderboard, plot]
|
229 |
-
)
|
230 |
|
231 |
app.launch()
|
|
|
17 |
}
|
18 |
|
19 |
# Load benchmark CSV files
|
|
|
20 |
benchmark_csv_files = {
|
21 |
'amp-nchw-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv',
|
22 |
+
'amp-nhwc-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx4090.csv',
|
23 |
+
'amp-nchw-pt240-cu124-rtx4090-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090-dynamo.csv',
|
24 |
+
'amp-nchw-pt240-cu124-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx3090.csv',
|
25 |
+
'amp-nhwc-pt240-cu124-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv',
|
26 |
+
'fp32-nchw-pt240-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv',
|
27 |
+
'fp32-nchw-pt240-cpu-i7_12700h-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv',
|
28 |
}
|
|
|
29 |
|
30 |
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
|
31 |
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
|
32 |
+
bench_dataframes = {name: df for name, df in bench_dataframes.items() if 'infer_gmacs' in df.columns}
|
33 |
main_bench_dataframe = bench_dataframes[main_bench]
|
34 |
|
35 |
# Clean up dataframes
|
|
|
71 |
other_columns = [col for col in result.columns if col not in first_columns and col != 'model_benchmark']
|
72 |
result = result[first_columns + other_columns]
|
73 |
|
74 |
+
# Create fully merged dataframes for each benchmark set
|
75 |
+
merged_dataframes = {}
|
76 |
+
for bench_name, bench_df in bench_dataframes.items():
|
77 |
+
merged_df = pd.merge(result, bench_df, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark'))
|
78 |
|
79 |
+
# Calculate TFLOP/s
|
80 |
+
merged_df['infer_tflop_s'] = merged_df['infer_samples_per_sec'] * merged_df['infer_gmacs'] * 2 / 1000
|
81 |
+
|
82 |
+
# Reorder columns
|
83 |
+
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
|
84 |
+
other_columns = [col for col in merged_df.columns if col not in first_columns]
|
85 |
+
merged_df = merged_df[first_columns + other_columns].copy()
|
86 |
+
|
87 |
+
# Drop columns that are no longer needed / add too much noise
|
88 |
+
merged_df.drop('arch_name', axis=1, inplace=True)
|
89 |
+
merged_df.drop('crop_pct', axis=1, inplace=True)
|
90 |
+
merged_df.drop('interpolation', axis=1, inplace=True)
|
91 |
+
merged_df.drop('model_benchmark', axis=1, inplace=True)
|
92 |
+
merged_df['infer_usec_per_sample'] = 1e6 / merged_df.infer_samples_per_sec
|
93 |
+
|
94 |
+
merged_df['highlighted'] = False
|
95 |
+
merged_df = merged_df.round(2)
|
96 |
+
merged_dataframes[bench_name] = merged_df
|
97 |
+
|
98 |
+
return merged_dataframes
|
99 |
|
100 |
|
101 |
REGEX_PREFIX = "re:"
|
|
|
169 |
|
170 |
|
171 |
# Load the leaderboard data
|
172 |
+
merged_dataframes = load_leaderboard()
|
173 |
|
174 |
# Define the available columns for sorting and plotting
|
175 |
+
sort_columns = ['avg_top1', 'avg_top5', 'imagenet_top1', 'imagenet_top5', 'infer_samples_per_sec', 'infer_usec_per_sample', 'param_count', 'infer_gmacs', 'infer_macts', 'infer_tflop_s']
|
176 |
+
plot_columns = ['infer_samples_per_sec', 'infer_usec_per_sample', 'infer_gmacs', 'infer_macts', 'infer_tflop_s', 'param_count', 'avg_top1', 'avg_top5', 'imagenet_top1', 'imagenet_top5']
|
177 |
|
178 |
DEFAULT_SEARCH = ""
|
179 |
DEFAULT_SORT = "avg_top1"
|
180 |
DEFAULT_X = "infer_samples_per_sec"
|
181 |
DEFAULT_Y = "avg_top1"
|
182 |
+
DEFAULT_BM = 'amp-nchw-pt240-cu124-rtx4090'
|
183 |
+
|
184 |
+
|
185 |
+
def col_formatter(value, precision=None):
|
186 |
+
if isinstance(value, int):
|
187 |
+
return f'{value:d}'
|
188 |
+
elif isinstance(value, float):
|
189 |
+
return f'{value:.{precision}f}' if precision is not None else f'{value:g}'
|
190 |
+
return str(value)
|
191 |
+
|
192 |
|
193 |
def update_leaderboard_and_plot(
|
194 |
model_name=DEFAULT_SEARCH,
|
|
|
196 |
sort_by=DEFAULT_SORT,
|
197 |
x_axis=DEFAULT_X,
|
198 |
y_axis=DEFAULT_Y,
|
199 |
+
benchmark_selection=DEFAULT_BM,
|
200 |
+
log_x=True,
|
201 |
+
log_y=True,
|
202 |
):
|
203 |
+
df = merged_dataframes[benchmark_selection].copy()
|
204 |
+
|
205 |
+
filtered_df = filter_leaderboard(df, model_name, sort_by)
|
206 |
+
|
207 |
# Apply the highlight filter to the entire dataset so the output will be union (comparison) if the filters are disjoint
|
208 |
+
highlight_df = filter_leaderboard(df, highlight_name, sort_by) if highlight_name else None
|
209 |
+
|
210 |
# Combine filtered_df and highlight_df, removing duplicates
|
211 |
if highlight_df is not None:
|
212 |
combined_df = pd.concat([filtered_df, highlight_df]).drop_duplicates().reset_index(drop=True)
|
|
|
214 |
combined_df['highlighted'] = combined_df['model'].isin(highlight_df['model'])
|
215 |
else:
|
216 |
combined_df = filtered_df
|
217 |
+
combined_df['highlighted'] = False
|
218 |
+
|
219 |
+
fig = create_scatter_plot(combined_df, x_axis, y_axis, model_name, highlight_name, log_x, log_y)
|
220 |
+
display_df = combined_df.drop(columns=['highlighted'])
|
221 |
+
display_df = display_df.style.apply(lambda x: ['background-color: #FFA500' if combined_df.loc[x.name, 'highlighted'] else '' for _ in x], axis=1).format(
|
222 |
+
{
|
223 |
+
'infer_batch_size': lambda x: col_formatter(x), # Integer column
|
224 |
+
},
|
225 |
+
precision=2,
|
226 |
+
)
|
227 |
+
|
228 |
return display_df, fig
|
229 |
|
230 |
|
|
|
232 |
gr.HTML("<center><h1>The timm (PyTorch Image Models) Leaderboard</h1></center>")
|
233 |
gr.HTML("<p>This leaderboard is based on the results of the models from <a href='https://github.com/huggingface/pytorch-image-models'>timm</a>.</p>")
|
234 |
gr.HTML("<p>Search tips:<br>- Use wildcards (* or ?) for pattern matching<br>- Use 're:' prefix for regex search<br>- Otherwise, fuzzy matching will be used</p>")
|
235 |
+
|
236 |
with gr.Row():
|
237 |
search_bar = gr.Textbox(lines=1, label="Model Filter", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3)
|
238 |
sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1)
|
239 |
|
240 |
with gr.Row():
|
241 |
highlight_bar = gr.Textbox(lines=1, label="Model Highlight/Compare Filter", placeholder="e.g. convnext*, re:^efficient")
|
242 |
+
|
243 |
with gr.Row():
|
244 |
x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X)
|
245 |
y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y)
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
benchmark_dropdown = gr.Dropdown(
|
249 |
+
choices=list(merged_dataframes.keys()),
|
250 |
+
label="Benchmark Selection",
|
251 |
+
value=DEFAULT_BM,
|
252 |
+
)
|
253 |
+
|
254 |
+
with gr.Row():
|
255 |
+
log_x = gr.Checkbox(label="Log scale X-axis", value=True)
|
256 |
+
log_y = gr.Checkbox(label="Log scale Y-axis", value=True)
|
257 |
+
|
258 |
update_btn = gr.Button(value="Update", variant="primary")
|
259 |
|
260 |
leaderboard = gr.Dataframe()
|
261 |
plot = gr.Plot()
|
262 |
+
|
263 |
+
inputs = [search_bar, highlight_bar, sort_dropdown, x_axis, y_axis, benchmark_dropdown, log_x, log_y]
|
264 |
+
outputs = [leaderboard, plot]
|
265 |
+
|
266 |
+
app.load(update_leaderboard_and_plot, outputs=outputs)
|
267 |
+
|
268 |
+
search_bar.submit(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
269 |
+
highlight_bar.submit(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
270 |
+
sort_dropdown.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
271 |
+
x_axis.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
272 |
+
y_axis.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
273 |
+
benchmark_dropdown.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
274 |
+
log_x.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
275 |
+
log_y.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
276 |
+
update_btn.click(update_leaderboard_and_plot, inputs=inputs, outputs=outputs)
|
|
|
|
|
|
|
277 |
|
278 |
app.launch()
|