Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,11 @@ import plotly.express as px
|
|
5 |
from rapidfuzz import fuzz
|
6 |
import re
|
7 |
|
|
|
8 |
def load_leaderboard():
|
9 |
# Load validation / test CSV files
|
|
|
|
|
10 |
results_csv_files = {
|
11 |
'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv',
|
12 |
'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv',
|
@@ -26,51 +29,41 @@ def load_leaderboard():
|
|
26 |
'fp32-nchw-pt240-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv',
|
27 |
'fp32-nchw-pt240-cpu-i7_12700h-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv',
|
28 |
}
|
29 |
-
|
30 |
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
|
31 |
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
|
32 |
bench_dataframes = {name: df for name, df in bench_dataframes.items() if 'infer_gmacs' in df.columns}
|
33 |
-
|
34 |
-
|
35 |
# Clean up dataframes
|
36 |
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"]
|
37 |
for df in dataframes.values():
|
38 |
for col in remove_column_names:
|
39 |
if col in df.columns:
|
40 |
-
df.drop(columns=[col], inplace=True)
|
41 |
|
42 |
# Rename / process results columns
|
43 |
for name, df in dataframes.items():
|
44 |
df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True)
|
45 |
-
df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0])
|
46 |
-
|
47 |
-
# Process benchmark
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
# Merge all result dataframes
|
52 |
result = dataframes['imagenet']
|
53 |
for name, df in dataframes.items():
|
54 |
if name != 'imagenet':
|
55 |
result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer')
|
56 |
-
|
57 |
-
# Merge with benchmark data
|
58 |
-
result = pd.merge(result, main_bench_dataframe, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark'))
|
59 |
|
60 |
-
# Calculate TFLOP/s
|
61 |
-
result['infer_tflop_s'] = result['infer_samples_per_sec'] * result['infer_gmacs'] * 2 / 1000
|
62 |
-
|
63 |
# Calculate average scores
|
64 |
top1_columns = [col for col in result.columns if col.endswith('_top1') and not col == 'a_top1']
|
65 |
top5_columns = [col for col in result.columns if col.endswith('_top5') and not col == 'a_top5']
|
66 |
result['avg_top1'] = result[top1_columns].mean(axis=1)
|
67 |
result['avg_top5'] = result[top5_columns].mean(axis=1)
|
68 |
-
|
69 |
-
# Reorder columns
|
70 |
-
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
|
71 |
-
other_columns = [col for col in result.columns if col not in first_columns and col != 'model_benchmark']
|
72 |
-
result = result[first_columns + other_columns]
|
73 |
-
|
74 |
# Create fully merged dataframes for each benchmark set
|
75 |
merged_dataframes = {}
|
76 |
for bench_name, bench_df in bench_dataframes.items():
|
@@ -82,7 +75,7 @@ def load_leaderboard():
|
|
82 |
# Reorder columns
|
83 |
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
|
84 |
other_columns = [col for col in merged_df.columns if col not in first_columns]
|
85 |
-
merged_df = merged_df[first_columns + other_columns].copy()
|
86 |
|
87 |
# Drop columns that are no longer needed / add too much noise
|
88 |
merged_df.drop('arch_name', axis=1, inplace=True)
|
@@ -97,7 +90,6 @@ def load_leaderboard():
|
|
97 |
|
98 |
return merged_dataframes
|
99 |
|
100 |
-
|
101 |
REGEX_PREFIX = "re:"
|
102 |
|
103 |
def auto_match(pattern, text):
|
|
|
5 |
from rapidfuzz import fuzz
|
6 |
import re
|
7 |
|
8 |
+
|
9 |
def load_leaderboard():
|
10 |
# Load validation / test CSV files
|
11 |
+
pd.set_option('display.float_format', '{:.2f}'.format)
|
12 |
+
|
13 |
results_csv_files = {
|
14 |
'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv',
|
15 |
'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv',
|
|
|
29 |
'fp32-nchw-pt240-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv',
|
30 |
'fp32-nchw-pt240-cpu-i7_12700h-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv',
|
31 |
}
|
32 |
+
|
33 |
dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()}
|
34 |
bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()}
|
35 |
bench_dataframes = {name: df for name, df in bench_dataframes.items() if 'infer_gmacs' in df.columns}
|
36 |
+
print(bench_dataframes.keys())
|
37 |
+
|
38 |
# Clean up dataframes
|
39 |
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"]
|
40 |
for df in dataframes.values():
|
41 |
for col in remove_column_names:
|
42 |
if col in df.columns:
|
43 |
+
df.drop(columns=[col], inplace=True)
|
44 |
|
45 |
# Rename / process results columns
|
46 |
for name, df in dataframes.items():
|
47 |
df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True)
|
48 |
+
df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0])
|
49 |
+
|
50 |
+
# Process benchmark dataframes
|
51 |
+
for name, df in bench_dataframes.items():
|
52 |
+
df['arch_name'] = df['model']
|
53 |
+
df.rename(columns={'infer_img_size': 'img_size'}, inplace=True)
|
54 |
+
|
55 |
# Merge all result dataframes
|
56 |
result = dataframes['imagenet']
|
57 |
for name, df in dataframes.items():
|
58 |
if name != 'imagenet':
|
59 |
result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer')
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
61 |
# Calculate average scores
|
62 |
top1_columns = [col for col in result.columns if col.endswith('_top1') and not col == 'a_top1']
|
63 |
top5_columns = [col for col in result.columns if col.endswith('_top5') and not col == 'a_top5']
|
64 |
result['avg_top1'] = result[top1_columns].mean(axis=1)
|
65 |
result['avg_top5'] = result[top5_columns].mean(axis=1)
|
66 |
+
|
|
|
|
|
|
|
|
|
|
|
67 |
# Create fully merged dataframes for each benchmark set
|
68 |
merged_dataframes = {}
|
69 |
for bench_name, bench_df in bench_dataframes.items():
|
|
|
75 |
# Reorder columns
|
76 |
first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5']
|
77 |
other_columns = [col for col in merged_df.columns if col not in first_columns]
|
78 |
+
merged_df = merged_df[first_columns + other_columns].copy(deep=True)
|
79 |
|
80 |
# Drop columns that are no longer needed / add too much noise
|
81 |
merged_df.drop('arch_name', axis=1, inplace=True)
|
|
|
90 |
|
91 |
return merged_dataframes
|
92 |
|
|
|
93 |
REGEX_PREFIX = "re:"
|
94 |
|
95 |
def auto_match(pattern, text):
|