Spaces:
Runtime error
Runtime error
File size: 13,857 Bytes
a784f59 5107c88 6fe2a9f 5107c88 6fe2a9f 5107c88 71252ae 5107c88 6fe2a9f 5107c88 6fe2a9f 71252ae 6fe2a9f 5107c88 6fe2a9f 5107c88 6fe2a9f 5107c88 6fe2a9f 71252ae 6fe2a9f 71252ae 6fe2a9f 5107c88 b5a1192 6fe2a9f 71252ae 6fe2a9f 5107c88 6fe2a9f 71252ae 5107c88 71252ae 5107c88 6fe2a9f 5107c88 6fe2a9f 71252ae 6fe2a9f 71252ae 6fe2a9f 71252ae 6fe2a9f 5107c88 6fe2a9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import os
os.system("pip install --upgrade pip")
import re
import time
import io
from io import StringIO
from typing import Any, Dict, List
#Modules to Import
import openai
import streamlit as st
from langchain import LLMChain, OpenAI
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import VectorStore
from langchain.vectorstores.faiss import FAISS
from pypdf import PdfReader
import os
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferWindowMemory
from langchain.memory import ConversationSummaryBufferMemory
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader, PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.summarize import load_summarize_chain
import tempfile
import warnings
warnings.filterwarnings('ignore')
@st.cache_data
def parse_pdf (file: io.BytesIO)-> List[str]:
pdf = PdfReader(file)
output = []
for page in pdf.pages:
text = page.extract_text()
#Merge hyphenated words
text = re.sub(r"(\w+)-\n(\w+)", "\1\2", text)
# Fix newlines in the middle of sentences
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
#Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
output.append(text)
return output
@st.cache_data
def text_to_docs(text: str) -> List [Document]:
"""Converts a string or list of strings to a list of Documents with metadata,"""
if isinstance(text, str):
#Take a single string as one page
text = [text]
page_docs = [Document (page_content=page) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs):
doc.metadata["page"] = 1 + 1
# Split pages into chunks
doc_chunks = []
for doc in page_docs:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2500,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=0,
)
chunks = text_splitter.split_text(doc.page_content)
for i, chunk in enumerate(chunks):
doc = Document(
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": 1}
)
# Add sources a metadata
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
doc_chunks.append(doc)
return doc_chunks
def tool(index):
qa = RetrievalQA.from_chain_type(
llm = OpenAI(openai_api_key = api),
chain_type = "stuff",
retriever = index.as_retriever()
)
# our tool
tools = [
Tool(
name="State of Union QA System",
func=qa.run,
description="Useful for when you need to answer questions about the aspects asked.\
Input may be a partial or fully formed question,\
it also can be about some things else, use the chat history to reply the questions"
)
]
return tools,qa
def process(kind, tools, qa):
if kind == "Sumarized":
prefix=""""Have a conversation with a human, answering the human questions as best you can based on the context and memory available. \
You have access to a single tool:"""
suffix="""Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
elif kind == "Chat":
prefix=""""Have a conversation with a human, answering the human questions as best you can \
You have access to a single tool:"""
suffix="""Begin!"
{chat_history}
the human just say: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history")
#Chain
# ZeroShotAgent
llm_chain = LLMChain(
llm=OpenAI(
temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo"
),
prompt=prompt,
)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=st.session_state.memory
)
return agent_chain,llm_chain
option = st.sidebar.selectbox(
'What do you want to ?',
('Sumarization','Chat'))
api = st.sidebar.text_input(
"Open api key",
type="password",
placeholder="sk-",
help="https://platform.openai.com/account/api-keys",
)
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
# openai.api_key = "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"
global openai_api_key
openai_api_key = api
os.environ['OPENAI_API_KEY'] = openai_api_key
uploaded_file = st.sidebar.file_uploader(":blue[Upload]", type=["pdf"])
global agent_chain,llm_chain
if api:
if option == "Sumarization":
if uploaded_file:
doc = parse_pdf(uploaded_file)
pages = text_to_docs(doc)
# pages
if pages:
with st.expander('Show page contents', expanded=False):
page_sel =st.number_input(
label="selected page", min_value=1, max_value=len(pages), step=1
)
st.write(pages[page_sel-1])
embeddings = OpenAIEmbeddings(openai_api_key = api)
# Indexing
# Save in a Vector DB_
with st.spinner("It's indexing. .."):
index = FAISS.from_documents(pages, embeddings)
tools,qa = tool(index)
prefix=""""Have a conversation with a human, answering the human questions as best you can based on the context and memory available. \
He may ask some not about the context but just answer the the question with a short sentence"""
suffix="""Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history")
#Chain
# ZeroShotAgent
llm_chain = LLMChain(
llm=OpenAI(
temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo"
),
prompt=prompt,
)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=st.session_state.memory
)
# agent_chain,llm_chain = process("Sumarized",tools, qa)
container = st.container()
with container:
st.title("🤖 AI ChatBot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if query := st.chat_input("Hey yo !!! Wazzups!"):
st.chat_message("user").markdown(query)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": query})
# response=llm_chain.memory.chat_memory.add_user_message(prompt)
if len(api) == 0:
response = f"""I will answer the question "{query}" if you give the API key"""
# st.write(response)
# #f"Echo: {prompt}" get_completion(template_string) #
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
else:
with st.spinner("It's indexing. .."):
response = agent_chain.run(query)
# st.write(response)
# #f"Echo: {prompt}" get_completion(template_string) #
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# with st.expander("History/Memory"):
# st.write(st.session_state.memory)
elif option == "Chat":
def get_completion(prompt, model="gpt-3.5-turbo"):
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0,
)
return response.choices[0].message["content"]
chat = ChatOpenAI(temperature=0.0, max_tokens=20)
memory = ConversationBufferWindowMemory(k=15)
conversation = ConversationChain(
llm=chat,
memory = memory,
verbose=False,
)
def reply(message, custom_style):
style = """ in a funny \
and joke tone
"""
if len(custom_style) > 0: style = custom_style
template_string = f"""You are talking with a person \
replying to the message\
with a style that is {style}. \
the person just say: {message}.
"""
prompt_template = ChatPromptTemplate.from_template(template_string)
bot_messages = prompt_template.format_messages(
style= style,
text= message)
response = conversation.predict(input=message)
return response
def sumarization():
pass
def document_question(question):
pass
ask_about_doc = False
with st.sidebar:
st.subheader("How do you want your bot reply to your message ?")
custom_style = st.text_input("Tell me here", placeholder="joke tone")
container = st.container()
with container:
st.title("🤖 AI ChatBot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.spinner("It's indexing. .."):
response = reply(prompt,custom_style)
# with st.spinner("It's indexing. .."):
# tools,qa = tool()
# process("chat", tools, qa)
# response = agent_chain.run(query)
if memory not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(k=15)
# response=llm_chain.memory.chat_memory.add_user_message(prompt)
# st.write(memory.buffer)
# #f"Echo: {prompt}" get_completion(template_string) #
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response}) |