thenHung commited on
Commit
5107c88
·
1 Parent(s): df11c2c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +174 -0
app.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import time
3
+ import io
4
+ from io import StringIO
5
+ from typing import Any, Dict, List
6
+ #Modules to Import
7
+ import openai
8
+ import streamlit as st
9
+ from langchain import LLMChain, OpenAI
10
+ from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
11
+ from langchain.chains import RetrievalQA
12
+ from langchain.chains.question_answering import load_qa_chain
13
+ from langchain.docstore.document import Document
14
+ from langchain.document_loaders import PyPDFLoader
15
+ from langchain.embeddings.openai import OpenAIEmbeddings
16
+ from langchain.llms import OpenAI
17
+ from langchain.memory import ConversationBufferMemory
18
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
19
+ from langchain.vectorstores import VectorStore
20
+ from langchain.vectorstores.faiss import FAISS
21
+ from pypdf import PdfReader
22
+
23
+ @st.cache_data
24
+ def parse_pdf (file: io.BytesIO)-> List[str]:
25
+ pdf = PdfReader(file)
26
+ output = []
27
+ for page in pdf.pages:
28
+
29
+ text = page.extract_text()
30
+ #Merge hyphenated words
31
+ text = re.sub(r"(\w+)-\n(\w+)", "\1\2", text)
32
+ # Fix newlines in the middle of sentences
33
+ text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
34
+ #Remove multiple newlines
35
+ text = re.sub(r"\n\s*\n", "\n\n", text)
36
+
37
+ output.append(text)
38
+ return output
39
+
40
+ @st.cache_data
41
+ def text_to_docs(text: str) -> List [Document]:
42
+
43
+ """Converts a string or list of strings to a list of Documents with metadata,"""
44
+
45
+ if isinstance(text, str):
46
+ #Take a single string as one page
47
+ text = [text]
48
+ page_docs = [Document (page_content=page) for page in text]
49
+ # Add page numbers as metadata
50
+ for i, doc in enumerate(page_docs):
51
+
52
+ doc.metadata["page"] = 1 + 1
53
+ # Split pages into chunks
54
+ doc_chunks = []
55
+ for doc in page_docs:
56
+ text_splitter = RecursiveCharacterTextSplitter(
57
+ chunk_size=4000,
58
+ separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
59
+ chunk_overlap=0,
60
+ )
61
+ chunks = text_splitter.split_text(doc.page_content)
62
+ for i, chunk in enumerate(chunks):
63
+ doc = Document(
64
+ page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": 1}
65
+ )
66
+ # Add sources a metadata
67
+ doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
68
+ doc_chunks.append(doc)
69
+ return doc_chunks
70
+
71
+
72
+
73
+ uploaded_file = st.sidebar.file_uploader(":blue[Upload]", type=["pdf"])
74
+ if uploaded_file:
75
+
76
+ doc = parse_pdf(uploaded_file)
77
+
78
+ pages = text_to_docs(doc)
79
+ # pages
80
+ if pages:
81
+ with st.expander('Show page contents', expanded=False):
82
+ page_sel =st.number_input(
83
+ label="selected page", min_value=1, max_value=len(pages), step=1
84
+ )
85
+ st.write(pages[page_sel-1])
86
+ api = st.sidebar.text_input(
87
+ "Open api key",
88
+ type="password",
89
+ placeholder="sk-",
90
+ help="https://platform.openai.com/account/api-keys",
91
+ )
92
+ if api:
93
+ embeddings = OpenAIEmbeddings(openai_api_key = api)
94
+ # Indexing
95
+ # Save in a Vector DB_
96
+ with st.spinner("It's indexing. .."):
97
+
98
+ index = FAISS.from_documents(pages, embeddings)
99
+
100
+ qa = RetrievalQA.from_chain_type(
101
+ llm = OpenAI(openai_api_key = api),
102
+ chain_type = "stuff",
103
+ retriever = index.as_retriever()
104
+ )
105
+
106
+ # our tool
107
+ tools = [
108
+ Tool(
109
+ name="State of Union QA System",
110
+ func=qa.run,
111
+ description="Useful for when you need to answer questions about the aspects asked. Input may be a partial or fully formed question."
112
+ )
113
+ ]
114
+ prefix=""""Have a conversation with a human, answering the following questions as best you can based on the context and memory available.
115
+ You have access to a single tool:"""
116
+ suffix="""Begin!"
117
+ {chat_history}
118
+ Question: {input}
119
+ {agent_scratchpad}"""
120
+ prompt = ZeroShotAgent.create_prompt(
121
+ tools,
122
+ prefix=prefix,
123
+ suffix=suffix,
124
+ input_variables=["input", "chat_history", "agent_scratchpad"],
125
+ )
126
+
127
+ if "memory" not in st.session_state:
128
+ st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history")
129
+
130
+ #Chain
131
+ # ZeroShotAgent
132
+
133
+ llm_chain = LLMChain(
134
+ llm=OpenAI(
135
+ temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo"
136
+ ),
137
+ prompt=prompt,
138
+ )
139
+ agent = ZeroShotAgent (llm_chain=llm_chain, tools=tools, verbose=True)
140
+ agent_chain = AgentExecutor.from_agent_and_tools(
141
+ agent=agent, tools=tools, verbose=True, memory=st.session_state.memory
142
+ )
143
+ container = st.container()
144
+ with container:
145
+ st.title("🤖 AI ChatBot")
146
+
147
+ # Initialize chat history
148
+ if "messages" not in st.session_state:
149
+ st.session_state.messages = []
150
+ # Display chat messages from history on app rerun
151
+ for message in st.session_state.messages:
152
+ with st.chat_message(message["role"]):
153
+ st.markdown(message["content"])
154
+
155
+ if query := st.chat_input("Hey yo !!! Wazzups!"):
156
+
157
+
158
+ st.chat_message("user").markdown(query)
159
+ # Add user message to chat history
160
+ st.session_state.messages.append({"role": "user", "content": query})
161
+
162
+ # response=llm_chain.memory.chat_memory.add_user_message(prompt)
163
+ with st.spinner("It's indexing. .."):
164
+ response = agent_chain.run(query)
165
+ # st.write(response)
166
+ # #f"Echo: {prompt}" get_completion(template_string) #
167
+ # Display assistant response in chat message container
168
+ with st.chat_message("assistant"):
169
+ st.markdown(response)
170
+ # Add assistant response to chat history
171
+ st.session_state.messages.append({"role": "assistant", "content": response})
172
+ # with st.expander("History/Memory"):
173
+ # st.write(st.session_state.memory)
174
+