Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import os
|
2 |
os.system("pip install --upgrade pip")
|
3 |
-
|
4 |
import re
|
5 |
import time
|
6 |
import io
|
|
|
7 |
from io import StringIO
|
8 |
from typing import Any, Dict, List
|
9 |
#Modules to Import
|
@@ -14,7 +14,6 @@ from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
|
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.chains.question_answering import load_qa_chain
|
16 |
from langchain.docstore.document import Document
|
17 |
-
from langchain.document_loaders import PyPDFLoader
|
18 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
19 |
from langchain.llms import OpenAI
|
20 |
from langchain.memory import ConversationBufferMemory
|
@@ -23,6 +22,32 @@ from langchain.vectorstores import VectorStore
|
|
23 |
from langchain.vectorstores.faiss import FAISS
|
24 |
from pypdf import PdfReader
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
@st.cache_data
|
27 |
def parse_pdf (file: io.BytesIO)-> List[str]:
|
28 |
pdf = PdfReader(file)
|
@@ -70,108 +95,236 @@ def text_to_docs(text: str) -> List [Document]:
|
|
70 |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
|
71 |
doc_chunks.append(doc)
|
72 |
return doc_chunks
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
st.
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
)
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
input_variables=["input", "chat_history", "agent_scratchpad"],
|
128 |
-
)
|
129 |
|
130 |
-
|
131 |
-
st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history")
|
132 |
|
133 |
-
#Chain
|
134 |
-
# ZeroShotAgent
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
# st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.system("pip install --upgrade pip")
|
|
|
3 |
import re
|
4 |
import time
|
5 |
import io
|
6 |
+
|
7 |
from io import StringIO
|
8 |
from typing import Any, Dict, List
|
9 |
#Modules to Import
|
|
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.chains.question_answering import load_qa_chain
|
16 |
from langchain.docstore.document import Document
|
|
|
17 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
18 |
from langchain.llms import OpenAI
|
19 |
from langchain.memory import ConversationBufferMemory
|
|
|
22 |
from langchain.vectorstores.faiss import FAISS
|
23 |
from pypdf import PdfReader
|
24 |
|
25 |
+
import os
|
26 |
+
|
27 |
+
from langchain.chat_models import ChatOpenAI
|
28 |
+
from langchain.prompts import ChatPromptTemplate
|
29 |
+
|
30 |
+
from langchain.chains import ConversationChain
|
31 |
+
from langchain.memory import ConversationBufferWindowMemory
|
32 |
+
from langchain.memory import ConversationSummaryBufferMemory
|
33 |
+
|
34 |
+
from langchain import OpenAI, LLMChain, PromptTemplate
|
35 |
+
from langchain.vectorstores import Chroma
|
36 |
+
from langchain.document_loaders import TextLoader, PyPDFLoader
|
37 |
+
from langchain.chains import ConversationalRetrievalChain
|
38 |
+
from langchain.chains.summarize import load_summarize_chain
|
39 |
+
import tempfile
|
40 |
+
|
41 |
+
import warnings
|
42 |
+
warnings.filterwarnings('ignore')
|
43 |
+
|
44 |
+
from dotenv import load_dotenv, find_dotenv
|
45 |
+
_ = load_dotenv(find_dotenv())
|
46 |
+
# openai.api_key = "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"
|
47 |
+
global openai_api_key
|
48 |
+
openai_api_key = "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"
|
49 |
+
os.environ['OPENAI_API_KEY'] = "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"
|
50 |
+
|
51 |
@st.cache_data
|
52 |
def parse_pdf (file: io.BytesIO)-> List[str]:
|
53 |
pdf = PdfReader(file)
|
|
|
95 |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
|
96 |
doc_chunks.append(doc)
|
97 |
return doc_chunks
|
98 |
+
def tool(index):
|
99 |
|
100 |
+
qa = RetrievalQA.from_chain_type(
|
101 |
+
llm = OpenAI(openai_api_key = api),
|
102 |
+
chain_type = "stuff",
|
103 |
+
retriever = index.as_retriever()
|
104 |
+
)
|
105 |
+
# our tool
|
106 |
+
tools = [
|
107 |
+
Tool(
|
108 |
+
name="State of Union QA System",
|
109 |
+
func=qa.run,
|
110 |
+
description="Useful for when you need to answer questions about the aspects asked.\
|
111 |
+
Input may be a partial or fully formed question."
|
112 |
+
)
|
113 |
+
]
|
114 |
+
return tools,qa
|
115 |
+
def process(kind, tools, qa):
|
116 |
+
if kind == "Sumarized":
|
117 |
+
prefix=""""Have a conversation with a human, answering the human questions as best you can based on the context and memory available. \
|
118 |
+
You have access to a single tool:"""
|
119 |
+
suffix="""Begin!"
|
120 |
+
{chat_history}
|
121 |
+
Question: {input}
|
122 |
+
{agent_scratchpad}"""
|
123 |
|
124 |
+
elif kind == "Chat":
|
125 |
+
prefix=""""Have a conversation with a human, answering the human questions as best you can \
|
126 |
+
You have access to a single tool:"""
|
127 |
|
128 |
+
suffix="""Begin!"
|
129 |
+
{chat_history}
|
130 |
+
the human just say: {input}
|
131 |
+
{agent_scratchpad}"""
|
132 |
|
133 |
+
prompt = ZeroShotAgent.create_prompt(
|
134 |
+
tools,
|
135 |
+
prefix=prefix,
|
136 |
+
suffix=suffix,
|
137 |
+
input_variables=["input", "chat_history", "agent_scratchpad"],
|
138 |
+
)
|
139 |
+
if "memory" not in st.session_state:
|
140 |
+
st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history")
|
141 |
+
#Chain
|
142 |
+
# ZeroShotAgent
|
143 |
+
llm_chain = LLMChain(
|
144 |
+
llm=OpenAI(
|
145 |
+
temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo"
|
146 |
+
),
|
147 |
+
prompt=prompt,
|
148 |
+
)
|
149 |
+
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
|
150 |
+
agent_chain = AgentExecutor.from_agent_and_tools(
|
151 |
+
agent=agent, tools=tools, verbose=True, memory=st.session_state.memory
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
option = st.sidebar.selectbox(
|
156 |
+
'What do you want to ?',
|
157 |
+
('Chat', 'Sumarization'))
|
158 |
+
|
159 |
+
api = st.sidebar.text_input(
|
160 |
+
"Open api key",
|
161 |
+
type="password",
|
162 |
+
placeholder="sk-",
|
163 |
+
help="https://platform.openai.com/account/api-keys",
|
164 |
)
|
165 |
+
uploaded_file = st.sidebar.file_uploader(":blue[Upload]", type=["pdf"])
|
166 |
|
167 |
+
if api:
|
168 |
+
if option == "Sumarization":
|
169 |
+
|
170 |
+
if uploaded_file:
|
171 |
+
|
172 |
+
doc = parse_pdf(uploaded_file)
|
173 |
+
|
174 |
+
pages = text_to_docs(doc)
|
175 |
+
# pages
|
176 |
+
if pages:
|
177 |
+
with st.expander('Show page contents', expanded=False):
|
178 |
+
page_sel =st.number_input(
|
179 |
+
label="selected page", min_value=1, max_value=len(pages), step=1
|
180 |
)
|
181 |
+
st.write(pages[page_sel-1])
|
182 |
+
|
183 |
+
|
184 |
+
embeddings = OpenAIEmbeddings(openai_api_key = api)
|
185 |
+
# Indexing
|
186 |
+
# Save in a Vector DB_
|
187 |
+
with st.spinner("It's indexing. .."):
|
188 |
+
index = FAISS.from_documents(pages, embeddings)
|
189 |
+
|
190 |
+
tools,qa = tool(index)
|
191 |
+
|
|
|
|
|
192 |
|
193 |
+
process("Sumarized",tools)
|
|
|
194 |
|
|
|
|
|
195 |
|
196 |
+
container = st.container()
|
197 |
+
with container:
|
198 |
+
st.title("🤖 AI ChatBot")
|
199 |
+
|
200 |
+
# Initialize chat history
|
201 |
+
if "messages" not in st.session_state:
|
202 |
+
st.session_state.messages = []
|
203 |
+
# Display chat messages from history on app rerun
|
204 |
+
for message in st.session_state.messages:
|
205 |
+
with st.chat_message(message["role"]):
|
206 |
+
st.markdown(message["content"])
|
207 |
+
|
208 |
+
|
209 |
+
if query := st.chat_input("Hey yo !!! Wazzups!"):
|
210 |
|
211 |
+
st.chat_message("user").markdown(query)
|
212 |
+
# Add user message to chat history
|
213 |
+
st.session_state.messages.append({"role": "user", "content": query})
|
214 |
+
|
215 |
+
# response=llm_chain.memory.chat_memory.add_user_message(prompt)
|
216 |
+
if len(api) == 0:
|
217 |
+
response = f"""I will answer the question "{query}" if you give the API key"""
|
218 |
+
# st.write(response)
|
219 |
+
# #f"Echo: {prompt}" get_completion(template_string) #
|
220 |
+
# Display assistant response in chat message container
|
221 |
+
with st.chat_message("assistant"):
|
222 |
+
st.markdown(response)
|
223 |
+
# Add assistant response to chat history
|
224 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
225 |
+
|
226 |
+
else:
|
227 |
+
|
228 |
+
with st.spinner("It's indexing. .."):
|
229 |
+
response = agent_chain.run(query)
|
230 |
+
# st.write(response)
|
231 |
+
# #f"Echo: {prompt}" get_completion(template_string) #
|
232 |
+
# Display assistant response in chat message container
|
233 |
+
with st.chat_message("assistant"):
|
234 |
+
st.markdown(response)
|
235 |
+
# Add assistant response to chat history
|
236 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
237 |
+
# with st.expander("History/Memory"):
|
238 |
+
# st.write(st.session_state.memory)
|
239 |
+
|
240 |
+
elif option == "Chat":
|
241 |
+
|
242 |
+
def get_completion(prompt, model="gpt-3.5-turbo"):
|
243 |
+
messages = [{"role": "user", "content": prompt}]
|
244 |
+
response = openai.ChatCompletion.create(
|
245 |
+
model=model,
|
246 |
+
messages=messages,
|
247 |
+
temperature=0,
|
248 |
+
)
|
249 |
+
return response.choices[0].message["content"]
|
250 |
+
|
251 |
+
|
252 |
+
chat = ChatOpenAI(temperature=0.0, max_tokens=20)
|
253 |
+
memory = ConversationBufferWindowMemory(k=15)
|
254 |
+
conversation = ConversationChain(
|
255 |
+
llm=chat,
|
256 |
+
memory = memory,
|
257 |
+
verbose=False,
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
def reply(message, custom_style):
|
262 |
+
style = """ in a funny \
|
263 |
+
and joke tone
|
264 |
+
"""
|
265 |
+
if len(custom_style) > 0: style = custom_style
|
266 |
+
|
267 |
+
template_string = f"""You are talking with a person \
|
268 |
+
replying to the message\
|
269 |
+
with a style that is {style}. \
|
270 |
+
the person just say: {message}.
|
271 |
+
"""
|
272 |
+
|
273 |
+
prompt_template = ChatPromptTemplate.from_template(template_string)
|
274 |
+
|
275 |
+
bot_messages = prompt_template.format_messages(
|
276 |
+
style= style,
|
277 |
+
text= message)
|
278 |
+
|
279 |
+
response = conversation.predict(input=message)
|
280 |
+
|
281 |
+
|
282 |
+
return response
|
283 |
+
|
284 |
+
def sumarization():
|
285 |
+
pass
|
286 |
+
|
287 |
+
def document_question(question):
|
288 |
+
pass
|
289 |
+
ask_about_doc = False
|
290 |
+
with st.sidebar:
|
291 |
+
st.subheader("How do you want your bot reply to your message ?")
|
292 |
+
custom_style = st.text_input("Tell me here", placeholder="joke tone")
|
293 |
+
|
294 |
+
|
295 |
+
container = st.container()
|
296 |
+
with container:
|
297 |
+
st.title("🤖 AI ChatBot")
|
298 |
+
|
299 |
+
|
300 |
+
# Initialize chat history
|
301 |
+
if "messages" not in st.session_state:
|
302 |
+
st.session_state.messages = []
|
303 |
|
304 |
+
# Display chat messages from history on app rerun
|
305 |
+
for message in st.session_state.messages:
|
306 |
+
with st.chat_message(message["role"]):
|
307 |
+
st.markdown(message["content"])
|
308 |
+
# React to user input
|
309 |
+
if prompt := st.chat_input("What is up?"):
|
310 |
+
# Display user message in chat message container
|
311 |
+
st.chat_message("user").markdown(prompt)
|
312 |
+
# Add user message to chat history
|
313 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
314 |
+
|
315 |
+
with st.spinner("It's indexing. .."):
|
316 |
+
response = reply(prompt,custom_style)
|
317 |
+
# with st.spinner("It's indexing. .."):
|
318 |
+
# tools,qa = tool()
|
319 |
+
# process("chat", tools, qa)
|
320 |
+
# response = agent_chain.run(query)
|
321 |
+
if memory not in st.session_state:
|
322 |
+
st.session_state.memory = ConversationBufferWindowMemory(k=15)
|
323 |
+
# response=llm_chain.memory.chat_memory.add_user_message(prompt)
|
324 |
+
# st.write(memory.buffer)
|
325 |
+
# #f"Echo: {prompt}" get_completion(template_string) #
|
326 |
+
# Display assistant response in chat message container
|
327 |
+
with st.chat_message("assistant"):
|
328 |
+
st.markdown(response)
|
329 |
+
# Add assistant response to chat history
|
330 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|